

Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

US Army Corps of Engineers.

Contract No. W912DQ-13-D-3016

October 2018

FINAL

MAYWOOD INTERIM STORAGE SITE 2016 LONG-TERM GROUNDWATER MONITORING DATA REPORT FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

CONTRACT NO. W912DQ-13-D-3016

Prepared for:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza, Room 1811 New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Prepared by:

Cabrera Services, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

October 2018

FINAL

MAYWOOD INTERIM STORAGE SITE 2016 LONG-TERM GROUNDWATER MONITORING DATA REPORT FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

CONTRACT NO. W912DQ-13-D-3016

Prepared for:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza, Room 1811 New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Prepared by:

Cabrera Services, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

October 2018

Reviewed/Approved by: ____

Christopher Beres, PE Project Manager Date: _____

Reviewed/Approved by: _

E. Joseph Fort, Jr. Contractor QC System Manager Date: _____

Reviewed/Approved by:

Robert DeMott, P.G. Project Hydrogeologist Date:

TABLE OF CONTENTS

LIST OF TABLESIII						
LIST OF FIGURESIII						
LIST OF ATTACHMENTSIII						
ABE	ABBREVIATIONS AND ACRONYMSIV					
1.0	INTR	ODUCTION1-1				
1.1	PURPOSE AND SCOPE1-1					
1.2	SITE HISTORY1-2					
1.3	SITE DESCRIPTION 1-3					
1.4	SITE SOILS/BUILDING ROD and GROUNDWATER ROD1-3					
1.5	GROUNDWATER CLEANUP LEVELS 1-4					
1.6	SUMN	MARY AND FINDINGS OF GROUNDWATER SITE INVESTIGATIONS 1-5				
	1.6.1	Regional Geology1-5				
	1.6.2	Site Overburden Hydrogeology				
	1.6.3	Site Bedrock Hydrogeology1-6				
	1.6.4	Groundwater – Surface Water Interaction				
1.7	NATU	JRE AND EXTENT				
2.0	IMPL	EMENTATION OF THE 2016 LTM PROGRAM				
2.1	SUM	MARY OF THE 2016 LTM FIELD AND ANALYTIC PROGRAM2-1				
2.2	WELI	L REPAIRS/MODIFICATIONS, WELL DEVELOPMENT, AND ALLATION OF NEW WELLS 2-1				
	2.2.1	Well Repair and Modifications				
	2.2.2	Existing Well Redevelopment				
	2.2.3	Monitoring Well Installation and Development				
2.3	GROI	JNDWATER AND SURFACE WATER SAMPLING				
	2.3.1	Groundwater Elevation Monitoring				
	2.3.2	Groundwater and Surface Water Sampling Locations and Parameters				
	2.3.3	Groundwater and Surface Water Sampling Procedures2-5				
	2.3.4	Sample Labeling, Packing, and Shipping2-7				
	2.3.5	Laboratory Analysis and Reporting				
2.4	DEVL	ATIONS TO THE LTGWMP				
	2.4.1	Groundwater Monitoring				
	2.4.2	Well Installation 2-9				
	2.4.3	Well Sampling				
3.0	RESU	JLTS OF LTM GROUNDWATER				
	AND	SURFACE WATER SAMPLING				
3.1	GROUNDWATER FLOW CONDITIONS					

3.2	GROUNDWATER AND SURFACE WATER SAMPLING RESULTS		3-1	
	3.2.1	Arsenic Groundwater Sampling Results	3-1	
	3.2.2	Lithium Groundwater Sampling Results	3-2	
	3.2.3	Benzene Groundwater Sampling Results	3-2	
	3.2.4	Radiological Groundwater Sampling Results	3-3	
	3.2.5	Biogeochemical Groundwater Sampling Results	3-3	
	3.2.6	Surface Water Sampling Results	3-4	
4.0	DATA	A QUALITY CONTROL	4-1	
4.1	QA/Q	C SAMPLING	SAMPLING	
	4.1.1	Field Quality Control Sampling	4-1	
	4.1.2	Laboratory QA/QC Sampling	4-2	
4.2	FIELI	D DATA COLLECTION AND LABORATORY PREPARATION	4-2	
	4.2.1	Sample Handling and Custody - Radiological	4-3	
	4.2.2	Sample Handling and Custody – Chemical Analysis	4-3	
	4.2.3	Equipment Calibration and Maintenance	4-3	
4.3	ANALYTIC LABORATORIES AND METHODS, DATA ANALYSIS, AND VALIDATION		4-4	
	4.3.1	Laboratories and Analytical Methods	4-4	
	4.3.2	Data Analysis and Validation	4-4	
4.4	DATA	A SUMMARIES	4-5	
4.5	EPA F	REGION 2 and NJDEP ELECTRONIC DATA DELIVERABLE	4-5	
4.6	SUMN	MARY	4-5	
5.0	REFE	CRENCES	5-1	

LIST OF TABLES

- Table 1-1Groundwater Cleanup Levels
- Table 2-1New and Modified LTM Well Survey Data 2016
- Table 2-2USACE Monitoring Well Construction Data (LTM and Non-LTM Wells)
- Table 2-3
 LTM Groundwater Elevation Measurements September 14, 2016
- Table 2-42016 LTM Well Sampling Parameters
- Table 2-52016 LTM Final Purge Environmental Data
- Table 2-62016 LTM Analytical Methods and Requirements
- Table 3-1Overburden Groundwater Sampling Results
- Table 3-2Bedrock Groundwater Sampling Results
- Table 3-3Surface Water Sampling Results

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 1-2 FMSS and Surrounding Properties
- Figure 1-3 Generalized Geologic Cross-Section
- Figure 1-4 Groundwater Areas of Concern
- Figure 2-1 Long Term Monitoring Well and Surface Water Sampling Locations
- Figure 3-1 Overburden Groundwater Elevation, Measured on September 14, 2016
- Figure 3-2 Shallow Bedrock Groundwater Elevations Map, Measured on September 14, 2016
- Figure 3-3 Arsenic Results (August 2016), Overburden Monitoring Wells
- Figure 3-4 Arsenic Results (August 2016), Shallow Bedrock Monitoring Wells
- Figure 3-5 Lithium Results (August 2016), Overburden Monitoring Wells
- Figure 3-6 Lithium Arsenic Results (August 2016), Shallow Bedrock Monitoring Wells
- Figure 3-7 Benzene Results (August 2016), Overburden Monitoring Wells
- Figure 3-8 Benzene Results (August 2016), Shallow Bedrock Monitoring Wells
- Figure 3-9 Radiologic Sampling Results (August 2016), Overburden Monitoring Wells
- Figure 3-10 Radiologic Sampling Results (August 2016), Shallow Bedrock
- Monitoring Wells

LIST OF APPENDICES

- Appendix A NJDEP Permits, Well Records, and Survey Forms (Form B) for Modified/New LTM Wells
- Appendix B Boring and Construction Logs for LTM wells
- Appendix C Development Forms for Existing and New LTM Wells
- Appendix D Well Sampling Purge Data Forms
- Appendix E Groundwater, Surface Water and QA/QC Analytical Data Tables
- Appendix F Quality Control Summary Report for the Annual Long-Term Groundwater
- Monitoring Report, 2016 (Note: Some contents of this appendix are on CD)
- Appendix G Electronic Data Deliverable (Note: The contents of this appendix are on CD)

ACRONYMS AND ABBREVIATIONS

AOC	Area of Concern
bgs	below ground surface
cm/s	centimeters per second
COC	contaminant of concern
COD	chemical oxygen demand
CRDL	Contract-Required Detection Limit
DL	detection limit
DO	dissolved oxygen
DOE	U.S. Department of Energy
EDD	Electronic Data Deliverable
EMP	Environmental Monitoring Program
EPA	U.S. Environmental Protection Agency
FMSS	FUSRAP Maywood Superfund Site
ft	feet/foot
ft/ft	feet per foot
ft/day	feet per day
FUSRAP	Formerly Utilized Sites Remedial Action Program
GFPC	gas-flow proportional counting
gpd/ft	gallons per day per foot
GPM	gallons per minute
GW OU	groundwater operable unit
GWRI	Groundwater Remedial Investigation
HSA	hollow stem auger
HPLC	High Purity Liquid Chromatographic
ICP-AES	inductively-coupled plasma atomic emission spectrometer
ICP-MS	inductively-coupled plasma mass spectrometer
ID	inside diameter
LCS	laboratory control standards
LTM	Long-Term Monitoring
LTGWMP	Long-Term Groundwater Monitoring Plan
LUC	land use control
μg/L	micrograms per liter
MCL	maximum contaminant level
MCW	Maywood Chemical Works
MD	matrix duplicate
MDA	method detection activity
MDC	method detection concentration
MISS	Maywood Interim Storage Site

Acronyms and Abbreviations (continued)

mL	milliliter(s)
mL/min	milliliters per minute
MNA	Monitored Natural Attenuation
MS	matrix spike
MSD	matrix spike duplicate
NJDEP	New Jersey Department of Environmental Protection
NPL	National Priorities List
NRC	Nuclear Regulatory Commission
NTU	nephelometric turbidity unit
OP	operating procedure
ORP	oxidation-reduction potential
OU	Operable Unit
pCi/L	picocuries per liter
pH	hydrogen ion concentration
PID	photoionization detector
POTW	publicly-owned treatment works
PVC	polyvinyl chloride
QA	quality assurance
QC	quality control
QCSR	Quality Control Summary Report
redox	oxidation-reduction
RI	Remedial Investigation
RL	reporting limit
ROD	Record of Decision
SDG	Sample Delivery Group
SGS	SGS Drilling, Inc.
UFP-QAPP	Uniform Federal Policy-Quality Assurance Project Plan
UFML	USACE FUSRAP Maywood Laboratory
USACE	U. S. Army Corps of Engineers
VOC	volatile organic compounds

1.0 INTRODUCTION

This Groundwater Data Report presents the 2016 field program and sampling data results for the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) site (Site) located at 100 West Hunter Avenue in the Borough of Maywood, Bergen County, New Jersey. This report has been prepared on behalf of the U.S. Army Corps of Engineers (USACE) by Cabrera Services, Inc. (Cabrera) under USACE Contract No. W912DQ-13-D-3016.

Cabrera performed this work in accordance with the *Draft Final Long-Term Groundwater Monitoring Plan* (LTGWMP) (USACE, 2016a), and *Maywood FUSRAP Groundwater Record of Decision* (ROD) (USACE, 2012) (Groundwater ROD). The data report herein presents the results of the first comprehensive sampling event with our new well network of monitoring wells installed since submittal of the LTGWMP and Groundwater ROD documents. This new array of overburden and bedrock monitoring wells are intended to document baseline conditions prior to remediation being completed.

Remediation of soil and groundwater contaminant of concern (COC) source areas is currently ongoing at the Maywood Interim Storage Site (MISS) pursuant to the *Draft Final Groundwater Remedial Design/Remedial Action Work Plan* (USACE 2016b), Groundwater ROD (USACE, 2012), and *Maywood FUSRAP Buildings and Soil Record of Decision* (USACE, 2003) (Soils and Buildings ROD). Remediation of all accessible groundwater COCs and radiologically impacted soils on the MISS is scheduled for September 2021. Annual groundwater monitoring and data reporting is scheduled through 2021 or completion of MISS soil remediation. Once MISS soil remediation is completed, quarterly groundwater sampling will be conducted for a two year period as described in the LTGWMP, and reported via Quarterly Data Reports and Annual Long-Term Monitoring (LTM) Reports.

1.1 PURPOSE AND SCOPE

The purpose of this annual Groundwater Data Report is to document baseline site conditions for groundwater COCs, radiological parameters, and geochemical parameters at LTM wells and surface water monitoring locations.

The scope of this Groundwater Data Report is included under the report sections as follows:

- Section 1.0 Introduction: Site History, Site Description, Site Soil/Buildings ROD and Groundwater ROD, Summary and Findings of the Groundwater Site Investigations, and Nature and Extent of Contamination.
- Section 2.0 Implementation of the 2016 LTM Program: Summary of Field Activities, Well Repair and Modifications, Existing Well Re-development, Well Installation and Development, Groundwater Elevation Monitoring, Groundwater and Surface Water Sampling, Laboratory Analysis and Reporting, and Deviations to the LTGWMP.
- Section 3.0 Results of LTM Groundwater and Surface Water Sampling: Groundwater Flow Conditions, Arsenic Groundwater Sampling Results, Lithium Groundwater Sampling Results, Benzene Groundwater Sampling Results, Radiologic Groundwater Sampling Results, and Surface Water Sampling Results.

• Section 4.0 Data Validation/Quality Control Summary Report: LTM Quality Assurance/Quality Control (QA/QC) Sampling Program and Sampling Results, Sample Management and Data Validation, Electronic Data Deliverable (EDD), and Quality Control Summary Report (QCSR).

1.2 SITE HISTORY

The original plant on what is now the FUSRAP Maywood Superfund Site (FMSS) was constructed in 1895 and became known as the Maywood Chemical Works (MCW) in 1918. Principal products manufactured by the MCW included aromatics (mainly for the soap industry), flavorings, lithium (in 30 different forms), pharmaceuticals (quinine, cocaine, and caffeine among others), protein (extracted from leather), and rare earth salts (for the glass industry). Starting in 1916, portions of the facility were used to extract thorium and rare earth metals from monazite sands. The extracted thorium was then sold to other companies for use in manufacturing industrial products, such as mantles for gas lanterns. The wastes from this process were pumped as slurry to holding ponds.

In 1932, the disposal areas were partially covered by the construction of New Jersey State Route 17. Thorium extraction at the MCW ended in 1956 after approximately 40 years of production. The MCW property was subsequently sold to the Stepan Company, Inc. in 1959. Wastes from the various manufacturing processes were generally stored in open piles and retention ponds. Some of the process wastes were removed for use as mulch and fill on nearby properties, thereby contaminating those properties with radioactive thorium.

The U.S. Environmental Protection Agency (EPA) listed the MCW on the Superfund National Priorities List (NPL). In late 1983, Congress assigned a research and development project to the U.S. Department of Energy (DOE) to clean up the radioactive wastes at the MCW. The DOE then placed the Site in the FUSRAP Program. In 1985, the Federal Government acquired an 11.7-acre portion of the Stepan Company property to temporarily store soils excavated by the DOE from offsite properties until a suitable permanent storage site was identified. The 11.7-acre site became known as the Maywood Interim Storage Site (MISS).

In 1992, the DOE completed a remedial investigation (RI) that defined the nature and extent of soil, sediment, and groundwater contamination. The DOE RI Report (DOE, 1992) concluded that information regarding the nature and extent of groundwater contamination was incomplete and that further investigation was required. A focused FMSS Groundwater RI was conducted by USACE from 2000 to 2004. The results of the field investigations were reported in the *Final Groundwater Remedial Investigation Report*, FUSRAP Maywood Superfund Site (USACE, 2005) (GWRI).

The Soils and Buildings ROD was published in 2003. This ROD has been implemented and the associated remedial action is currently ongoing. The Groundwater ROD was approved by EPA in July 2012 and addresses the source area removal. The final remedy for groundwater as presented in the Groundwater ROD (USACE, 2012) is summarized in Section 1.4 of this document. The EPA has conducted two Five-Year Reviews of the Maywood FUSRAP Site associated with the Soils and Buildings ROD.

1.3 SITE DESCRIPTION

The FMSS is located in a highly developed area of northeastern New Jersey located in the Boroughs of Maywood and Lodi, and the Township of Rochelle Park (Figure 1-1). It is located approximately 12 miles north-northwest of New York City, New York and 13 miles northeast of Newark, New Jersey. The FMSS is listed on the EPA Superfund NPL. The Comprehensive Environmental Response, Compensation, and Liability Information System identification number is NJD980529762. USACE was delegated authority for the FUSRAP by the Energy and Water Development Appropriations Act of 1998, and subsequent appropriations acts. The FMSS consists of 92 designated industrial, residential, commercial and government properties contaminated by former thorium processing activities at the MCW (Figure 1-2).

The MISS (a portion of the FMSS) is an 11.7-acre fenced lot that was previously part of a 30-acre property owned by the Stepan Company. The Federal Government acquired the MISS from the Stepan Company in 1985. The water reservoir, Pump House, and one of the railroad spurs are still in use by the Stepan Company. The MISS is bounded on the west by NJ State Route 17; on the north by a New York, Susquehanna & Western Railway line; and on the south and east by Stepan Company property. Residential properties are located north of the railroad line and within 75 yards of the northern MISS boundary. The property is enclosed by a chain-link fence, and access to known or potentially hazardous areas is restricted.

1.4 SITE SOILS/BUILDING ROD and GROUNDWATER ROD

Contamination on the FMSS is being addressed in three separate operating units (OUs), which are coordinated by EPA Region 2. These include:

- OU 1: Soils and Buildings OU at the MISS, Stepan Company, and the 22 commercial and Government Vicinity Properties. This OU includes soil, buried bulk wastes (including the NRC-licensed burial pits), and buildings (all contaminated buildings are located on the Stepan Company property and the MISS).
- OU 2: The USACE GW OU includes groundwater impacted by FUSRAP waste and contaminated groundwater at the MISS.
- OU 3: Non-FUSRAP chemical wastes (addressed by Stepan Company).

The Soils and Buildings ROD addresses the OU 1 radiologically and chemically contaminated soil, debris (e.g., buried drums), and building materials defined as FUSRAP waste at the former MCW and commercial/government properties in the vicinity of the site, including the Stepan Company burial pits that are licensed and regulated by the NRC. The Groundwater ROD (USACE, 2012) presents the selected remedial actions for OU 2 groundwater at the MISS and adjacent properties.

The major components of the Groundwater ROD include the following:

- Removal and off-site disposal of non-radiological contaminated soil (lithium, arsenic, and benzene soils with concentrations above the cleanup levels defined by the Groundwater ROD) on the MISS, to include pond sludge on the MISS.
- Monitored Natural Attenuation (MNA) of arsenic, lithium, and benzene (groundwater COCs) in overburden and shallow bedrock groundwater. MNA refers to the process of documenting the progress and effectiveness of natural attenuation through a defined monitoring program. Natural attenuation is the combination of physical, chemical, and biological processes that result in reasonably predictable reductions in contaminant concentrations over time.
- Continued groundwater monitoring of radiological parameters at former Environmental Monitoring Program (EMP) monitoring wells.
- Land Use Controls (LUC) that will include use restrictions applicable to site groundwater. LUCs will be utilized, as appropriate, to limit potential future on-site and downgradient off-site public and construction worker exposure to groundwater contaminants until target cleanup goals are achieved.

The groundwater remedial action will be considered complete and will be discontinued when:

- Non-radiological source soils that result in groundwater contamination above cleanup levels are removed from the MISS.
- Groundwater monitoring indicates that COCs and radiologic concentrations are at, or below, cleanup levels on the MISS and at FUSRAP-impacted offsite locations west of Route 17. Former Stepan Company properties (i.e. MCW) west of Route 17 are expected to impact groundwater as well.

1.5 GROUNDWATER CLEANUP LEVELS

The Groundwater ROD identified the COCs and groundwater cleanup levels for LTM, which includes the following (see Table 1-1):

- Arsenic 3 micrograms per liter (μ g/L)
- Lithium 730 μ g/L
- Benzene 1 μ g/L.

Total uranium, total radium, gross alpha, and gross beta were not identified as groundwater COCs due to the low detected activity and low human health risk. However, the Groundwater ROD includes groundwater monitoring of radiological constituents to ensure the protectiveness of the Soil and Buildings OU remediation. Radiological groundwater monitoring was conducted at 28 LTM wells in 2016, and is continued as part of the LTM program.

The regulations in 40 Code of Federal Regulations 141 set maximum permissible levels of radiological contaminants in groundwater by specifying the Federal Safe Water Drinking Act Maximum Contaminant Levels (MCL) for each parameter. Pertinent MCLs have been promulgated for total uranium, total radium, and gross alpha. The New Jersey Department of

Environmental Protection (NJDEP) has adopted the Federal MCLs. Table 1-1 summarizes cleanup criteria for groundwater on the MISS.

1.6 SUMMARY AND FINDINGS OF GROUNDWATER SITE INVESTIGATIONS

The site characteristics summarized in the sections to follow are described in the GWRI (2005), *Phases 16 and 19 Construction Dewatering Monitoring Plan* (USACE, 2011), and the LTGWMP (USACE, 2016a).

1.6.1 Regional Geology

The FMSS and MISS are located in the Piedmont Physiographic Province within the U.S. Geological Survey Hackensack Quadrangle. The Piedmont Province in New Jersey is located within the Newark Basin, a northeast trending half-graben that extends southwest from the Hudson River Valley in New York to southeastern Pennsylvania.

The Newark Basin is primarily composed of a sequence of sedimentary rocks and intrusive igneous rocks, commonly referred to as the Brunswick Group. The sedimentary rocks within the Brunswick Group consist of sandstones, shales, mudstones, and conglomerates having strike orientations ranging from N20E to N35E, and dipping between 7 and 15 degrees to the northwest.

The sedimentary rocks of the Brunswick Group are divided into three formations: a lower unit, the Stockton Formation; a middle unit, the Lockatong Formation; and an upper unit, the Passaic Formation. The FMSS and MISS are underlain by the Passaic Formation Sandstone Member which is described as an interbedded grayish red to brownish red, medium to fine grained, medium to thick bedded sandstone and brownish to purplish red, coarse grained siltstone; the unit is planar to ripple cross laminated, fissile, locally calcareous containing desiccation cracks, and root casts. Upward fining cycles are 6 to 15 feet (ft) thick. Maximum thickness is approximately 3,600 ft.

Groundwater beneath the FMSS and MISS occurs in shallow and deep bedrock and locally in overburden deposits. The term shallow bedrock as used here describes the interval typically extending 10 to 35 ft below the top of bedrock and deep bedrock refers to the interval extending from approximately 35 to 70 ft below the bedrock surface. Figure 1-3 provides a generalized cross-section of the region's geological units which comprise the regional aquifer.

Groundwater within the FMSS and MISS is classified as Class II groundwater. Class II groundwater has a designated use of potable groundwater with conventional water supply treatment, either at its current water quality (Class II-A) or subsequent to enhancement or restoration of regional water quality, so that the water will be of potable quality with conventional water supply treatment (Class II-B). Existing and potential potable water uses are both included in the designated use.

1.6.2 Site Overburden Hydrogeology

Saturated, laterally continuous overburden deposits were mapped in parts of the FMSS and comprise the local overburden aquifer. Overburden material typically consists of a lower

undifferentiated till and gravel unit (on bedrock), overlain by gravel, upper undifferentiated till and sand, and an upper sand unit. In most FMSS areas, the sand unit is covered by fill of varying thickness. The highest aquifer permeability and porosity (and groundwater yield) is typically encountered in stratified drift (well sorted glacial outwash deposits composed of sand, gravel, silt, and clay laid down by glacial melt water in a river flood plain and in glacial lake deltas and alluvial fans), and is expected in the mapped gravel and sand units. Stratified drift deposits are usually laterally extensive within a paleodrainage, but can vary in composition, permeability, and well yield. The reported yield of stratified deposits in the Hackensack Quadrangle ranges from one to several hundred gallons per minute (GPM); however, local wells are expected to yield from 0.5 to 5 GPM. The gravel and/or sand units are mapped in all overburden aquifer areas, and are expected to transmit the majority of groundwater in the overburden aquifer.

MISS overburden groundwater flow direction is west to southwest with an average horizontal gradient of 0.0076 feet per foot (ft/ft) to 0.0111 ft/ft.

1.6.3 Site Bedrock Hydrogeology

Groundwater in bedrock occurs under confined and unconfined conditions within a network of interconnected bedrock joints (fractures) and open bedding fractures in the Passaic Formation. The permeability of the Passaic Formation is fracture controlled, with the exception of some sandstone aquifer units. Regionally, the Passaic Formation provides a major source of groundwater in the Newark Basin, and locally to a number of water districts in Bergen County. The bedrock aquifer is layered (heterogeneous), typically consisting of a series of alternating aquifers and aquitards several tens of ft thick.

The water bearing fractures of each aquifer are more or less continuous, but hydraulic connection between individual aquifers is poor. These aquifers generally dip downward for a few hundred ft, and are continuous along the strike for thousands of feet. Shallow bedrock, the depth of most interest, generally extends 10 to 35 ft below the bedrock surface. Shallow bedrock monitoring wells' yield on the FMSS range from 0.5 to 50 GPM with most wells producing 0.5 to 2.0 GPM. Shallow bedrock yields have been measured locally in three wells during short-term pumping tests (2 to 72 hours), with average flows of 10.5, 16, and 17 GPM. Based on computer modeling, long-term pumping rates from single wells located on the MISS are expected to be less than 5 GPM.

Shallow bedrock groundwater flow at the MISS is generally towards the west and the Saddle River. However, some groundwater flows to the northwest and southwest due to influence of a bedrock high to the east of the MISS. Shallow bedrock groundwater flow in the westerly direction across the Site had an average horizontal gradient of 0.0075 ft/ft to 0.0109 ft/ft.

1.6.4 Groundwater – Surface Water Interaction

The upstream portion of Westerly Brook is conveyed by culvert pipe under the MISS, New Jersey Route 17 and 96 Park Way, Rochelle Park, and opens to a channel at St. Ann Place in Rochelle Park (Figure 2-1).

A video survey conducted by USACE in 2000 found that both the north-south and east-west sections of the Westerly Brook culvert leak heavily at open and cracked joints. Invert elevations for the Westerly Brook culvert pipe show that the pipe is partially below the seasonal low

groundwater table and in some locations was installed on the top of bedrock. These data suggest that groundwater from the MISS is infiltrating into Westerly Brook through open joints in the pipe. The areas of groundwater infiltration are indicated on Figure 2-1.

1.7 NATURE AND EXTENT

Groundwater COCs (arsenic, lithium, and benzene) and non-COC (radiological) groundwater sampling was conducted at all USACE and available Stepan Company monitoring wells in 2000-2002 as part of the GWRI. Annual radiological groundwater sampling has been conducted at 24 monitoring wells as part of the EMP since 1999. A later comprehensive round of groundwater COCs (arsenic, lithium, and benzene) samples were collected from 84 overburden and shallow bedrock monitoring wells in 2011 as part of the approved *Phases 16 and 19 Construction Dewatering Work Plan* (USACE, 2011).

Five potential MISS groundwater source areas, or areas of concern (AOC), were identified in the GWRI. The location of MISS AOCs is shown on Figure 1-4. Arsenic and lithium contamination in AOCs 1 and 2 involve both the overburden and shallow bedrock aquifers, whereas benzene contamination in AOCs 6 and 7 is limited to the shallow bedrock and overburden aquifers, respectively. Historic radium exceedances were detected in bedrock well B38W18D, which defines AOC 5. The distribution of arsenic, lithium, benzene, and radium in each AOC (by aquifer) is summarized below:

• Overburden Aquifer

AOC 1 (Former Retention Pond A) – arsenic, lithium AOC 2 (Former Retention Pond C) – arsenic, lithium AOC 7 – benzene

• Shallow Bedrock Aquifer

AOC 1 (Former Retention Pond A) – arsenic, lithium AOC 2 (Former Retention Pond C) – arsenic, lithium AOC 5 - radium AOC 6 – benzene.

It is noted that historic total radium exceedances in AOC 5 (bedrock well B38W18D) may have be attributed to the incorrect installation (and screening) of that well into radiologically - impacted overburden sludge and saprolite. Radiologically impacted overburden material was remediated from the area of AOC 5 (well B38W18D) in 2015, resulting in damage to that well. Well B38W18D was replaced in 2016 by bedrock well B38W18DR in accordance with the LTGWMP. Sampling results for that well are provided in Section 3.2.4.

2.0 IMPLEMENTATION OF THE 2016 LTM PROGRAM

2.1 SUMMARY OF THE 2016 LTM FIELD AND ANALYTIC PROGRAM

The Draft Final LTGWMP was submitted to the EPA for review in February 2016. LTM field activities were commenced on March 15, 2016 and completed on September 22, 2016. The 2016 field tasks were completed as listed below:

- 1. Redevelopment of 40 existing LTM wells March 15 to August 22, 2016
- Repair and Modifications of 16 existing LTM wells April 25 to May 4, 2016
- 3. Installation of 20 onsite and 8 offsite LTM wells May 9 to September 6, 2016
- 4. Development of 28 newly-installed LTM wells June 14 to September 8, 2016
- 5. Conducted groundwater sampling at 66 overburden and bedrock LTM wells and two LTM surface water locations August 8 to September 6, 2016.
- 6. Sampled an additional 3 new LTM wells (MW-52S/D and MISS04AR) on September 21 and 22, 2016.
- 7. Measurement of groundwater water levels (81 wells) September 14, 2016
- 8. Surveyed newly-installed and modified wells September 14 to 19, 2016.

Analysis of groundwater and surface water samples was conducted at two off-site laboratories and on-site USACE FUSRAP Maywood Laboratory (UFML). Off-site laboratory analysis was conducted during the period August 8 to November 21, 2016. Data validation was completed for all groundwater COC and radiological groundwater and surface water samples. Data validation of laboratory deliverables was conducted during the period August 19 to December 21, 2016.

2.2 WELL REPAIRS/MODIFICATIONS, WELL DEVELOPMENT, AND INSTALLATION OF NEW WELLS

Well repairs and modifications, well development, and new well installations are presented in the sections to follow.

2.2.1 Well Repair and Modifications

Sixteen LTM monitoring wells were repaired and/or modified in 2016. Well repairs included basic well pad, outer protective casing, and road box replacements/repairs that did not involve modifications to the subsurface well components or riser elevations. A total of nine wells were modified, which required new NJDEP well permits and permit numbers. LTM wells BRPZ2, BRPZ3, BRPZ4, BRPZ5, BRPZ9 and MW34D were converted from flush mount to stickup configuration. LTM flush-mount wells B38W14S and B38W14D were elevated and required reconstruction of the road box, pad, and riser. LTM bedrock well MW6D was flushed out and reconstructed as a screened well (from open borehole). LTM well construction data are provided in Table 2-2. NJDEP well permits, well records, and survey forms (Form B) for modified LTM

wells are provided in Appendix A. Well construction diagrams for LTM wells are shown in Appendix B.

2.2.2 Existing Well Redevelopment

A total of 41 existing LTM wells were redeveloped to remove accumulated sludge/sediment and minimize the turbidity of groundwater samples. Prior to development, the well headspace was field screened for volatile organic compounds (VOC) with a photoionization detector (PID), and the depth to water and depth to bottom were measured with a water level indicator to calculate the volume of water in the well. This and other well construction data were entered on the well development data form, and the minimum development purge volume was calculated. A minimum three purge volumes were pumped from each well during development. All well development activities were conducted in accordance with detailed procedures described in the LTGWMP and Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP), Operating Procedure (OP)-338M3 (Monitoring Well Construction and Well Development).

Water quality parameters including hydrogen ion concentration (pH), temperature, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity were measured in regular five or ten minute intervals using a calibrated YSI 6820 multi-meter (or equivalent) equipped with a flow-through cell. Regular water quality parameter measurements were recorded on a well development log sheet, along with time, depth to water, discharge flow rate, volume discharged and VOC (PID) measurements. All wells were developed to achieve the lowest possible turbidity measurements, and meet the turbidity goal of 50 nephelometric turbidity units (NTU) or less.

All existing wells were initially developed by overpumping and surging for repeated cycles until the development discharge was clear of sediment. A decontaminated Grunfos® submersible pump was used to pump wells, and surging in 2-inch inside diameter (ID) screen wells was accomplished by rapid vertical movement of the Grunfos® pump across the well screen interval while pumping. Open borehole 4-inch ID and 6-inch ID wells were surged across the open interval using a decontaminated Grunfos® pump with cooling shroud to increase the pump diameter. Surging was continued until all sediment and sludge was removed from the base of the well (if any), and the discharge was sediment free.

Well development was completed by a final period of overpumping at a lower sustained rate. Discharge was monitored for water quality parameters using the flow-through cell until the turbidity goal and borehole purge volumes were met. During sustained pumping, water levels were kept above the top of screen or open borehole to allow the accurate measurement of water quality parameters. The goal of 50 NTU was met in all existing LTM wells, except for well MW39S. Nearby USACE overburden well MW8S was successfully redeveloped, and replaced well MW39S in the 2016 LTM sampling program. Well development data forms for all LTM wells are provided in Appendix C.

In accordance with the LTGWMP, development water was contained in drums, and off-site development water was transported to the MISS on a daily basis for disposal. Development water was treated by the onsite treatment system and discharged to the local publicly owned treatment works (POTW) in accordance with the work plans.

2.2.3 Monitoring Well Installation and Development

A total of 28 monitoring wells were installed and developed in accordance with the LTGWMP. Installed well locations are shown in Figure 2-1. Prior to drilling activities, all sites were checked for utilities and underground obstructions by a geophysical contractor using electromagnetic methods, Ground Penetrating Radar, and a Public Utilities Locator. A NJDEP well drilling permit and New Jersey One-Call ticket were obtained in advance by SGS Drilling (SGS), a New Jersey-licensed drilling contractor. Each drilling location was hand dug to 5 ft below ground surface (bgs) prior to drilling.

Prior to entering the work site, drill rigs and all downhole equipment and materials were decontaminated with a steam cleaner on the MISS. A geologist supervised site mobilization, well installation and development activities, and logged well drilling and construction details. The Geologist prepared well boring logs and well construction logs for each well, which are provided in Appendix B. All monitoring wells were constructed in a stick up or flush mount configuration, and include a cement well pad, locking J-Plug and lock, and a tag with well identification and NJDEP permit numbers. All wells were developed by pumping to remove sediment and to meet the turbidity goal of 50 NTUs or less. Well development data sheets for all new LTM wells are provided in Appendix C.

Wells were surveyed by Layout Design PC, a New Jersey-licensed surveyor. The surveyor provided the horizontal control and elevation of ground, and top of outer and inner casing to an accuracy of 0.01 ft. A summary of survey data for the newly installed and modified wells is provided in Table 2-1. The surveyor completed a NJDEP Form B for each new well as provided in Appendix A.

Specific installation and development activities for overburden and shallow bedrock monitoring wells are described in the following paragraphs.

Overburden Monitoring Well Installation

A total of 16 overburden LTM wells were installed in 2016 as part of the LTGWMP. The wells were installed using the hollow stem auger (HSA) drilling method, and were augered to the top of bedrock (typically 10 to 20 ft bgs) using a 7-1/8-inch outside diameter bit. Continuous split spoon sampling was conducted from the base of the 5 ft hand dug interval to bedrock or refusal using a 140-pound hammer. Each split spoon sample was monitored for organic vapors, and logged by the geologist. The overburden wells were constructed with a 2-inch ID Schedule 40 polyvinyl chloride (PVC) riser and screen, using a Morie #1 or equivalent filter sand. A 5-ft length of 10 slot (0.010 inch) screen and Morie #1 filter pack (or equivalent) was constructed from the base of the aquifer, with the top of screen set below the water table where possible to minimize aeration during sampling.

In accordance with the NJDEP Field Sampling Procedures Manual (NJDEP, 2011), wells were constructed with a minimum 1.0 ft interval of Morie #1 well filter pack from the top of screen, and was topped with a 2.0 ft thick layer of #00 Morie filter sand (or equivalent) to limit the seepage of cement grout into the filter pack. The wells were grouted with cement to the surface for completion. Well boring logs and construction diagrams were prepared for each overburden well, and are provided in Appendix B. Well construction information is summarized in Table 2-2.

It is noted that installation of two proposed LTM offsite overburden/bedrock well clusters was delayed in 2016, and are planned for installation in 2017. These overburden wells will be installed as proposed in the approved LTGWMP.

Shallow Bedrock Monitoring Well Installation

A total of 12 new shallow bedrock LTM wells were installed by air rotary drilling in 2016 as part of the LTGWMP. A 10-inch ID temporary drive casing was driven to top of rock to seal off the overburden aquifer from the deeper bedrock aquifer. A nominal 10-inch ID borehole was drilled to a minimum of 10 ft into competent bedrock, and a 6-inch ID steel casing was centered at the base of the borehole. The annular space was tremie grouted with Portland Type III (high early strength) cement to the surface and allowed to cure overnight. A nominal 6-inch ID borehole was drilled 25 ft below the casing, completing the borehole.

All but one bedrock well was completed with a 25 ft length or less of 6-inch ID open borehole, as specified in the LTGWMP. The open borehole of LTM well MW54D was advanced beyond 25 ft in a low yielding formation to obtain additional water, so the base of the open borehole was screened with a 20 ft length of 2-inch PVC screen in compliance with NJDEP regulations. Well MW54D was constructed with a 10-slot PVC screen and Morie #1 filter sand. The Morie #1 well filter pack extends two ft from the bottom and top of screen, and was topped with a 2-ft thick layer of #00 Morie filter sand to limit the seepage of cement grout into the filter pack. The well was completed with a 2-inch ID PVC riser and cement grout to the surface. LTM well construction data is provided in Table 2-2. Bedrock well boring logs and construction diagrams are provided in Appendix B.

Note that installation of two proposed LTM offsite overburden/bedrock well clusters was delayed in 2016, and is planned for 2017. These bedrock wells will be installed as proposed in the approved LTGWMP.

New Monitoring Well Development

Development procedures for new installed overburden LTM wells is similar to that performed at existing overburden wells, except that initial development activities were conducted by the driller. Overburden wells were over-pumped and surged for repeated cycles by the driller using a decontaminated Whale® pump until the discharge was clear of sediment. The volume of water purged was recorded on the well development data sheet by the Geologist. Well development was completed by a final period of overpumping at a lower sustained rate. Discharge was monitored for water quality parameters using a calibrated YSI multi-meter and flow through cell until the turbidity goal and borehole purge volumes were met.

Development of new bedrock open borehole wells involved the following steps: (1) initial rig development, (2) over-pumping and surging with a submersible pump, and (3) over-pumping by submersible pump and measurement of environmental parameters. Completed boreholes were initially developed by the drill rig using air displacement of water from the borehole and surging of the borehole by vertical movement of the drill bit. Rig development was continued for a minimum one hour period to remove rock fragments and coarse sediment from the well. The volume of water purged by the drill rig was recorded on the well development data sheet by the Geologist. Once rig development was completed, each well was then over-pumped and surged by the driller using a decontaminated submersible pump, which was moved vertically within the

open borehole portion of the well. Over-pumping and surging was continued until the discharge was visibly clear of free sediment. The volume of purge water was recorded on the well development data sheet by the Geologist.

Well development was completed by a final period of over-pumping with a decontaminated submersible at a high sustained rate. Discharge was monitored for water quality parameters using a calibrated YSI multi-meter and flow-through cell until the turbidity goal and borehole purge volumes were met. Development of the screened shallow bedrock well (MW54D) is similar to that described for overburden wells, except for the greater well depth and length of screen. The goal of 50 NTUs was met at all new installed bedrock LTM wells. Well development forms for all new LTM wells are provided in Appendix C.

2.3 GROUNDWATER AND SURFACE WATER SAMPLING

2.3.1 Groundwater Elevation Monitoring

Groundwater level measurements were conducted on September 14, 2016 at a total 81 wells, including 69 LTM wells, ten USACE monitoring wells, and two Stepan Company monitoring wells. The locations of overburden and bedrock water level monitoring wells are shown on Figures 3-1 and 3-2, respectively. All water level measurements were completed in a one day period to provide a snapshot of groundwater elevations and were measured to an accuracy of 0.01 ft from the well top of the inner casing (TIC) using a water level indicator. Once the field measurement was recorded, the well was secured by replacing the compression cap and lock. Field groundwater measurements were tabulated and converted to groundwater elevation data, as summarized in Table 2-3. Groundwater elevation data were plotted on separate overburden and shallow bedrock maps, which are shown on Figures 3-1 and 3-2, respectively. Groundwater flow conditions are addressed in Section 3.1.

2.3.2 Groundwater and Surface Water Sampling Locations and Parameters

A total of 69 groundwater monitoring wells and two surface water locations were sampled in 2016 as part of the LTGWMP. LTM groundwater and surface water sampling locations are shown on Figure 2-1. All groundwater monitoring wells were sampled for groundwater COCs (arsenic, lithium, and benzene), with radiologic and biogeochemical sampling performed at selected wells. The rationale for selected radiologic and biogeochemical sampling at LTM wells is provided in the LTGWMP (Table 3 and Sections 2.2.3 and 2.2.4.). The sampling parameters for LTM wells are shown in Table 2-4. Surface water sampling was conducted at two locations at Westerly Brook (SW-003 and SW-004), and samples were collected/analyzed for groundwater COCs and radiological parameters.

2.3.3 Groundwater and Surface Water Sampling Procedures

Prior to sampling each well, the well compression cap was removed, and VOC vapor concentrations were recorded using a calibrated PID. Well headspace monitoring was conducted during sampling in accordance with the LTGWMP. The EPA low-flow sampling method (EPA, 2011) described in the LTGWMP and OP-355M (Low-Flow Groundwater Sampling) was applied for purging and collecting of all groundwater samples.

Purging and Sampling of Groundwater Monitoring Wells

Groundwater monitoring wells were purged and sampled using a decontaminated QED MicroPurge[®] bladder pump. Pumps were decontaminated following the EPA/NJDEP procedures for sampling metals, radiological constituents, and VOCs. A new Teflon® bladder was installed in the pumps prior to each use.

After an initial water-level measurement, the QED pump was connected to new Teflon[®]-lined tubing and lowered to a predetermined depth in the screened interval. Once the pump was set, the pump cord and tubing were secured to the top of the well, and the pump discharge tubing was connected to the multi-meter flow-through cell with a disposable fitting. Purged water from the flow-through cell was discharged through tubing into a 5-gallon bucket for later disposal on the MISS. Each well was purged and sampled at a steady pumping rate of 50 to 250 milliliters per minute (mL/min), with an average flow rate of approximately 175 mL/min. The purge flow rate was measured every five minutes by discharge into a 250- or 500-milliliter (mL) graduated cylinder, which was initially adjusted to minimize well drawdown and to stabilize the water level. Wells were sampled by disconnecting the Teflon[®]-lined tubing from the flow-through cell fitting and directly filling sample bottles. VOC, methane, and radon groundwater samples were collected first, followed by metals, radiological, and biogeochemical samples.

A calibrated YSI 6820 or 6920 multi-meter connected to the flow-through cell was used to measure temperature, pH, conductivity, DO, ORP, and turbidity. A calibrated Hanna 2020E turbidity meter was used as a backup for turbidity measurements during purging as needed if the YSI turbidity probe malfunctioned or if questionable readings were observed. Readings were recorded every five minutes on a purge data sheet and continued until stability of the water quality parameters. Stabilization was achieved after three consecutive readings under the following criteria (EPA, 2010):

- Temperature within 3 percent (degrees)
- Specific Conductivity within 3 percent µS/cm
- pH within 0.1 standard units
- ORP within 10 millivolts
- DO within 10 percent mg/L
- Turbidity within 10 percent NTUs.

Wells were purged to achieve the lowest possible turbidity values and meet the turbidity goal of 50 NTUs or less. Other recorded information included measurement time, pumping rate, and well drawdown position. Purge flow rates were initially adjusted to minimize well drawdown and stabilize the water level prior to sampling. Overburden and shallow bedrock wells are typically purged a minimum of 45 minutes, and often go for longer periods in turbid or very low yielding wells. Final well purge water quality data for each well are summarized in Table 2-5. As shown, the turbidity goal of 50 NTUs was achieved in all sampled wells, and 38 of 69 wells showed a final turbidity measurement of 10 NTUs or less. Well purge data sheets for each well are provided in Appendix D.

Each sample bottle had an affixed sample identification label showing the sample date and time. Sample bottles were placed in an iced cooler during field work and prior to final packaging for shipment to the laboratory for analyses.

Surface Water Sampling Method

Two surface water samples were collected from Westerly Brook on September 7, 2016 in conjunction with the groundwater LTM sampling effort. Surface water grab samples were collected using a disposable sampling cup at locations SW003 and SW004 (**Figure 2-1**). Sample SW003 was collected from the open channel located adjacent to West Central Avenue in Maywood, New Jersey. Sample SW004 was collected from the stormwater manhole located on Park Way in Rochelle Park, New Jersey.

Water quality parameters (i.e., temperature, pH, conductivity, DO, ORP, and turbidity) were measured immediately prior to sampling using a calibrated YSI multi-meter. Field parameters were recorded on a data form, along with sample date and time. Each sample bottle had an affixed sample identification label displaying the sample data and time. Sample bottles were placed in an iced cooler during field work and prior to final packaging for shipment to the laboratory for analyses. Data sheets for each surface water sample are provided in Appendix D.

2.3.4 Sample Labeling, Packing, and Shipping

Sample identification numbers were assigned by the electronic sample database, and LTM groundwater and surface water sample identification labels were prepared in advance of sampling. Sample identification labels were affixed to sampling containers, and the sampling date and time were entered in the field at the time of sampling. Once samples were collected, they were placed in an iced cooler until the completion of field work for that day. Prior to sample packaging, each sample identification number and collection date/time was cross-checked with the prepared laboratory chain-of-custody for accuracy and QC. Each glass bottle was packaged in bubble wrap to prevent breakage, and each sample bottle was secured in a Ziploc® plastic bag to ensure that any broken sample bottle did not leak into the cooler during shipping. A completed (signed and dated) laboratory chain-of-custody form was attached to the inside lid of the cooler prior to shipping. The outside lid of the cooler was then secured with two signed chain-of-custody seals and clear packing tape. The sample container was then shipped for next-day priority delivery to the laboratory.

2.3.5 Laboratory Analysis and Reporting

Groundwater COC (Arsenic, Lithium and Benzene) Sample Analysis

Arsenic, lithium, and benzene sampling was conducted at each of the 69 LTM groundwater wells and two surface water sampling locations. Analytes, chemical analysis methods, bottle and preservation requirements, and holding times are summarized in Table 2-6. All samples were analyzed by Accutest Laboratory, a New Jersey-certified laboratory located in Dayton, New Jersey.

Radiologic Sample Analysis

Radiologic sampling was conducted at 27 LTM wells and two surface water locations. The LTM radiologic groundwater sampling program is summarized in Table 2-4. Radiologic groundwater samples were analyzed using alpha spectroscopy for gross alpha, gross beta, radium-226, radium-228, thorium-230, thorium-232, uranium-234, uranium-235, and uranium-238. Radon was collected to assist in determining impacts to specific wells. Potassium was also collected to provide adjustment of gross beta data. Analyte sample analysis methods, bottle and preservation requirements, and holding times are summarized in Table 2-6. Four New Jersey-certified laboratories were used during 2016 for LTM for radiological analysis. The UFML onsite laboratory was used to analyze all groundwater and surface water radiological samples for primary parameters. Radon-222 samples were analyzed by GEL Laboratories, in Dayton, Ohio. Potassium samples were analyzed by Accutest Laboratory in Dayton, New Jersey. Test America in St. Louis, Missouri analyzed the USACE Quality Assurance (QA) split samples.

Biogeochemical Analysis

Biogeochemical sampling was conducted at 26 wells to characterize redox and other conditions in the overburden and shallow bedrock aquifers, and to monitor changes that may impact the attenuation and fate and transport of COCs. The biogeochemical sampling program was specifically focused on arsenic and benzene AOCs and plume areas in both the overburden and shallow bedrock. The LTM biogeochemical groundwater sampling program is summarized in Table 2-4.

The biogeochemical sampling protocol includes chemical oxygen demand (COD), nutrients, and alternative electron acceptors. COD is a measure of the oxygen required to oxidize all compounds in water, both organic and inorganic, to carbon dioxide. COD is also used to assess the ORP of groundwater, where increasing COD values correspond to reduced redox conditions. The essential microbial nutrients (nitrogen, phosphorus, and carbon) are also tested. The alternate electron acceptors (other than oxygen) were analyzed to identify available acceptors, and to provide data for characterization of the aquifers. Reduced electron acceptor species/compounds were also tested to provide evidence of specific acceptor utilization.

Biogeochemical sample analysis methods, bottle and preservation requirements, and holding times are summarized in Table 2-6. The biogeochemical samples were analyzed by Accutest Laboratory, a New Jersey-certified laboratory chosen in accordance with the FUSRAP Maywood UFP-QAPP.

2.4 DEVIATIONS TO THE LTGWMP

2.4.1 Groundwater Monitoring

Groundwater elevation monitoring was proposed at all LTM wells in the LTGWMP. Existing LTM monitoring wells MW-40 S/D could not be monitored due to property access issues. An additional 12 existing USACE and Stepan Company wells were added to the monitoring network in 2016 to provide better groundwater elevation control along the north and southern boundaries of the FMSS. The added overburden and bedrock cluster wells include OBMW1/BRMW1, MW4S/D, MW5S/D, MW7S/D, MW8S/D, and MW19S/D. The added well locations are shown in Figure 3-1 (overburden) and 3-2 (bedrock).

2.4.2 Well Installation

A total 33 new LTM wells were proposed for installation in the LTGWMP. Five LTM wells were not installed in 2016, with the additional installation of two replacement LTM wells. Wells MW49S, MW49D, MW50S and MW50D were proposed for installation at 96 Park Way, Borough of Rochelle Park, as shown in Figure 2-1. Both clusters were not installed in 2016 due to property access delays. Installation of those wells is planned in 2017, pending site access.

Installation of overburden well MW45S was canceled due to the detection of thick sludge material at that location, and likelihood that the well would be screened in unstable sludge material. There were no suitable (remediated) alternate locations for installation of that well. Bedrock well MW45D was successfully installed at that location by the use of a temporary conductor casing to top of rock and casing off of the overburden aquifer with permanent steel casing.

Existing overburden monitoring wells MISS4A and MISS7A could not be redeveloped due to persistent low water levels, and were replaced by new overburden wells. Both wells showed a history of low water levels or dry conditions, and were not suitable for sampling. Replacement wells MISS04AR and MIS07AR were installed adjacent the former wells and completed (deepened) to top of bedrock to increase well yield. The replacement wells were successfully developed to meet the 50 NTU goal.

2.4.3 Well Sampling

A total of 69 LTM wells were sampled in 2016, from 76 wells planned in the LTGWMP. Five LTM monitoring wells were not installed (Section 2.4.1), and two existing wells (MW40S/D) were not sampled in 2016 due to property access issues. Existing overburden well MW39S could not be re-developed to meet the 50 NTU turbidity goal, and was replaced by nearby overburden well MW8S for sampling purposes. Well MW39S was utilized for water level measurements in 2016.

3.0 RESULTS OF LTM GROUNDWATER AND SURFACE WATER SAMPLING

3.1 GROUNDWATER FLOW CONDITIONS

Synoptic water levels were measured on September 14, 2016 at 81 LTM, USACE, and Stepan Company monitoring wells. Field data measurements were tabulated and converted to groundwater elevation data, which is summarized in Table 2-3. Groundwater elevation data was plotted on separate overburden and bedrock aquifer maps, which are shown on Figures 3-1 and 3-2, respectively.

Figure 3-1 shows that the overburden groundwater flow direction on the MISS and downgradient areas in Rochelle Park is west toward the Saddle River. Groundwater contours at the southern boundary of the MISS wrap around a bedrock high that extends west from the Stepan Company property and forms a groundwater divide. Groundwater flow direction across the divide is toward the south. The hydraulic gradient in the overburden on the MISS is approximately 0.011 ft/ft, and is approximately 0.006 ft/ft to the west in Rochelle Park.

As shown on Figure 3-2, groundwater flow direction in bedrock on the MISS is also generally west toward the Saddle River, but locally varies between a northwest and southwest flow direction. The hydraulic gradient in bedrock on the MISS is approximately 0.005 ft/ft, and approximately 0.006 ft/ft to the west in Rochelle Park.

3.2 GROUNDWATER AND SURFACE WATER SAMPLING RESULTS

Arsenic, lithium, benzene, radiological, and biogeochemical sample results are presented in the following sections. Groundwater sampling results for overburden and bedrock wells are presented in Tables 3-1 and 3-2, respectively. Surface water sampling results are presented in Table 3-3. The data tables include LTM well ID, sample ID number, analytical result, qualifiers, method detection concentration (MDC) and ROD-required cleanup level. Exceedances of the ROD cleanup levels are shown in bold-face text. Duplicate sample results are included in Tables 3-1, 3-2, and 3-3. Note that the greater of either the original or duplicate sample concentration (or radiological activity level) was used in the groundwater and surface water results figures. Arsenic, lithium, and benzene concentration data were plotted on overburden and shallow bedrock monitoring well maps, and isopleth maps were prepared for each groundwater COC. Overburden and bedrock isopleth maps are presented on Figures 3-3 through 3-8.

3.2.1 Arsenic Groundwater Sampling Results

Overburden arsenic concentration data and contours are shown for 30 sampled wells on Figure 3-3. There are 12 exceedances of the 3.0 μ g/L arsenic cleanup level in overburden groundwater samples, with a maximum detected concentration of 395 μ g/L of arsenic at well MW3SR. The plotted arsenic plume extends approximately 550 ft west to southwest west from well MISS02AR on the MISS. The source of the arsenic plume is AOC 1 (former Retention Pond A) on the MISS. Seven isolated, low-level arsenic exceedances are plotted on the MISS and to the west in the Township of Rochelle Park.

Bedrock arsenic concentration data and contours are shown for 39 sampled wells on Figure 3-4. There are ten exceedances of the $3.0 \ \mu g/L$ arsenic cleanup level in bedrock groundwater samples, with a maximum detected concentration of $214 \ \mu g/L$ at well MW47D. The plotted arsenic plume in bedrock extends approximately 350 ft southwest from well MW47D on the MISS. The source of the arsenic plume is AOC 1 (former Retention Pond A) on the MISS. Six isolated, low-level arsenic exceedances are plotted on the MISS and to the west in the Township of Rochelle Park.

3.2.2 Lithium Groundwater Sampling Results

Overburden lithium concentration data and contours are shown for 30 sampled wells on Figure 3-5. There are 15 exceedances of the 730 μ g/L lithium cleanup level in overburden groundwater samples, with a maximum detected concentration of 12,900 μ g/L at well MW33S. The plotted lithium plume in overburden groundwater extends approximately 1,300 ft southwest from well MW33S on the MISS. The sources of the lithium plume are AOC 1 (former Retention Pond A) and AOC 2 (former Retention Pond C) on the MISS.

Bedrock lithium concentration data and contours are shown for 39 sampled wells on Figure 3-6. There are 22 exceedances of the 730 μ g/L lithium cleanup level in bedrock groundwater samples, with a maximum detected concentration of 14,600 μ g/L at well MW47D. The plotted lithium plume in bedrock groundwater extends approximately 1,275 ft southwest from well MW47D on the MISS. The sources of the lithium plume are AOC 1 (former Retention Pond A) and AOC 2 (former Retention Pond C) on the MISS. The bedrock lithium plume shows an overall southwest transport direction, which deviates from the plotted westerly groundwater flow direction. Bedrock lithium transport may be controlled by a combination of regional westerly groundwater flow and local flow along NNE-SSW trending fractures.

3.2.3 Benzene Groundwater Sampling Results

Overburden benzene concentration data and contours for 30 sampled wells are shown on Figure 3-7. There are two exceedances of the 1.0 μ g/L benzene cleanup level, with a maximum detected concentration of 47.2 μ g/L at well MW33S. Two isolated benzene plumes in the overburden groundwater are plotted on the MISS. The probable source of the benzene plumes are AOC 6 on the MISS as shown on Figure 1-4.

Bedrock benzene concentration data and contours for 39 sampled wells are shown on Figure 3-8. There are 12 exceedances of the 1.0 μ g/L benzene cleanup level, with a maximum detected concentration of 2,510 μ g/L at well BRPZ5. The plotted benzene plume in bedrock groundwater extends approximately 800 ft southwest from well MW46D on the MISS. The probable source of the benzene plume is AOC 6 on the MISS. Like the bedrock lithium plume described in Section 3.2.2, the bedrock benzene plume shows an overall southwest transport direction, which deviates from the plotted westerly groundwater flow direction. This may be attributed to a combination of regional westerly groundwater flow and local flow along NNE-SSW trending fractures.

3.2.4 Radiological Groundwater Sampling Results

A total 27 radiological samples were collected at LTM wells, including 13 overburden and 14 bedrock wells. Overburden and bedrock well radiologic data are summarized in Tables 3-1 and 3-2. In those tables, adjusted gross alpha, adjusted gross beta, total radium, total thorium and total uranium values are compared to available Federal/NJDEP MCLs and screening criteria. Additional overburden and bedrock groundwater radiologic data is provided in Appendix E (Tables E-1 and E-2), which includes gross alpha and beta (unadjusted), isotopic radium, isotopic thorium and isotopic uranium results, along with the associated method detection activity (MDA) and error for each parameter. Gross alpha and gross beta activity results were adjusted for K-40 and uranium isotope activity, respectively, which is shown in Appendix E (Tables E-4 and E-5).

The total uranium activity concentration (pCi/L) values in Tables 3-1 and 3-2 are converted to total uranium by dividing by the specific activity of U-238 (0.3365 pCi/ug), which represents 99.27% of total naturally-occurring uranium by mass. This is the NJDEP preferred conversion method, and is designated Method 1. A second approach (Method 2) has been added for conversion of activity concentration uranium values to mass concentration uranium values in Tables E-1, E-2 and E-3 of Appendix E. Method 2 is a weighted approach calculation which sums the three quotients of each result by its respective specific activity; i.e., Total Uranium (ug/L) = (U-238 Result (pCi/L) / 0.3365 pCi/ug) + (U-235 Result (pCi/L) / 2.2 pCi/ug) + (U-234 Result (pCi/L) / 6200 pCi/ug).

It should be noted that for the current data, the relative percent difference (RPD) values between the total uranium calculated using U-238 only and the weighted approach is less than 3% relative for total uranium values greater than 1.0 pCi/L. Long-Term Groundwater Sampling is scheduled for 2021, at which time the USACE will likely switch to the EPA-approved Standard Test Method ASTM D5174, Trace Uranium in Water using Pulsed Laser Phosphorimetry.

Adjusted gross alpha, adjusted gross beta, total radium, total thorium, and total uranium data are presented for sampled overburden and bedrock wells on Figures 3-9 and 3-10, respectively. These figures include MCLs and gross beta screening criteria for comparison. Figure 3-9 shows the radiological sampling results for 13 LTM overburden wells, including three duplicate samples. There are no radiological exceedances detected at overburden wells during the 2016 sampling event. Figure 3-10 shows the radiological results for 14 sampled LTM bedrock wells, including three duplicate samples. There is one radiologic exceedance of the gross beta screening level (50 pCi/L) at bedrock well B38W25DR (57.68 pCi/l). There is no elevated activity or exceedances of any isotopic radiological constituent at this well to support the detected value. The adjusted gross beta exceedance at B38W25DR and net negative values reported at some wells are attributed to uncertainties associated with the high detected potassium concentrations and gross beta analysis results.

3.2.5 Biogeochemical Groundwater Sampling Results

A total 26 biogeochemical samples were collected from overburden and bedrock LTM wells. Biogeochemical sample results for overburden and bedrock wells are presented in Tables 3-1 and 3-2, respectively. Biogeochemical sample data from this sampling event and subsequent events will be evaluated collectively in the 2021 LTM Monitoring Report to confirm the character of aquifer redox conditions and to evaluate data trends.

3.2.6 Surface Water Sampling Results

Surface water samples were collected at two locations on Westerly Brook (SW003 and SW004), and analyzed for arsenic, lithium, benzene, and radiologic parameters. Sampling results are summarized in Table 3-3. Arsenic, lithium, benzene and radiological surface water concentrations are plotted on corresponding COC overburden groundwater Figures 3-3 (arsenic), 3-5 (lithium), 3-7 (benzene) and 3-9 (radiological). Figure 3-3 shows an arsenic exceedance at downstream sample location SW004 (7.7 μ g/L). There are no surface water lithium, benzene, or radiological exceedances at SW003 or SW004.

4.0 DATA QUALITY CONTROL

This section addresses the 2016 LTM QA/QC sampling program, sample management/data validation, EPA Region 2 and NJDEP EDDs, and QCSR. These topics are addressed in the sections to follow.

4.1 QA/QC SAMPLING

This section presents a summary of the QCSR for the 2016 groundwater LTM event. It addresses groundwater and surface water samples collected for analysis between August 7, 2016 and September 21, 2016. The complete QCSR was prepared at the conclusion of the 2016 LTM sampling program, and is provided in Appendix F. The contents of the QCSR include laboratory data package and data validation documentation, and discussion of all data that may have been compromised or influenced by aberrations in the sampling and analytical processes. Both field and laboratory sampling and analysis QC activities are summarized, and relevant daily QC information is consolidated.

4.1.1 Field Quality Control Sampling

Field QC sampling was conducted as part of the 2016 groundwater and surface water LTM program. Field QC sampling included the collection of trip blanks, field blanks, equipment rinsate blanks, and USACE split samples. Results of the QA/QC sampling analysis are provided in Appendix E, Tables E-6, E-7 and E-8. Field QC sampling included the following elements:

- **Trip Blanks** were included in each cooler with VOC samples to test for contamination during transport of the sample cooler. The trip blanks are provided by the laboratory and consist of High Purity Liquid Chromatographic (HPLC)-grade water. The trip blanks remain in the cooler during the trip from the laboratory to the Site for sampling, as well as on the return trip to the laboratory for analysis. Trip blanks are analyzed for the program VOC analyte (i.e., benzene) at the laboratory. A total 16 groundwater trip blank samples and one surface water trip blank were collected and analyzed by Accutest Laboratory.
- Field Blanks are utilized to assess whether disposable equipment or material such as Teflon[®]-lined tubing, silicon tubing, and disposable bailers are free of contamination. New lots of tubing and bailers were evaluated by pouring laboratory supplied HPLC-grade water through the equipment and analyzing the rinsate for program analytes. Information obtained from the field blank data was tracked and used during data validation to confirm that consumable materials are free from contamination. Field blank samples were analyzed for the same parameters as the groundwater samples. One groundwater field blank sample and surface water field blank sample were collected and sent to the on-site UFML and sent offsite to Accutest Laboratories for analysis.
- Equipment Rinsate Blanks are used to assess potential cross contamination from reusable equipment, including QED Micropurge® bladder pumps. Rinsate samples were collected by pouring an aliquot of HPLC-grade water through each type of equipment after decontamination. This blank type tests whether the decontamination procedure was successful in removing contaminants from the equipment. Information obtained from the

equipment rinsate blank data was also tracked and evaluated during the data validation process. Rinsate blank samples were analyzed for the same parameters as the field samples. Thirteen rinsate blank samples were collected and sent to the UFML and offsite Accutest Laboratories for analysis.

• USACE Split Samples were submitted to the USACE QA laboratory for testing, as required by the UFP-QAPP. This testing was in addition to standard laboratory duplicate sample analysis. The purpose of the USACE split sample analysis was to evaluate the performance of the field crew and inter-laboratory variability. Four QA split groundwater samples and one surface water split sample was collected and sent to an independent laboratory, Test America-St. Louis, which performed the same chemical and radiological analysis as the samples analyzed by the UFML. The frequency of split sample collection (5.8 percent for groundwater samples and 50 percent for surface water samples) met the project required 5 percent frequency for split samples for radiological parameters, metals, and organic analytes.

4.1.2 Laboratory QA/QC Sampling

Laboratory QA/QC sampling was conducted as part of the 2016 groundwater and surface water LTM program. Laboratory QA/QC sampling included the collection of field duplicate and matrix samples. Laboratory QA/QC samples included the following types:

- **Field Duplicates** were used for radiological parameters, metals and organics to provide a measure of analytical precision. Field duplicate samples were collected at a frequency of 10 percent for chemical and radiological parameters. Eight field duplicate groundwater samples and one surface water field duplicate sample were collected and analyzed for the same groundwater COCs and radiological parameters. The frequency of field duplicate sample collection (11.6 percent for groundwater samples and 50 percent for surface water sample) met the 10 percent project requirement.
- **Matrix Samples** included matrix spike (MS), matrix spike duplicate (MSD), and matrix duplicate (MD) samples. MS/MSD (for organics) and MS/MD (for inorganics) samples were used to measure the effect of the matrix on the accuracy of the analytical process. Four groundwater MS/MSD samples and one surface water MS/MSD were collected. The frequency of MS/MSD sample collection (5.8 percent for groundwater samples and 50 percent for surface water samples) met the 5 percent project requirement.

4.2 FIELD DATA COLLECTION AND LABORATORY PREPARATION

LTM data collection procedures were evaluated for any deviations or modifications that may have occurred in the areas of sample handling and custody, equipment calibration and maintenance, and analytical methods. Within this report, the terms batch, package, and Sample Delivery Group (SDG) are synonymous. A SDG is a data report that contains the various test results of one or more sample batches plus associated QC data such as calibrations, blank spike and MS results, blanks, etc.

There were no sample collection anomalies during the 2016 sampling effort.

4.2.1 Sample Handling and Custody - Radiological

For the on-site laboratory, sample handling and custody procedures differ from those employed for the off-site laboratory. These are: 1) custody seals are not required on the sample coolers provided to the on-site radiological laboratory since they were hand-delivered to the laboratory on the sampling date, and 2) the on-site laboratory does not generate condition upon receipt forms. All on-site laboratory chain-of-custody forms were properly signed and dated. All chain-of-custody forms indicated that aqueous sample pH readings were less than 2 standard units as required. Additionally as required all water samples for radiological analysis were preserved with nitric acid.

4.2.2 Sample Handling and Custody – Chemical Analysis

All off-site chemical laboratory chain-of-custodies were properly signed and dated and all samples were received in good condition. Custody seals were present on the sample coolers. The sample receipt checklist indicated that samples were received in good shape and were shipped on ice. Sample pH readings were all less than 2 standard units as required. There were no off-site laboratory data package anomalies.

4.2.3 Equipment Calibration and Maintenance

Field Instrument Measurement and Calibration

Field measurements were made for DO, ORP, turbidity, temperature, specific conductivity, and pH in the 69 groundwater and two surface water samples. There were no discrepancies observed in the area of field equipment calibration and measurement for the 2016 Long-Term Groundwater Monitoring Program.

On-site Laboratory – Radiological Analysis

For radiological analyses conducted at the on-site laboratory, all criteria were met for initial and continuing instrument calibrations.

Off-site Laboratory – Chemical Analysis

For elements, the laboratory provided initial calibration data for both the inductively-coupled plasma mass spectrometer (ICP-MS) analyses and the inductively-coupled plasma atomic emission spectrometer (ICP-AES) analyses. Initial calibration verification results were submitted. All acceptance criteria were between 90 to 110 percent for all analyses. All ICP-MS and ICP-AES bracketing continuing calibration results supplied by the laboratory also met acceptance criteria for elemental analyses.

For elements, the laboratory analyzed an elements standard at or near 2 times the laboratory's reporting limit (Contract Required Detection Limit [CRDL] standard). The CRDL recoveries were between 70 to 130 percent for all data packages.

For VOC benzene analysis, all system performance check compound (SPCC) and calibration check compound (CCC) results were within the method acceptance criteria for both initial and continuing calibrations. In addition, all percent relative standard deviation values for initial calibration response factors and percent difference values between the continuing calibration

response factor and the initial calibration mean response factor were less than 20 percent with one exception. For Data Package JC28136 closing continuing calibration, the benzene result had a percent difference value of 24.6 percent. For the closing continuing calibration, the percent difference limit is ± 50 percent. Therefore, no data were qualified.

4.3 ANALYTIC LABORATORIES AND METHODS, DATA ANALYSIS, AND VALIDATION

4.3.1 Laboratories and Analytical Methods

The UFML, operated by Cabrera Services, Inc., analyzed all groundwater and surface water samples using alpha spectroscopy and gas-flow proportional counting (GFPC). The groundwater and surface samples were analyzed using EPA Method 903.0 modified for Radium-226, EPA Method 904.0 for Radium-228, isotopic uranium by SM-7500-U, isotopic thorium by HASL-300 using alpha spectroscopy, gross alpha/gross beta by EPA Method 900.0 modified (for low total solids samples), and gross alpha by GFPC, SM 7110C (for high total solids samples).

Test America in St. Louis, Missouri, analyzed the USACE QA split samples for the same radiological parameters analyzed by the UFML as well as the groundwater chemical COCs. The QA split sample collection frequency was at least 5 percent. GEL Laboratories, LLC, analyzed all groundwater samples for Radon-222 using Standard Method 7500 Rn-B.

Accutest Laboratory analyzed groundwater samples for the groundwater COCs (arsenic, benzene, and lithium) and potassium. Accutest analyzed samples for arsenic using ICP/MS method SW-846 6020A, for lithium and potassium using SW-846 6010C, and for benzene using SW-846 method 8260B with a 25 mL purge. Accutest also analyzed selected groundwater samples for bioremedial parameters, which are described in Section 2.3.5 and Table 2-4. Bioremedial parameter analytical methods are further addressed in the QCSR (Appendix E). A table listing the laboratories and each specific analytical method employed can be found in the QCSR in Appendix E.

There were no modifications to the radiation measurement techniques or analytical methods described in the LTGWMP (USACE 2016a), General Environmental Protection Plan (USACE, 2014), and UFP-QAPP (USACE, 2015).

4.3.2 Data Analysis and Validation

The Project Chemist reviewed the data packages for completeness and the case narratives to identify major issues. Radiological and chemical laboratory data packages are provided in Appendix G (QCSR Attachments A and B). All radiological and chemical data packages were submitted to Kestrel Environmental Technologies, Inc. for data validation. Kestrel evaluated 100 percent of the on-site laboratory radiological sample results and off-site laboratory chemical COC (arsenic, lithium, and benzene) results. Off-site laboratory results for potassium, radon, and bioremedial parameters were not validated.

Radiological data were evaluated using the USACE's Radionuclide Data Quality Evaluation Guidance (USACE, 2009), and chemical data were validated using the EPA Region II Standard Operating Procedure for ICP-AES Data Validation (EPA, 2012). In those instances where

professional judgment was used by the data validator, the Maywood project's Chemical QC Coordinator concurs with the data qualifications performed. Data validation packages are provided in Appendix E (QCSR Attachment C). The validator assigned the following qualifiers for all field and QA/QC samples/blanks:

Data Qualifier	Definition
U	A normal, non-detected result i.e., < critical value (radiological) or < method detection level (MDL) (chemical)
J	An uncertain or estimated result
R	A rejected result: the problems (quantitative or qualitative) are severe; rejected data may still be usable depending upon the intended use of the data and the reason for data rejection
UJ	A non-detect result that has an uncertain MDA value (for radiological results) or MDL value (for chemical results)

4.4 DATA SUMMARIES

Data summaries for groundwater and surface water chemical and radiologic data are presented in Tables 3-1, 3-2 and 3-3. More detailed analytical data tables including isotopic radiological data, MDA and measurement error are provided in Appendix E, Tables E-1 (bedrock GW), E-2 (overburden GW) and E-3 (surface water GW). QA/QC data tables are provided in Appendix E, tables E-6 (trip blanks), E-7 (field blanks) and E-8 (rinsate blanks).

4.5 EPA REGION 2 and NJDEP ELECTRONIC DATA DELIVERABLE

EPA Region 2 and NJDEP require EDD submissions for laboratory data. An EDD for EPA Region 2 is prepared in accordance with EPA's *Comprehensive EDD Specification Manual 3.0, August 2016* (EPA, 2016). NJDEP EDD files are checked using the NJDEP Electronic Data Quality Submittal (EDSA7) software to verify format and completeness. The EDDs are provided in Appendix F (on compact disk).

4.6 SUMMARY

All data, except as noted in Section 4.3, was validated by an independent third party validator. All data was generated using methods acceptable to the NJDEP as evidenced by current laboratory certification for these methods. The results of the validation indicate that 100 percent of the data was acceptable, i.e., not rejected.

5.0 REFERENCES

- DOE, 1992. *Remedial Investigation Report for the Maywood Site, Volume I.* Prepared for the DOE by Bechtel National Inc., December 1992.
- EPA, 2010. Low Stress (low-flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells (April 1996, Revised January 2010), EPA/540/S/95/504.
- EPA, 2012. Hazardous Waste Support Section, SOP No. HW-2a, Revision 15, ICP-AES Data Validation, December 2012.
- EPA, 2016. *Region 2 Comprehensive EDD Specification Manual, Format Version 4.0,* August 2015.
- NJDEP, 2011. Field Sampling Procedures Manual, August 2011.
- USACE, 2003. *Record of Decision for Soils and Buildings at the FUSRAP Maywood Superfund Site, Maywood, New Jersey.* Prepared for USACE by Stone & Webster, Inc., August 2003.
- USACE, 2005. Final Groundwater Remedial Investigation, FUSRAP Maywood Superfund Site Report. Prepared by Shaw Environmental, Inc., July 2005.

USACE, 2009. Radionuclide Data Quality Evaluation Guidance, USACE Kansas City and St. Louis Districts, May 2009.

- USACE, 2011. *Phases 16 and 19 Construction Dewatering Work Plan*, Prepared by Shaw Environmental, Inc., June 2011.
- USACE, 2012. Final Groundwater Record of Decision, FUSRAP Maywood Superfund Site, Prepared by USACE, May 2012.
- USACE, 2014. General Environmental Protection Plan, Revision 1. Prepared by Cabrera Services, Inc., January 2014.
- USACE, 2015. Uniform Federal Policy, Quality Assurance Project Plan, Revision 1. Prepared by Cabrera Services, Inc., September 2015.
- USACE, 2016a. Draft Final Long-Term Groundwater Monitoring Plan. Prepared by Cabrera Services, Inc., February 2016.
- USACE. 2016b, Draft Final Groundwater Remedial Design/Remedial Action Work Plan. Prepared by Cabrera Services, Inc., February 2016.

TABLES

Table 1-1 Groundwater Cleanup Levels FUSRAP Maywood Superfund Site

Groundwater COC Criteria		
Constituent	Cleanup Level (µg/L)	
Arsenic	3 ^a	
Benzene	1 ^a	
Lithium	730 ^b	
Groundwater Radiologic Criteria		
Constituent	MCL or NJGWQS (pCi/L), except total uranium (µg/L)	
Gross Alpha	15 °	
Gross Beta	50^{d}	
Total Radium (Ra-226 and Ra-228)	5°	
Total Uranium (U-234, U-235, and U-238)	$30^{\rm f}$	

Notes:

a - The lowest of the Federal MCLs (40 CFR Part 141) or NJGWQS or higher PQL (NJAC 7:9C).

b - Since ARARs are not available for lithium in groundwater, a risk-based cleanup level was derived for lithium based on ingestion of groundwater.

c - 15 pCi/L, but excluding radon and uranium (40 CFR 141.66).

d - If the gross beta particle activity exceeds 50 pCi/L, an analysis of the sample must be performed to identify the major radioactive constituents present (40 CFR 141.26). Naturally occurring potassium-40 (K-40) beta particle activity may be excluded from the calculation of gross beta activity per Federal Register Vol. 65 No. 236.

e - MCL/NJGWQS for the combined concentration of Ra-226 and Ra-228 in drinking water.

f - NJDEP has established an MCL/GWQS for total uranium in drinking water of 30 μ g/L. The reported U-238 concentration in pCi/L was divided by the specific activity of U-238 (0.3365 pCi/ μ g) to obtain the total uranium and then compared to the equivalent NJDEP MCL/GWQS for total uranium in drinking water of 30 μ g/L.

Key:

ARAR = applicable or relevant and appropriate requirements

- COC = contaminant of concern
- MCL = maximum contaminant level
- $\mu g/L = micrograms per liter$

NJDEP = New Jersey Department of Environmental Protection

NJGWQS = New Jersey Groundwater Quality Standard

pCi/L = picocuries per liter

 $pCi/\mu g = picocuries per microgram$

PQL = practical quantitation limit
Table 2-1New and Modified LTM Well Survey Data - 2016FUSRAP Maywood Superfund Site

LTM Well ID	New Well	Modified Well	Well Permit Number	Aquifer	NAD 83 Northing	NAD 83 Easting	NAD 27 Northing	NAD 27 Easting	TIC Elevation (ft msl)	TOC Elevation (ft msl)	Ground Elevation (ft msl)
B38W14S		Х	E201604771	OB	752328.56	609536.42	752602.12	2163385.86	44.17	44.72	44.54
B38W14D		Х	E201604770	BR	752324.83	609543.09	752598.40	2163392.53	44.45	44.77	44.53
B38W18DR	Х		E201605161	BR	752234.33	610938.01	752510.54	2164787.74	56.65	57.13	56.99
B38W25SR	Х		E201605089	OB	752242.53	610493.88	752517.90	2164343.56	55.04	55.44	53.16
B38W25BR	Х		E201605090	BR	752247.23	610497.67	752522.61	2164347.34	55.55	55.93	53.68
MISS01AR	Х		E201605165	OB	752667.89	610237.91	752942.81	2164086.76	52.79	53.54	51.72
MISS01BR	Х		E201605156	BR	752512.40	610856.90	752788.48	2164706.10	53.6	54.29	51.79
MISS02AR	Х		E201605096	OB	752666.06	610244.94	752940.99	2164093.79	57.37	58.06	57.85
MISS02BR	Х		E201605097	BR	752508.50	610865.60	752784.60	2164714.81	57.68	58.12	58.12
MISS04AR	Х		E201610593	OB	751829.83	610505.43	752105.18	2164355.90	55.39	55.73	53.41
MISS07AR	Х		E201608024	OB	752350.20	610200.41	752625.02	2164049.86	53.79	54.1	51.2
BRPZ2		Х	E201604681	BR	752114.41	610322.64	752389.44	2164172.55	54.62	53.28	53.28
BRPZ3		Х	E201604691	BR	752054.51	610297.94	752329.49	2164147.96	54.91	55.25	53.22
OVPZ17R	Х		E201605108	OB	752147.21	610318.96	752422.24	2164168.81	54.49	54.84	52.77
BRPZ4		Х	E201604693	BR	752146.10	610324.53	752421.14	2164174.38	55.11	55.39	53
BRPZ5		Х	E201604695	BR	752153.78	610305.23	752428.78	2164155.07	54.15	54.33	52.02
OVPW1S			26-60703	OB	752274.18	610323.90	752549.23	2164173.51	53.06	53.43	51.54
BRPZ9		Х	E201604708	BR	752269.85	610308.11	752544.87	2164157.72	53.21	53.53	51.47
MW3SR	Х		E201605094	OB	752625.90	610590.28	752901.48	2164439.24	57.18	57.68	57.68
MW3DR	Х		E201605095	BR	752622.93	610598.66	752898.53	2164447.63	57.14	57.62	57.62
MW6D		Х	E201608290	BR	752078.22	608739.38	752350.24	2162589.23	41.62	42.01	42.01
MW28S			E201109552	OB	752422.63	610668.64	752698.35	2164517.99	61.85	62.17	60.45
MW34D		Х	26-65218	BR	752347.85	610577.34	752623.39	2164426.83	59.13	59.52	57.25
MW42D			E201110050	BR	752321.45	611080.45	752597.94	2164930.03	61.33	62.77	60.72
MW43SR	Х		E201605111	OB	752515.10	610256.63	752790.04	2164105.77	51.99	52.45	50.59
MW43D			E201110054	BR	752509.62	610255.91	752784.56	2164105.06	52.70	52.97	50.67
MW44S	Х		E201605095	OB	752569.69	610721.95	752845.52	2164571.03	57.07	57.62	57.62
MW45D	X		E201605158	BR	752388.68	610394.59	752663.87	2164243.98	57.55	57.86	55.89
MW46S	X		E201605091	OB	752398.21	610766.88	752674.11	2164616.29	62.01	62.1	60.26

Table 2-1New and Modified LTM Well Survey Data - 2016FUSRAP Maywood Superfund Site

LTM Well ID	New Well	Modified Well	Well Permit Number	Aquifer	NAD 83 Northing	NAD 83 Easting	NAD 27 Northing	NAD 27 Easting	TIC Elevation (ft msl)	TOC Elevation (ft msl)	Ground Elevation (ft msl)
MW46D	Х		E201605092	BR	752390.45	610762.09	752666.34	2164611.51	62.1	62.89	60.22
MW47S	Х		E201605110	OB	752567.91	610404.96	752843.14	2164254.01	53.56	53.89	51.94
MW47D	Х		E201605159	BR	752559.75	610401.82	752834.97	2164250.89	53.17	53.73	51.7
MW48S	Х		E201605155	OB	752705.45	610334.94	752980.56	2164183.72	58.45	59.72	57.37
MW48D	X		E201605154	BR	752702.93	610345.16	752978.06	2164193.95	59.39	60.83	57.75
MW51S	X		E201607079	OB	751580.67	609137.49	751853.41	2162988.32	54.41	54.81	54.77
MW51D	Х		E201607077	BR	751578.76	609140.41	751851.50	2162991.24	54.27	54.66	54.66
MW52S	Х		E201609990	OB	752005.09	609281.16	752278.14	2163131.19	43.96	44.34	44.34
MW52D	Х		E201609991	BR	752009.06	609276.39	752282.10	2163126.41	43.7	44.19	44.19
MW53S	Х		E201698452	OB	753042.15	610698.56	753317.98	2164546.74	51.86	52.18	52.18
MW53D	Х		E201608451	BR	753037.14	610694.60	753312.96	2164542.79	51.92	52.23	52.23
MW54S	Х		E201608454	OB	752774.12	611177.38	753050.83	2165026.11	54.25	54.57	54.57
MW54D	X		E201608453	BR	752769.99	611174.34	753046.70	2165023.07	54.17	54.42	54.42

Key:

BR = bedrock

ft msl = feet above mean sea level

ID = identification

LTM = long-term monitoring

NAD = North American Datum

OB = overburden

TIC = top of inner casing

TOC = top of outer casing

Well ID LTM Well	W.II D	Well	Well	Screen Slot	Well		Ground	Top of Inner	Screen	Screen Inte	rval (ft bgs)	Screen Inte	rval (ft msl)	
Well ID	Well	Number	Surface Design	Diameter (inches)	(or open borehole)	Riser Material	(ft bgs)	Elevation (ft msl)	Casing Elevation (ft msl)	Length (ft)	Тор	Bottom	Тор	Bottom
						В	edrock Wells	6						
MISS1BR	Х	E201605156	Stick-up	6.00	open	Steel	61.50	51.79	53.60	23.50	38.00	61.50	13.79	-9.71
MISS2BR	Х	E201605097	Flush	6.00	open	Steel	62.00	58.12	57.68	24.00	38.00	62.00	20.12	-3.88
MISS4B	Х	26-07174-6	Stick-up	4.00	open	Steel	47.00	55.38	56.96	30.00	17.00	47.00	38.38	8.38
MISS5BR	Х	E201204875	Stick-up	6.00	open	Steel	55.00	52.79	54.58	23.50	25.50	49.00	27.29	3.79
MISS7B	Х	26-07180-1	Stick-up	4.00	open	Steel	49.00	53.99	55.77	36.00	13.00	49.00	40.99	4.99
B38W02D	Х	26-14082-9 26-14081-1	Stick-up	2.00	10 slot	SS	43.00	74.94	78.04	5.00	37.00	42.00	37.94	32.94
B38W03B	Х	26-14082-9	Stick-up	2.00	10 slot	SS	40.50	56.93	58.27	9.70	29.80	39.50	27.13	17.43
B38W04B		26-14082-9 26-11380-5	Stick-up	2.00	10 slot	SS	36.30	62.71	65.64	5.00	22.70	27.70	40.01	35.01
B38W05B		26-14082-9 26-11389-9	Flush	2.00	10 slot	SS	44.50	68.26	67.97	10.30	22.70	33.00	45.56	35.26
B38W07B	Х	26-14082-9 26-11402-0	Stick-up	2.00	10 slot	SS	39.20	52.59	54.98	10.30	18.50	28.80	34.09	23.79
B38W12B		26-11401-1	Stick-up	2.00	10 slot	SS	50.30	47.15	49.64	10.40	34.50	44.90	12.65	2.25
B38W14D	Х	E201604770 26-14042-0	Flush	2.00	10 slot	SS	51.90	44.53	44.45	5.50	46.40	51.90	-1.87	-7.37
B38W15D	Х	26-14040-3	Flush	2.00	10 slot	SS	46.00	47.47	47.04	5.00	41.00	46.00	6.47	1.47
B38W17B	Х	26-14040-3	Stick-up	2.00	10 slot	SS	44.40	50.68	53.28	10.30	18.70	29.00	31.98	21.68
B38W18DR	Х	E201605161	Flush	2.00	10 slot	PVC	71.00	56.99	56.65	25.00	46.00	71.00	10.99	-14.01
B38W24D	Х	E201412041	Stick-up	2.00	10 slot	SS	28.00	54.35	56.16	5.00	22.00	27.00	33.29	28.29
B38W25BR	Х	E201605090	Stick-up	6.00	open	Steel	58.00	53.68	55.55	25.00	33.00	58.00	20.68	-4.32
BRPW1D		26-60704	Stick-up	2.00	10 slot	PVC	110.00	56.42	56.30	20.00	90.00	110.00	-33.58	-53.58
BRPZ2	Х	E201604681 26-61466	Stick-up	2.00	10 slot	PVC	59.40	53.28	54.62	20.00	39.40	59.40	13.88	-6.12
BRPZ3	Х	E201604691 26-61467	Stick-up	2.00	10 slot	PVC	53.30	53.22	54.91	20.00	33.30	53.30	19.92	-0.08
BRPZ4	Х	E201604693 26-60716	Stick-up	6.00	open	Steel	58.70	53.00	55.11	21.00	37.70	58.70	15.30	-5.70
BRPZ5	Х	E201604695 26-60717	Stick-up	2.00	10 slot	PVC	58.80	52.02	54.15	20.00	38.80	58.80	13.22	-6.78

Well ID LTM	W.II D	Well	Well	Screen Slot	Well		Ground	Top of Inner	Screen	Screen Inte	rval (ft bgs)	Screen Inter	rval (ft msl)	
Well ID	Well	Number	Surface Design	Diameter (inches)	(or open borehole)	Riser Material	(ft bgs)	Elevation (ft msl)	Casing Elevation (ft msl)	Length (ft)	Тор	Bottom	Тор	Bottom
BRPZ9	Х	E201604708 26-61469	Stick-up	6.00	10 slot	PVC	51.40	51.47	53.21	24.00	27.40	51.40	24.07	0.07
MW2D	Х	26-58959	Flush	4.00	open	Steel	48.50	47.16	46.91	27.00	21.50	48.50	25.66	-1.34
MW3DR	Х	E201605095	Flush	6.00	open	Steel	63.00	57.62	57.14	25.00	38.00	63.00	19.62	-5.38
MW4D	Х	26-59011	Flush	4.00	open	Steel	43.00	44.04	43.82	25.00	18.00	43.00	26.04	1.04
MW5D	Х	26-58961	Flush	4.00	open	Steel	52.00	45.43	45.15	20.00	32.00	52.00	13.43	-6.57
MW6D	Х	E201608290 26-58962	Flush	1.00	10 slot	PVC	52.00	42.01	41.62	10.00	42.00	52.00	0.01	-9.99
MW7D		26-58964	Flush	4.00	open	Steel	46.00	53.99	53.73	25.00	21.00	46.00	32.99	7.99
MW8D		26-59013	Flush	4.00	open	Steel	52.00	54.34	54.15	25.00	27.00	52.00	27.34	2.34
MW9D		26-59043	Flush	4.00	open	Steel	47.00	69.79	69.65	25.00	22.00	47.00	47.79	22.79
MW10D		26-59045	Flush	4.00	open	Steel	46.00	62.90	62.56	25.00	21.00	46.00	41.90	16.90
MW12D		26-60358	Stick-up	4.00	open	Steel	53.00	44.85	46.32	25.00	28.00	53.00	16.85	-8.15
MW13D		26-59048	Flush	4.00	open	Steel	50.00	46.30	46.12	25.00	25.00	50.00	21.30	-3.70
MW14D		26-59049	Flush	4.00	open	Steel	52.00	39.60	39.58	25.00	27.00	52.00	12.60	-12.40
MW15D		26-59096	Flush	4.00	open	Steel	61.00	34.56	34.44	25.00	36.00	61.00	-1.44	-26.44
MW18D		26-59103	Flush	4.00	open	Steel	57.00	35.05	34.73	22.00	35.00	57.00	0.05	-21.95
MW19D		26-59105	Flush	4.00	open	Steel	42.00	56.17	55.96	25.00	17.00	42.00	39.17	14.17
MW19DD		26-59106	Flush	4.00	open	Steel	76.00	56.14	55.81	24.50	51.50	76.00	4.64	-19.86
MW23D	Х	26-61567	Flush	2.00	10 slot	PVC	71.00	56.11	56.19	20.00	51.00	71.00	5.11	-14.89
MW23DD		26-61566	Flush	2.00	10 slot	PVC	102.00	56.98	56.85	20.00	82.00	102.00	-25.02	-45.02
MW24D	Х	26-61564	Stick-up	2.00	10 slot	PVC	67.70	55.03	57.28	20.00	47.70	67.70	7.33	-12.67
MW24DD		26-61565	Stick-up	4.00	open	Steel	105.00	55.07	57.08	25.00	80.00	105.00	-24.93	-49.93
MW25D	Х	26-63146	Stick-up	6.00	open	Steel	59.00	56.11	58.13	25.00	33.00	58.00	23.11	-1.89
MW28D		26-65220	Stick-up	6.00	open	Steel	58.50	61.90	64.50	25.00	33.50	58.50	29.90	4.90
MW31D	Х	26-66774	Flush	6.00	open	Steel	45.00	49.08	48.62	25.00	20.00	45.00	29.08	4.08
MW32D	Х	26-67268	Flush	6.00	open	Steel	57.00	49.18	48.83	25.00	32.00	57.00	17.18	-7.82
MW33D		26-65221	Stick-up	2.00	10 slot	Steel	68.00	59.44	61.64	20.00	48.00	68.00	45.50	-6.06
MW34D	х	E201604710 26-65218	Stick-up	6.00	open	Steel	51.90	57.25	59.13	25.00	26.90	51.90	30.35	5.35
MW39D	Х	E201110880	Flush	6.00	open	Steel	50.00	52.57	52.17	25.00	25.00	50.00	27.57	2.57
MW40D	Х	E201110882	Flush	6.00	open	Steel	53.50	52.41	52.07	25.00	28.50	53.50	23.91	-1.09
MW42D	X	E201110050	Stick-up	6.00	open	Steel	44.90	60.72	61.33	25.00	19.90	44.90	40.82	15.82

Well ID LTM Well	W.II D	Well	Well	Screen Slot	Well	Well Decid	Ground	Top of Inner	Screen	Screen Inte	rval (ft bgs)	Screen Inte	rval (ft msl)	
Well ID	Well	Number	Surface Design	Diameter (inches)	Size (or open borehole)	Riser Material	(ft bgs)	Elevation (ft msl)	Casing Elevation (ft msl)	Length (ft)	Тор	Bottom	Тор	Bottom
MW43D	Х	E201110054	Stick-up	6.00	open	Steel	45.40	50.67	52.70	25.00	20.40	45.40	30.27	5.27
MW45D	Х	E201605158	Stick-up	6.00	open	Steel	63.00	55.89	57.55	25.00	38.00	63.00	17.89	-7.11
MW46D	Х	E201605092	Stick-up	6.00	open	Steel	57.00	60.22	62.10	25.00	32.00	57.00	28.22	3.22
MW47D	Х	E201605159	Stick-up	6.00	open	Steel	63.00	51.70	53.17	25.00	38.00	63.00	13.70	-11.30
MW48D	Х	E201605154	Stick-up	6.00	open	Steel	63.00	57.75	59.39	25.00	38.00	63.00	19.75	-5.25
MW51D	Х	E201607077	Flush	6.00	open	Steel	54.00	54.66	54.27	25.00	29.00	54.00	25.66	0.66
MW52D	Х	E201609991	Flush	6.00	open	Steel	62.00	44.19	43.70	25.00	37.00	62.00	7.19	-17.81
MW53D	Х	E201608451	Flush	6.00	open	Steel	62.00	52.23	51.92	20.00	42.00	62.00	10.23	-9.77
MW54D	Х	E201608453	Flush	6.00	10 slot	PVC	78.50	54.42	54.17	20.00	58.50	78.50	-4.08	-24.08
						Ov	erburden We	ells						
MISS1AR	Х	E201605165	Stick-up	2.00	10 slot	PVC	14.00	51.72	52.79	5.00	9.00	14.00	42.72	37.72
MISS2AR	Х	E201605096	Flush	2.00	10 slot	PVC	19.00	57.85	57.37	5.00	14.00	19.00	43.85	38.85
MISS4AR	Х	E201610593	Stick-up	2.00	10 slot	PVC	15.00	53.41	55.39	5.00	10.00	15.00	43.41	38.41
MISS5AR	Х	E201202878	Stick-up	2.00	10 slot	PVC	15.30	52.58	55.09	10.00	5.00	15.00	47.58	37.58
MISS7AR	Х	E201608024	Stick-up	2.00	10 slot	PVC	12.50	51.20	53.79	5.00	7.50	12.50	43.70	38.70
B38W01S	Х	26-14081-1	Stick-up	2.00	10 slot	SS	23.00	53.92	56.57	5.00	17.00	22.00	36.92	31.92
B38W12AR		26-77909	Stick-up	2.00	10 slot	PVC	14.00	47.20	49.90	5.00	8.00	13.00	39.20	34.20
B38W14S	Х	E201604711 26-14043-8	Flush	2.00	10 slot	SS	14.40	44.54	44.17	5.00	8.90	13.90	35.64	30.64
B38W15S	Х	26-14041-1	Flush	2.00	10 slot	SS	16.50	47.40	46.75	5.00	10.50	15.50	36.90	31.90
B38W17A	Х	26-14040-3	Stick-up	2.00	10 slot	SS	14.10	50.70	53.24	5.00	7.60	12.60	43.10	38.10
B38W24S	Х	26-32906	Stick-up	2.00	10 slot	SS	15.60	54.98	56.94	4.80	10.40	15.20	44.98	40.18
B38W25SR	Х	E201605089	Stick-up	2.00	10 slot	PVC	12.40	53.16	55.04	5.00	7.40	12.40	45.76	40.76
MW2S	Х	26-58834	Flush	2.00	10 slot	PVC	13.00	47.08	46.70	8.00	5.00	13.00	42.08	34.08
MW3SR	Х	E201605094	Flush	2.00	10 slot	PVC	19.00	57.68	57.18	5.00	14.00	19.00	43.68	38.68
MW4S		26-59010	Flush	2.00	10 slot	PVC	9.00	44.10	43.96	5.00	4.00	9.00	40.10	35.10
MW5S		26-58960	Flush	2.00	10 slot	PVC	15.00	45.40	45.23	10.00	5.00	15.00	40.40	30.40
MW6S		26-58835	Flush	2.00	10 slot	PVC	17.00	43.00	42.68	10.00	5.00	15.00	38.00	28.00
MW7S		26-58963	Flush	2.00	10 slot	PVC	15.00	53.81	53.69	10.00	5.00	15.00	48.81	38.81
MW8S	X	26-59012	Flush	2.00	10 slot	PVC	15.00	54.27	54.00	10.00	5.00	15.00	49.27	39.27
MW9SR		26-76628	Flush	2.00	10 slot	PVC	13.00	70.71	70.36	8.00	5.00	13.00	65.71	57.71
MW10S		26-59044	Flush	2.00	10 slot	PVC	10.00	62.56	62.26	5.00	5.00	10.00	57.56	52.56
MW11S		26-59046	Flush	2.00	10 slot	PVC	8.50	48.06	47.92	5.00	3.50	8.50	44.56	39.56

Well ID LTM	W.II D	Well	Well	Screen Slot	Well		Ground	Top of Inner	Screen	Screen Inte	rval (ft bgs)	Screen Inte	rval (ft msl)	
Well ID	Well	Number	Surface Design	Diameter (inches)	Size (or open borehole)	Riser Material	(ft bgs)	Elevation (ft msl)	Casing Elevation (ft msl)	Length (ft)	Тор	Bottom	Тор	Bottom
MW13S		26-59052	Flush	2.00	10 slot	PVC	14.75	46.27	45.97	7.00	4.00	11.00	42.27	35.27
MW14SR		26-77910	Flush	2.00	10 slot	PVC	21.00	39.71	39.50	15.00	5.00	20.00	34.71	19.71
MW15S		26-59095	Flush	2.00	10 slot	PVC	19.00	34.92	34.97	15.00	4.00	19.00	30.92	15.92
MW18S		26-59102	Flush	2.00	10 slot	PVC	16.80	35.20	35.07	13.00	3.80	16.80	31.40	18.40
MW19S		26-59104	Flush	2.00	10 slot	PVC	12.00	56.26	55.93	7.00	5.00	12.00	51.26	44.26
MW21S		26-61750	Flush	2.00	10 slot	PVC	14.00	38.92	38.28	10.00	4.00	14.00	34.92	24.92
MW22S		26-61464	Flush	2.00	10 slot	PVC	10.50	46.22	45.87	8.00	2.00	10.00	44.22	34.22
MW24S	Х	E201109669	Flush	2.00	10 slot	PVC	16.00	53.61	57.39	5.00	10.60	15.60	43.01	38.01
MW25S	Х	26-63145	Stick-up	2.00	10 slot	PVC	18.50	56.11	58.85	10.00	6.00	16.00	50.11	40.11
MW28S	Х	E201109552	Stick-up	2.00	10 slot	PVC	17.10	60.45	61.85	10.00	7.10	17.10	53.35	43.35
MW33S	Х	E201109553	Stick-up	2.00	10 slot	PVC	20.00	59.98	61.64	5.00	14.60	19.60	45.38	25.78
MW39S		E201110879	Flush	2.00	10 slot	PVC	14.00	52.46	52.19	5.00	8.00	13.00	44.47	39.47
MW40S	Х	E201110881	Flush	2.00	10 slot	PVC	14.80	52.46	52.07	10.00	4.80	14.80	47.66	37.66
MW43SR	Х	E201605111	Stick-up	2.00	10 slot	PVC	8.30	50.59	51.99	5.00	3.30	8.30	47.29	42.29
MW44S	Х	E201605095	Flush	2.00	10 slot	PVC	14.00	57.62	57.07	5.00	9.00	14.00	48.62	43.62
MW46S	Х	E201605091	Stick-up	2.00	10 slot	PVC	17.50	60.26	62.01	5.00	12.50	17.50	47.76	42.76
MW47S	Х	E201605110	Stick-up	2.00	10 slot	PVC	12.00	51.94	53.56	5.00	7.00	12.00	44.94	39.94
MW48S	Х	E201605155	Stick-up	2.00	10 slot	PVC	19.00	57.37	58.45	5.00	14.00	19.00	43.37	38.37
MW51S	Х	E201607079	Flush	2.00	10 slot	PVC	19.00	54.77	54.41	10.00	9.00	19.00	45.77	35.77
MW52S	Х	E201609990	Flush	2.00	10 slot	PVC	11.00	44.34	43.96	5.00	6.00	11.00	38.34	33.34
MW53S	Х	E201698452	Flush	2.00	10 slot	PVC	16.00	52.18	51.86	5.00	11.00	16.00	41.18	36.18
MW54S	Х	E201608454	Flush	2.00	10 slot	PVC	10.50	54.57	54.25	5.00	5.50	10.50	49.07	44.07
OVPW1S	Х	26-60703	Stick-up	4.00	20 slot	PVC	19.10	51.54	53.06	15.00	4.10	19.10	47.44	32.44
OVPZ17R	Х	E201605108	Stick-up	2.00	10 slot	PVC	18.00	52.77	54.49	5.00	13.00	18.00	39.77	34.77
BP31		P200908457	Flush	2.00	10 slot	PVC	18.00	59.16	58.92	10.00	7.50	17.50	51.66	41.66
BP32		P200908458	Flush	2.00	10 slot	PVC	18.50	58.97	58.78	10.00	8.20	18.20	50.77	40.77
BP33		P200908459	Flush	2.00	10 slot	PVC	21.00	59.19	58.85	10.00	10.10	20.10	49.09	39.09
BP34		P200908467	Flush	2.00	10 slot	PVC	15.50	62.25	62.00	10.00	4.20	14.20	58.05	48.05
BP35		P200908460	Flush	2.00	10 slot	PVC	20.00	60.47	60.21	10.00	9.60	19.60	50.87	40.87
BP36		P200908461	Flush	2.00	10 slot	PVC	10.50	58.56	58.26	5.00	5.50	10.50	53.06	48.06
BP37		P200908462	Flush	2.00	10 slot	PVC	20.00	58.70	58.43	10.00	9.50	19.50	49.20	39.20
BP38		P200909010	Flush	2.00	10 slot	PVC	12.50	49.76	49.40	5.00	7.00	12.00	42.76	37.76
BP39		P200908463	Flush	2.00	10 slot	PVC	24.80	56.34	56.11	15.00	8.00	23.00	48.34	33.34

	TTM	Wall Domoit	Well	Well	Screen Slot	Well	Well Derth	Ground	Top of Inner	Screen	Screen Inte	erval (ft bgs)	Screen Interval (ft msl)	
Well ID	Well	Number	Surface Design	Diameter (inches)	(or open borehole)	Riser Material	(ft bgs)	Elevation (ft msl)	Elevation (ft msl)	Length (ft)	Тор	Bottom	Тор	Bottom
BP310		P200908464	Flush	2.00	10 slot	PVC	20.00	57.36	57.07	10.00	9.00	19.00	48.36	38.36
BP311		P200908465	Flush	2.00	10 slot	PVC	17.70	58.19	57.79	10.00	7.40	17.40	50.79	40.79
BP312		P200909011	Flush	2.00	10 slot	PVC	11.50	46.80	46.56	5.00	6.00	11.00	46.80	41.80
BP313		P200908466	Flush	2.00	10 slot	PVC	19.20	60.49	60.22	10.00	8.70	18.70	51.79	41.79

Key:

ft bgs = feet below ground surface

ft msl = feet above mean sea level

LTM = long-term monitoring

PVC = polyvinyl chloride

SS = stainless steel

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
B38W01S	USACE	NYS & WRR	OB	44.17	7.14	37.03	
B38W02D	USACE	NYS & WRR	BR	78.04	21.23	56.81	
B38W03B	USACE	STEPAN	BR	58.27	11.62	46.65	
B38W07B	USACE	STEPAN	BR	54.98	10.77	44.21	
B38W14S	USACE	90 Park Way, Rochelle Park	OB	44.17	5.13	39.04	
B38W14D	USACE	90 Park Way, Rochelle Park	BR	44.45	4.17	40.28	
B38W15S	USACE	26 Grove Avenue, Rochelle Park	OB	46.75	6.05	40.70	
B38W15D	USACE	26 Grove Avenue	BR	47.04	5.34	41.70	
B38W17A	USACE	Grove Avenue, Rochelle Park (billboard)	OB	53.24	9.93	43.31	
B38W17B	USACE	Grove Avenue, Rochelle Park (billboard)	BR	53.28	9.90	43.38	
B38W18DR	USACE	MISS	BR	56.65	9.25	47.40	
B38W24S	USACE	MISS	OB	56.94	11.96	44.98	
B38W24D	USACE	MISS	BR	56.16	11.31	44.85	
B38W25SR	USACE	MISS	OB	55.04	7.42	47.62	
B38W25BR	USACE	MISS	BR	55.55	10.85	44.70	
MISS01AR	USACE	MISS	OB	52.79	8.57	44.22	
MISS01BR	USACE	MISS	BR	53.6	8.71	44.89	

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
MISS02AR	USACE	MISS	OB	57.37	7.38	49.99	
MISS02BR	USACE	MISS	BR	57.68	10.33	47.35	
MISS04AR	USACE	MISS	OB	55.39	11.35	44.04	
MISS04B	USACE	MISS	BR	56.96	12.21	44.75	
MISS05AR	USACE	MISS	OB	55.09	11.54	43.55	
MISS05BR	USACE	MISS	BR	54.58	11.05	43.53	
MISS07AR	USACE	MISS	OB	53.79	10.66	43.13	
MISS07B	USACE	MISS	BR	55.77	11.53	44.24	
BRPZ2	USACE	MISS	BR	54.62	10.40	44.22	
BRPZ3	USACE	MISS	BR	54.91	10.73	44.18	
BRPZ4	USACE	MISS	BR	55.11	10.78	44.33	
BRPZ5	USACE	MISS	BR	54.15	10.20	43.95	
BRPZ9	USACE	MISS	BR	53.21	8.85	44.36	
OVPZ17R	USACE	MISS	OB	54.49	10.09	44.40	
OVPW1S	USACE	MISS	OB	53.06	7.86	45.20	
MW2S	USACE	Becker Avenue, Rochelle Park	OB	46.7	6.22	40.48	
MW2D	USACE	Becker Avenue, Rochelle Park	BR	46.91	6.16	40.75	
MW3SR	USACE	MISS	OB	57.18	10.93	46.25	
MW3DR	USACE	MISS	BR	57.14	10.68	46.46	
MW6S	USACE	Madison Avenue, Rochelle Park	OB	42.68	7.38	35.30	

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
MW6D	USACE	Madison Avenue, Rochelle Park	BR	41.62	6.58	35.04	
MW23D	USACE	MISS	BR	56.19	11.14	45.05	
MW24S	USACE	MISS	OB	57.39	13.28	44.11	
MW24D	USACE	MISS	BR	57.28	12.67	44.61	
MW25S	USACE	MISS	OB	58.85	11.64	47.21	
MW25D	USACE	MISS	BR	58.13	13.04	45.09	
MW28S	USACE	MISS	OB	64.87	13.46	51.41	
MW31D	USACE	58 Grove Avenue, Rochelle Park	BR	48.62	6.86	41.76	
MW-32D	USACE	37 Grove Avenue, Rochelle Park	BR	48.83	5.64	43.19	
MW33S	USACE	MISS	OB	61.64	15.20	46.44	
MW34D	USACE	MISS	BR	59.13	11.35	47.78	
MW39S	USACE	163 Central Avenue, Rochelle Park	OB	52.19	6.24	45.95	
MW39D	USACE	163 Central Avenue, Rochelle Park	BR	52.17	6.06	46.11	
MW40S	USACE	200 Central Avenue, Maywood	OB	52.07	NR	-	No Access
MW40D	USACE	200 Central Avenue, Maywood	BR	52.07	NR	-	No Access
MW42D	USACE	MISS	BR	61.33	12.29	49.04	

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
MW43SR	USACE	MISS	OB	51.99	7.89	44.10	
MW43D	USACE	MISS	BR	52.7	8.72	43.98	
MW44S	USACE	MISS	OB	57.07	8.22	48.85	
MW45D	USACE	MISS	BR	57.55	13.50	44.05	
MW46S	USACE	MISS	OB	62.01	12.07	49.94	
MW46D	USACE	MISS	BR	62.1	14.22	47.88	
MW47S	USACE	MISS	OB	53.56	7.97	45.59	
MW47D	USACE	MISS	BR	53.17	8.46	44.71	
MW48S	USACE	MISS	OB	58.45	13.66	44.79	
MW48D	USACE	MISS	BR	59.39	14.54	44.85	
MW51S	USACE	61 Madison Avenue (adjacent West End St.), Rochelle Park).	OB	54.41	15.26	39.15	
MW51D	USACE	61 Madison Avenue (adjacent West End St.), Rochelle Park).	BR	54.27	14.83	39.44	
MW52S	USACE	Becker Avenue, Rochelle Park	OB	43.96	5.70	38.26	
MW52D	USACE	Becker Avenue, Rochelle Park	BR	43.7	3.89	39.81	
MW53S	USACE	Eccleston Place, Maywood	OB	51.86	5.53	46.33	
MW53D	USACE	Eccleston Place, Maywood	BR	51.92	5.38	46.54	

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
MW54S	USACE	Hergesell Avenue, Maywood	OB	54.25	4.01	50.24	
MW54D	USACE	Hergesell Avenue, Maywood	BR	54.17	0.00	54.17	
MW7S	USACE	Central Avenue (Machionne)	OB	53.69	9.95	43.74	Monitored Non-LTM well
MW7D	USACE	Central Avenue (Machionne)	BR	53.73	9.96	43.77	Monitored Non-LTM well
MW8S	USACE	Central Avenue (Stavola)	OB	54	7.85	46.15	Monitored Non-LTM well
MW8D	USACE	Central Avenue (Stavola)	BR	54.15	8.10	46.05	Monitored Non-LTM well
MW19S	USACE	Lincoln Drive Roadway, Rochelle Park	OB	55.93	11.76	44.17	Monitored Non-LTM well
MW19D	USACE	Lincoln Drive Roadway, Rochelle Park	BR	55.96	10.64	45.32	Monitored Non-LTM well
MW4S	USACE	St. Anne Place Roadway, Rochelle Park	OB	43.96	5.72	38.24	Monitored Non-LTM well
MW4D	USACE	St. Anne Place Roadway, Rochelle Park	BR	43.82	5.29	38.53	Monitored Non-LTM well
MW5S	USACE	Park Way Roadway, near Rochelle Ave. Rochelle Park	OB	45.23	11.86	33.37	Monitored Non-LTM well

LTM Well ID	Owner	Property	Aquifer	TIC (ft msl)	Measured Depth to Water from TIC (ft)	Groundwater Elevation (ft msl)	Comments
MW5D	USACE	Park Way Roadway, near Rochelle Ave. Rochelle Park	BR	45.15	8.99	36.16	Monitored Non-LTM well
OBMW1	STEPAN	SLS Property, Maywood, NJ	OB	48.82	6.51	42.31	Monitored Non-LTM well
BRMW1	STEPAN	SLS Property, Maywood, NJ	BR	49.08	6.91	42.17	Monitored Non-LTM well

Key:

BR = bedrock

ID = identification

ft = feet

ft msl = ft above mean sea level

LTM = long-term monitoring

MISS = Maywood Interim Storage Site

OB = overburden

TIC = top of inner casing

USACE = U.S. Army Corps of Engineers

Item	LTM Well ID	Owner	Property	Well Type	GW COCs (Arsenic, Lithium, Benzene)	Radiological Parameters ¹	Biogeochemical Parameters (e-acceptors) ²	Biogeochemical Parameters (nutrients) ³
1	B38W01S	USACE	NYS & WRR	OB	Х	Х		
2	B38W02D	USACE	NYS & WRR	BR	Х	Х		
3	B38W03B	USACE	STEPAN	BR	Х	Х		
4	B38W07B	USACE	STEPAN	BR	Х			
5	B38W14S	USACE	90 Park Way, Rochelle Park	OB	Х	Х		
6	B38W14D	USACE	90 Park Way, Rochelle Park	BR	Х	Х		
7	B38W15S	USACE	26 Grove Avenue, Rochelle Park	OB	Х	Х		
8	B38W15D	USACE	26 Grove Avenue	BR	Х	Х	Х	Х
9	B38W17A	USACE	Grove Avenue, Rochelle Park	OB	х	х	Х	Х
10	B38W17B	USACE	Grove Avenue, Rochelle Park	BR	х	х	Х	Х
11	B38W18DR	USACE	MISS	BR	Х	Х		
12	B38W24S	USACE	MISS	OB	Х	Х		
13	B38W24D	USACE	MISS	BR	Х	Х		
14	B38W25SR	USACE	MISS	OB	X	Х		
15	B38W25BR	USACE	MISS	BR	X	Х		
16	MISS01AR	USACE	MISS	OB	Х	Х	Х	

Item	LTM Well ID	Owner	Property	Well Type	GW COCs (Arsenic, Lithium, Benzene)	Radiological Parameters ¹	Biogeochemical Parameters (e-acceptors) ²	Biogeochemical Parameters (nutrients) ³
17	MISS01BR	USACE	MISS	BR	Х	Х		
18	MISS02AR	USACE	MISS	OB	Х	Х	Х	Х
19	MISS02BR	USACE	MISS	BR	Х	Х		
20	MISS04AR	USACE	MISS	OB	Х			
21	MISS04B	USACE	MISS	BR	Х			
22	MISS05AR	USACE	MISS	OB	Х	Х	Х	
23	MISS05BR	USACE	MISS	BR	Х	Х	Х	Х
24	MISS07AR	USACE	MISS	OB	Х	Х		
25	MISS07B	USACE	MISS	BR	Х	Х	Х	Х
26	BRPZ2	USACE	MISS	BR	Х			
27	BRPZ3	USACE	MISS	BR	Х			
28	OVPZ17R	USACE	MISS	OB	Х		Х	Х
29	BRPZ4	USACE	MISS	BR	Х		Х	Х
30	BRPZ5	USACE	MISS	BR	Х		Х	Х
31	OVPW1	USACE	MISS	OB	Х			
32	BRPZ9	USACE	MISS	BR	Х		Х	Х
33	MW2S	USACE	Becker Avenue, Rochelle Park	OB	Х			

Item	LTM Well ID	Owner	Property	Well Type	GW COCs (Arsenic, Lithium, Benzene)	Radiological Parameters ¹	Biogeochemical Parameters (e-acceptors) ²	Biogeochemical Parameters (nutrients) ³
34	MW2D	USACE	Becker Avenue, Rochelle Park	BR	х			
35	MW3SR	USACE	NYS & WRR	OB	Х	Х	Х	Х
36	MW3DR	USACE	NYS & WRR	BR	Х	Х	Х	Х
37	MW6S	USACE	Madison Avenue, Rochelle Park	OB	х			
38	MW6D	USACE	Madison Avenue, Rochelle Park	BR	х			
39	MW8S	USACE	163 Central Avenue, Rochele Park	OB	Х			
40	MW23D	USACE	MISS	BR	Х			
41	MW24S	USACE	MISS	OB	Х	Х		
42	MW24D	USACE	MISS	BR	Х	Х	Х	Х
43	MW25S	USACE	MISS	OB	Х			
44	MW25D	USACE	MISS	BR	Х		Х	Х
45	MW28S	USACE	MISS	OB	Х	Х		
46	MW31D	USACE	58 Grove Avenue, Rochelle Park	BR	Х			
47	MW32D	USACE	37 Grove Avenue, Rochelle Park	BR	X			
48	MW33S	USACE	MISS	OB	X			

Item	LTM Well ID	Owner	Property	Well Type	GW COCs (Arsenic, Lithium, Benzene)	Radiological Parameters ¹	Biogeochemical Parameters (e-acceptors) ²	Biogeochemical Parameters (nutrients) ³
49	MW34D	USACE	MISS	BR	Х			
50	MW39D	USACE	163 Central Avenue, Rochelle Park	BR	Х			
51	MW42D	USACE	MISS	BR	Х		Х	Х
52	MW43S	USACE	MISS	OB	Х			
53	MW43D	USACE	MISS	BR	Х		Х	X
54	MW44S	USACE	MISS	OB	Х		Х	Х
55	MW45D	USACE	MISS	BR	Х		Х	Х
56	MW46S	USACE	MISS	OB	Х		Х	X
57	MW46D	USACE	MISS	BR	Х			
58	MW47S	USACE	MISS	OB	Х		Х	Х
59	MW47D	USACE	MISS	BR	Х			
60	MW48S	USACE	NYS & WRR	OB	Х		Х	
61	MW48D	USACE	NYS & WRR	BR	Х			
62	MW51S	USACE	West End Street, Rochelle Park	OB	Х			
63	MW51D	USACE	West End Street, Rochelle Park	BR	X			
64	MW52S	USACE	Becker Avenue, Rochelle Park	OB	X			

Item	LTM Well ID	Owner	Property	Well Type	GW COCs (Arsenic, Lithium, Benzene)	Radiological Parameters ¹	Biogeochemical Parameters (e-acceptors) ²	Biogeochemical Parameters (nutrients) ³
65	MW52D	USACE	Becker Avenue, Rochelle Park	BR	Х			
66	MW53S	USACE	Eccleston Place, Maywood	OB	Х			
67	MW53D	USACE	Eccleston Place, Maywood	BR	Х			
68	MW54S	USACE	Hergesell Avenue, Maywood	OB	Х			
69	MW54D	USACE	Hergesell Avenue, Maywood	BR	Х			

Notes:

¹ Groundwater Radiological Parameters include the following: Gross Alpha, Gross Beta, Ra-226, Ra-228, Th-228, Th-230, Th-232, U-234, U-235, U-238, Rn-222, and Potassium.

² Biogeochemical Parameters (chemical oxygen demand [COD] and alternate electron acceptors) include the following: COD, nitrate/ammonium (NO₃⁻/NH₄⁺), manganese (Mn⁴⁺/Mn²⁺), ferric/ferrous iron (Fe³⁺/Fe²⁺), sulfate/sulfide (SO₄²⁻/S²⁻), and methane (CH₄).

³ Biogeochemical Parameters (nutrients) include the following: total phosphorus (TP) and total organic carbon (TOC).

Key:

BR = bedrock COC = contaminant of concern GW = Groundwater ID = identification LTM = long-term monitoring MISS = Maywood Interim Storage Site OB = overburden USACE = U.S. Army Corps of Engineers

Table 2-52016 LTM Final Well Purge Environmental DataFUSRAP Maywood Superfund Site

LTM Well ID	Date Sampled	Aquifer	Flow Rate (mL/min)	Temp. (°C)	рН	Specific Cond. (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Purge Duration (min)	Drawdown (ft)	Final PID (VOC in ppm)
B38W01S	8/22/2016	OB	200	15.96	6.62	2.052	-58.8	0.81	33.7	70	0.12	0
B38W02D	8/22/2016	BR	110	14.67	6.91	0.569	56.7	0.26	6.2	65	2.56	0
B38W03B	8/16/2016	BR	230	19.10	6.68	1.620	-61.6	0.06	3.0	50	0.13	0
B38W07B	8/16/2016	BR	190	16.58	6.60	1.663	318.7	0.14	1.9	65	0.12	0
B38W14S	8/17/2016	OB	200	17.74	7.06	2.183	143.4	0.02	0.0	72	0.01	0.2
B38W14D	8/17/2016	BR	175	17.00	7.46	1.357	88.4	0.02	9.4	129	0.38	3.8
B38W15S	8/17/2016	OB	200	19.10	7.34	1.896	-41.9	0.42	0.0	35	0.10	0
B38W15D	8/17/2016	BR	250	17.78	7.36	1.667	376.1	0.30	15.3	55	0.32	0
B38W17A	8/29/2016	OB	200	21.51	6.99	1.539	90.6	1.79	0.1	55	0.46	0
B38W17B	8/29/2016	BR	250	15.83	6.74	8.441	-73.8	0.26	0.0	50	0.00	0
B38W18DR	8/9/2016	BR	235	16.20	7.50	0.808	-107.6	0.77	15.1	53	0.37	0
B38W24S	8/9/2016	OB	190	23.38	5.99	3.540	9.4	0.52	7.7	61	0.16	0.1
B38W24D	8/9/2016	BR	165	18.79	6.09	1.799	-52.9	0.53	7.0	50	0.08	0.1
B38W25SR	8/8/2016	OB	165	17.81	6.55	3.261	-67.9	0.98	9.7	60	0.17	0
B38W25DR	8/8/2016	BR	165	18.69	6.64	4.854	-55.6	0.58	1.0	57	0.73	0
MISS01AR	8/10/2016	OB	165	19.51	7.35	2.129	-94.2	0.39	9.4	85	0.07	0
MISS01BR	8/10/2016	BR	200	18.71	7.43	0.925	160.4	1.10	4.5	103	0.01	0.5
MISS02AR	8/10/2016	OB	200	19.98	7.76	4.155	-137.5	1.06	21.6	65	0.25	0
MISS02BR	8/10/2016	BR	210	19.08	7.00	3.468	-59.3	0.39	2.4	53	0.11	0.5
MISS04AR	9/22/2016	OB	200	19.89	6.75	2.426	-95.9	1.07	14.0	70	0.18	1.0
MISS04B	8/18/2016	BR	250	18.32	6.59	1.370	-45.5	0.35	8.5	75	0.00	0
MISS05AR	8/15/2016	OB	200	22.73	7.08	1.883	-134.5	0.39	3.0	50	0.15	0
MISS05BR	8/15/2016	BR	250	19.26	6.08	14.93	-82.6	0.74	7.5	50	0.00	0
MISS07AR	8/16/2016	OB	200	17.79	6.83	1.860	-74.6	0.04	47.1	65	0.06	0
MISS07B	8/16/2016	BR	225	18.87	6.96	5.878	5.0	0.99	6.7	94	0.24	0
BRPZ2	8/17/2016	BR	210	17.28	6.77	6.428	-44.4	0.13	18.5	64	0.13	0
BRPZ3	8/17/2016	BR	250	16.30	6.35	5.045	-0.2	1.20	8.1	80	0.23	0
BRPZ4	9/1/2016	BR	250	18.01	5.97	10.30	-51.7	1.41	12.3	50	0.15	0
BRPZ5	8/8/2016	BR	150	20.85	5.94	16.37	-16.2	2.87	42.2	190	6.35	0
BRPZ9	8/9/2016	BR	225	18.73	6.53	11.84	-27.6	0.41	2.2	50	0.85	0
OVPZ17R	8/31/2016	OB	150	18.69	6.39	3.572	-94.7	3.15	8.4	55	0.13	0
OVPW1S	8/15/2016	OB	200	18.39	6.99	1.456	-51.5	0.09	1.0	41	0.00	0

Table 2-52016 LTM Final Well Purge Environmental DataFUSRAP Maywood Superfund Site

LTM Well ID	Date Sampled	Aquifer	Flow Rate (mL/min)	Temp. (°C)	рН	Specific Cond. (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Purge Duration (min)	Drawdown (ft)	Final PID (VOC in ppm)
MW2S	8/18/2016	OB	150	22.51	7.26	1.777	-64.0	0.39	11.6	88	0.14	0
MW2D	8/18/2016	BR	195	19.54	7.43	1.805	-93.5	0.50	5.1	51	0.08	0
MW3SR	8/31/2016	OB	50	21.69	7.40	2.318	-64.6	2.10	30.7	145	1.43	0
MW3DR	8/16/2016	BR	180	19.22	7.43	4.567	-183.1	0.00	0.0	60	1.03	0
MW6S	8/30/2016	OB	200	21.63	6.94	4.491	-54.2	0.07	11.0	95	0.49	0
MW6D	8/30/2016	BR	50	23.61	7.62	0.981	121.5	0.26	0.0	50	0.07	0
MW8S	9/8/2016	OB	200	20.11	6.57	1.425	169.6	0.98	20.2	50	0.31	0
MW23D	8/22/2016	BR	120	21.63	6.60	2.411	-8.2	1.04	44.1	95	0.39	0.4
MW24S	8/15/2016	OB	180	20.48	6.59	1.219	-70.0	0.00	23.5	57	0.04	0
MW24D	8/15/2016	BR	190	20.75	6.53	3.666	62.4	0.12	9.2	59	0.52	0
MW25S	9/1/2016	OB	125	24.60	6.00	1.371	100.6	1.77	26.0	95	0.47	0
MW25D	8/10/2016	BR	250	21.41	7.29	2.757	-121.6	1.57	21.5	50	0.49	0
MW28S	8/8/2016	OB	175	17.82	6.48	3.093	-59.4	0.93	26.7	83	0.00	0
MW31D	8/18/2016	BR	170	20.15	7.52	2.659	-78.3	0.43	22.7	64	0.00	0
MW32D	8/23/2016	BR	225	17.79	7.09	4.945	-48.5	0.60	17.3	65	0.04	0
MW33S	8/18/2016	OB	95	19.44	7.07	9.488	-83.0	1.95	12.8	52	0.88	0.1
MW34D	8/15/2016	BR	90	21.57	6.90	4.415	-163.5	0.00	4.6	110	1.26	7.8
MW39D	8/30/2016	BR	230	21.10	7.63	0.981	-30.4	0.01	30.7	75	0.03	0
MW42D	8/9/2016	BR	200	21.22	7.65	1.268	-93.6	0.53	3.3	50	0.44	0
MW43SR	8/24/2016	OB	60	28.64	7.16	1.342	208.8	3.37	12.9	73	1.10	NA
MW43D	8/9/2016	BR	225	20.61	8.00	2.519	-41.4	0.63	36.4	50	0.05	0
MW44S	8/16/2016	OB	100	23.93	7.11	1.807	-32.9	0.15	0.0	40	0.28	0
MW45D	8/18/2016	BR	200	17.71	6.35	8.041	-14.8	0.33	5.2	60	0.44	1.1
MW46S	8/11/2016	OB	185	17.91	6.49	2.181	-68.9	0.40	1.1	72	0.70	0.4
MW46D	8/11/2016	BR	225	17.14	6.90	3.087	-107.7	0.52	18.9	54	0.22	0.1
MW47S	8/11/2016	OB	200	21.43	7.10	2.419	-90.4	0.28	-2.9	48	0.09	0.1
MW47D	8/11/2016	BR	250	18.01	7.38	11.58	-108.7	2.31	3.3	50	0.28	0
MW48S	8/11/2016	OB	150	23.16	6.96	1.483	35.4	6.91	8.6	85	0.12	0
MW48D	8/11/2016	BR	200	18.01	7.12	3.858	-2.7	2.71	20.9	50	0.14	0.3
MW51S	8/23/2016	OB	70	17.15	5.52	5.432	243.6	4.89	32.1	55	0.91	0
MW51D	8/23/2016	BR	170	16.29	7.02	0.775	-23.6	3.68	44.3	90	0.36	0
MW52S	9/21/2016	OB	210	24.05	6.99	2.231	56.1	0.67	6.1	60	0.05	0.1

Table 2-52016 LTM Final Well Purge Environmental DataFUSRAP Maywood Superfund Site

LTM Well ID	Date Sampled	Aquifer	Flow Rate (mL/min)	Temp. (°C)	рН	Specific Cond. (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Purge Duration (min)	Drawdown (ft)	Final PID (VOC in ppm)
MW52D	9/21/2016	BR	225	19.11	7.41	1.032	-19.2	0.49	1.0	55	0.01	0
MW53S	8/24/2016	OB	180	23.23	6.78	1.588	-101.6	0.42	8.0	55	0.00	0.8
MW53D	8/24/2016	BR	245	21.83	7.32	0.752	-48.6	0.28	25.2	70	0.00	0.5
MW54S	8/25/2016	OB	190	19.82	6.85	0.528	228.9	1.09	16.6	105	0.06	0.1
MW54D	8/25/2016	BR	95	22.15	7.77	0.505	332.3	4.79	19.3	90	0.00	0

Note:

Final well purge environmental data was collected immediately prior to sample collection.

Key:

BR = bedrock

°C = degrees Celsius

ft = feet

ID = identification

LTM = long-term monitoring

mg/L = milligrams per liter

min = minutes

- mL/min = milliliter per minute
- μ S/cm = microsiemens per centimeter

mV = millivolt

NA = not available

NTU = Nephelometric Turbidity Units

OB = overburden

ORP = oxidation-reduction potential

PID = photoionization detector

ppm = parts per million

VOC = volatile organic compound

Table 2-6 2016 LTM Analytical Methods and Requirements FUSRAP Maywood Superfund Site

Analyte	Description	Method	Bottle Requirements	Preservation	Holding Time	Comments
		Cont	aminants of Concern			
Arsenic	GW ROD COC	EPA 6020 (ICP-MS)	250 or 500 ml polyethylene	HNO ₃ to pH < 2; cool to 2-6 $^{\circ}$ C	6 months	
Lithium	GW ROD COC	EPA 6020A (ICP-MS)	250 or 500 ml polyethylene	HNO ₃ to pH < 2; cool to 2-6 °C	6 months	
Benzene	GW ROD COC	SW-846 8260B	Three 40 ml vials with Teflon-lined lids	HCl to pH < 2; cool to 2-6 °C	14 days	
		Radi	iological Parameters			
Gross Alpha		FPA 900 00				
Gross Beta		(by GFPC)				
Radium-226		EPA 903.0 (modified)				
Radium-228		EPA 904.0				
Thorium-228	EMP Radiogical Sampling		4 L container	HNO ₃ to pH < 2	6 months	The UFML analyzes all groundwater and surface water samples using
Thorium-230	Parameters	Eichrom ACWO1				apha spectroscopy.
Thorium-232						
Uranium-234						
Uranium-235		SM 7500 - UC				
Uranium-238						
Radon-222		SM7500 - Rn B (Rn-222)	Three 40 ml vials with Teflon-lined lids	Cool to 2-6 °C	4 days	Collected for the correction of Gross Alpha
Potassium		EPA 6020 (ICP-MS)	250 or 500 ml polyethylene	HNO_3 to $pH < 2$; cool to 2-6 °C	6 months	Collected for the correction of Gross Beta

Table 2-6 2016 LTM Analytical Methods and Requirements FUSRAP Maywood Superfund Site

Analyte	Description	Method	Bottle Requirements	Preservation	Holding Time	Comments
		Biog	eochemical Analytes			
Manganese, total	Alternate Electron Acceptor	SW-846 6020A	250 ml polyethylene bottle	Cool to 4 °C	6 months	
Manganese, filtered	Alternate Electron Acceptor (reduced)	SW-846 6020A	250 ml polyethylene bottle	HNO ₃ to pH < 2; cool to 2-6 °C	6 months	Sample filtered (0.45 micron) in field, dissolved fraction representative of Mn ²⁺
Iron, total	Alternate Electron Acceptor	SW-846 6020A	250 ml polyethylene bottle	Cool to 4 °C	6 months	
Iron, filtered	Alternate Electron Acceptor (reduced)	SW-846 6020A	250 ml polyethylene bottle	HNO ₃ to pH < 2; cool to 2-6 °C	6 months	Sample filtered (0.45 micron) in field, dissolved fraction representative of Fe ²⁺
Nitrate	Alternate Electron Acceptor, Nutrient	MCA 300.0	125 ml polyethylene bottle	Cool to 4 °C	48 hours	
Ammonia	Alternate Electron Acceptor (reduced), Nutrient	MCA 350.1	500 ml polyethylene bottle	Cool to 4 °C H ₂ SO ₄ to pH <2	28 days	

Table 2-6 2016 LTM Analytical Methods and Requirements FUSRAP Maywood Superfund Site

Analyte	Description	Method	Bottle Requirements	Preservation	Holding Time	Comments
Sulfate	Alternate Electron Acceptor	MCA 300.0	125 ml polyethylene bottle	Cool to 4° C	28 days	
Sulfide	Alternate Electron Acceptor (reduced)	MCA 376.1	500 ml polyethylene bottle	Cool to 4°C; Add 2 ml zinc acetate plus NaOH to pH > 9	7 days	
Methane	Alternate Electron Acceptor (reduced)	SW-846 8015A modified	40 ml glass vial	Cool to 4 °C	14 days	
Phosphorus (total)	Nutrient	MCA 365.2	125 ml polyethylene bottle	Approximately 0.3 ml of H_2SO_4 ; Cool to 4 °C	28 days	
Total Organic Carbon	Nutrient	MCA 415.1	500 ml glass bottle	HCl to pH < 2; Cool to 4 °C	28 days	
Chemical Oxygen Demand		MCA 410.4	125 ml polyethylene bottle	H_2SO_4 to pH <2	28 days	Measures groundwater oxygen demand; also used to measure redox conditions.

Key:

°C = degrees Celsius

EMP = Environmental Monitoring Program

EPA = U.S. Environmental Protection Agency

Fe²⁺ = ferrous iron

GFPC = gas-flow proportional counting

GW = groundwater

HCl = hydrochloric acid

 $HNO_3 = nitric acid$

 H_2SO_4 = sulfuric acid

ICP-MS = inductively-coupled plasma-mass spectometry

L = liter

LTM = long-term monitoring

ml = milliliter

 Mn^{2+} = manganese ion

NaOH = sodium hydroxide

ROD = Record of Decision

B3 12A 08	38W01S A-090052 3/22/16				B38W01 12A- 08/	S Duplicate 090077 22/16					B38W14S 19A-090040 08/17/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)	-	•	•	-	GW COCs (ug/L)				-	GW COCs (ug/L)	•	•		•
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.23	J	0.5	1
Arsenic	1.8	J	3	3	Arsenic	2.1	J	3	3	Arsenic	3	U	3	3
Lithium	874		500	730	Lithium	864		500	730	Lithium	106	J	500	730
Geochemical Parameters (mg/L, unle	ess otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unles	s otherwise	e note	d)		Geochemical Parameters (mg/L, ur	less otherwis	e noted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)	-	Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, u	nless otherwis	se noted	(k	-
Adjusted Gross Alpha ^(1,2)	4.77	J	1.07	15	Adjusted Gross Alpha ^(1,2)	4.3	J	1.1	15	Adjusted Gross Alpha ^(1,2)	4.09	J-	2.5	15
Adjusted Gross Beta ^(1,2)	2.78		1.39	50	Adjusted Gross Beta ^(1,2)	3.78		1.37	50	Adjusted Gross Beta ^(1,2)	-0.54	J	2.70	50
Total Radium ⁽²⁾	0.351		-	5	Total Radium ⁽²⁾	0.649		-	5	Total Radium ⁽²⁾	0.376		-	5
Total Thorium ⁽²⁾	1.095		-	-	Total Thorium ⁽²⁾	0.436		-	-	Total Thorium ⁽²⁾	0.198		-	-
U-234	0.144	J	0.078	-	U-234	0.049	U	0.176	-	U-234	0.455		0.082	-
U-235	0.019		0.142	-	U-235	0.029	U	0.143	-	U-235	0.03	U	0.082	-
U-238	0.029		0.078	-	U-238	0.116	J	0.079	-	U-238	0.383		0.148	-
Total Uranium ⁽²⁾	0.192		-	-	Total Uranium ⁽²⁾	0.194		-	-	Total Uranium ⁽²⁾	0.868		-	-
Total Uranium (ug/L)	0.086		-	30	Total Uranium (ug/L)	0.345		-	30	Total Uranium (ug/L)	1.14		-	30

Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

- **Qualifiers** U - Non-detect.
- UJ Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

E 20 0	338W15S DA-090044 D8/17/16				B38W15 20A 08,	5S Duplicat -090075 /17/16	te			B 20 0	38W17A A-090064 8/29/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	3.3		3	3	Arsenic	2.1	J	3	3	Arsenic	0.96	J+	3	3
Lithium	1,820		500	730	Lithium	864		500	730	Lithium	309	J	500	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e not	ed)		Geochemical Parameters (mg/L, ur	less otherv	vise no	oted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	44.2		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	33.4		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	233		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	22.4	J	100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.06	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.06	J	0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.20	U	0.20	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	81.7		10	-
Sulfide	NS	-	-	-	Sulfide	NS	1	-	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	6.90		0.11	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	1	-	-	Phosphorus, Total	0.05	U	0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	5.20		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	I	-	-	Chemical Oxygen Demand (COD)	23.4		20	-
Radiological Constituents (pCi/L, unl	ess otherw	ise no	ted)		Radiological Constituents (pCi/L, unles	ss otherwi	se no	ted)		Radiological Constituents (pCi/L, u	less other	wise n	oted)	-
Adjusted Gross Alpha ^(1,2)	6.06	J-	2.5	15	Adjusted Gross Alpha ^(1,2)	4.05	U	1.55	15	Adjusted Gross Alpha ^(1,2)	3.30		2.50	15
Adjusted Gross Beta ^(1,2)	-21.06		2.44	50	Adjusted Gross Beta ^(1,2)	-12.16		1.37	50	Adjusted Gross Beta ^(1,2)	0.26		3.15	50
Total Radium ⁽²⁾	0.724		-	5	Total Radium ⁽²⁾	0.649		-	5	Total Radium ⁽²⁾	0.356		-	5
Total Thorium ⁽²⁾	-14.808		-	-	Total Thorium ⁽²⁾	-8.11		-	-	Total Thorium ⁽²⁾	3.673		-	-
U-234	0.480		0.081	-	U-234	0.049	U	0.143	-	U-234	0.223		0.075	-
U-235	0.030	U	0.082	-	U-235	0.029	U	0.079	-	U-235	0.056	U	0.076	-
U-238	0.360		0.081	-	U-238	0.116	J	0.079	-	U-238	0.186		0.136	-
Total Uranium ⁽²⁾	0.870		-	-	Total Uranium ⁽²⁾	0.194		-	-	Total Uranium ⁽²⁾	0.465		-	-
Total Uranium (ug/L)	1.07		-	30	Total Uranium (ug/L)	0.345		-	30	Total Uranium (ug/L)	0.553		-	30

Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

B3 10A 08	8W24S -090011 /09/16				B38\ 12B- 08/	W25SR 090000 08/16				MI 12B 08	SSO1AR -090016 /10/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)			-	-	GW COCs (ug/L)	-			-	GW COCs (ug/L)	-			-
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	1.6	J	3	3	Arsenic	3		3	3	Arsenic	3.5		3	3
Lithium	34.8	J	500	730	Lithium	1,780		500	730	Lithium	369	J	500	730
Geochemical Parameters (mg/L, unles	ss otherwise	e note	d)	-	Geochemical Parameters (mg/L, unles	s otherwise	e noted)	-	Geochemical Parameters (mg/L, un	less othe	erwise	noted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	1,420		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	1,430		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	2,300		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	1,960		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.035	J	0.110	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.035	J	0.100	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	5.3		0.600	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	781		40	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	0.29		0.110	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	14.5	J	20	-
Radiological Constituents (pCi/L, unle	ss otherwis	e note	d)		Radiological Constituents (pCi/L, unles	s otherwis	e noteo	ł)		Radiological Constituents (pCi/L, ur	nless oth	erwise	noted)	
Adjusted Gross Alpha ^(1,2)	5.32		1.65	15	Adjusted Gross Alpha ^(1,2)	9.16		1.62	15	Adjusted Gross Alpha ^(1,2)	5.99		1.40	15
Adjusted Gross Beta ^(1,2)	3.42		1.87	50	Adjusted Gross Beta ^(1,2)	19.07		1.76	50	Adjusted Gross Beta ^(1,2)	4.69		1.30	50
Total Radium ⁽²⁾	1.30		-	5	Total Radium ⁽²⁾	1.16		-	5	Total Radium ⁽²⁾	1.06		0.247	5
Total Thorium ⁽²⁾	0.089		-	-	Total Thorium ⁽²⁾	0.28		-	-	Total Thorium ⁽²⁾	0.22		-	-
U-234	0.027	U	0.215	-	U-234	0.09	J	0.085	-	U-234	0.078	U	0.143	-
U-235	0	U	0.072	-	U-235	0.03	U	0.085	-	U-235	-0.01	U	0.144	-
U-238	0.018	U	0.13	-	U-238	0.13	J	0.085	-	U-238	0.107	U	0.143	-
Total Uranium ⁽²⁾	0.045		-	-	Total Uranium ⁽²⁾	0.25		-	-	Total Uranium ⁽²⁾	0.18		-	-
Total Uranium (ug/L)	0.053		-	30	Total Uranium (ug/L)	0.37		-	30	Total Uranium (ug/L)	0.32		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

	MISS02A 12B-09001 08/10/16	R 19 5				MIS	5502AR Dupl 12B-090072 08/10/16	cate					MISS0 10A-090 09/22/	4A 0069 /16			
Analyte	Result	Q	MDC	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	2	U	2	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	135		3	-	3	Arsenic	131		3	-	3	Arsenic	2.7	J+	3	-	3
Lithium	4,090		500	-	730	Lithium	3,950		500	-	730	Lithium	23.5	J+	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwise	e note	d)			Geochemical Parameters (mg/L, unles	s otherwise	noted)				Geochemical Parameters (mg/L, un	less other	wise not	ed)		
Manganese, Total (ug/L)	344		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	381		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	2,970		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	1,320		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	1.5		0.11	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	1.5		0.1	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	15.4		2	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	1,110		100	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	1	J	2	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	201		0.55	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	6.6		1.3	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	40.5		2	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	102		20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwis	e note	d)			Radiological Constituents (pCi/L, unle	ss otherwise	noted				Radiological Constituents (pCi/L, ur	nless other	wise no	ted)		
Adjusted Gross Alpha (1,2)	3.98		1.48	1.04	15	Adjusted Gross Alpha ^(1,2)	5.20		1.53	1.1	15	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	-
Adjusted Gross Beta (1,2)	-2.70		2.44	2.05	50	Adjusted Gross Beta ^(1,2)	0.10		2.56	2.18	50	Adjusted Gross Beta ^(1,2)	NS	-	-	-	-
Total Radium ⁽²⁾	0.327		-	-	5	Total Radium ⁽²⁾	0.397		-	-	5	Total Radium ⁽²⁾	NS	-	-	-	-
Total Thorium ⁽²⁾	0.363		-	-	-	Total Thorium ⁽²⁾	0.39		-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	-
U-234	0.172		0.077	0.143	-	U-234	0.03	U	0.238	0.113	-	U-234	NS	-	-	-	-
U-235	0.057	U	0.078	0.084	-	U-235	0.03	U	0.08	0.062	-	U-235	NS	-	-	-	-
U-238	0.076	U	0.14	0.101	-	U-238	-0.01	U	0.144	0.062	-	U-238	NS	-	-	-	-
Total Uranium ⁽²⁾	0.305		-	-	-	Total Uranium ⁽²⁾	0.05		-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	-
Total Uranium (ug/L)	0.23		-	-	30	Total Uranium (ug/L)	-0.03		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

<u>Qualifiers</u>

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

MI 12B 08	SS05AR -090032 /15/16				MIS 12B- 08/	S07AR 090034 16/16				(12 (OVPZ17R 2B-090005 99/01/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	3.9	J+	3	3	Arsenic	65.4		3	3	Arsenic	3	U	3	3
Lithium	768		500	730	Lithium	1,300		500	730	Lithium	2,060		500	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	_	Geochemical Parameters (mg/L, un	less other	wise no	ted)	
Manganese, Total (ug/L)	637		15	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	5,920		45	-
Manganese, Filtered (ug/L)	583		15	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	5,860		45	-
Iron, Total (ug/L)	2,070		100	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	15,000		100	-
Iron, Filtered (ug/L)	1,320		100	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	14,500		100	-
Nitrate (as N)	0.17		0.11	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.120		0.110	-
Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	0.17		0.10	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.120		0.100	-
Ammonia (as N)	2.6		0.20	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	34		4	-
Sulfate	434		30	-	Sulfate	NS	-	-	-	Sulfate	796		40	-
Sulfide	2	U	2	-	Sulfide	NS	-	-	-	Sulfide	2	U	2	-
Methane (ug/L)	63		0.11	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	3,710		5.5	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	1.6		0.25	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	7.8		1	-
Chemical Oxygen Demand (COD)	8.6	J	20	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	46.7		20	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	2.09		1.62	15	Adjusted Gross Alpha ^(1,2)	6.25	J-	2.5	15	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	1.20		1.45	50	Adjusted Gross Beta ^(1,2)	-3.03		2.14	50	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	0.825		-	5	Total Radium ⁽²⁾	0.54		-	5	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	1.153		-	-	Total Thorium ⁽²⁾	0.611		-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	0.302		0.222	-	U-234	0.33		0.152	-	U-234	NS	-	-	-
U-235	0.068	U	0.17	-	U-235	0	U	0.084	-	U-235	NS	-	-	-
U-238	0.136	U	0.143	-	U-238	0.155		0.084	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	0.506		-	-	Total Uranium ⁽²⁾	0.485		-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	0.40		-	30	Total Uranium (ug/L)	0.46		-	30	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

- J- Result is estimated and may be biased low.
- R Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

0\ 12B 08	VPW1S 8-090030 8/15/16				M\ 23B-0 08/1	W2S 090049 18/16				 12 0	MW3SR B-090108 8/31/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)	•	-			GW COCs (ug/L)		-			GW COCs (ug/L)				•
Benzene	0.16	J	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	3	U	3	3	Arsenic	1.1	J	3	3	Arsenic	393		7.5	3
Lithium	1,210		500	730	Lithium	1,270		500	730	Lithium	1,430		500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unless	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	wise no	oted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	2,470		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	2,500		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	2,930		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	2,380		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.07	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.07	J	0.100	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	1.5		0.200	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	757		40	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	14.4		0.110	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.28		0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	4.4		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	12.3	J	20	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)	-	Radiological Constituents (pCi/L, unles	s otherwis	e note	d)	-	Radiological Constituents (pCi/L, ur	nless other	wise no	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	3.93	J	1.8	15
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	-3.71		1.921	50
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	0.408		-	5
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.002		-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	0.240		0.136	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	0.028	U	0.075	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	0.148	U	0.161	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	0.416		-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	0.440		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

N 23B 08	/W6S -090067 :/30/16				M 23B-(09/	W8S 090060 08/16				12 0	MW24S B-090028 8/15/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.25	J	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	12		3	3	Arsenic	1.6	J	3	3	Arsenic	11		3	3
Lithium	11.89	J+	500	730	Lithium	3.7	J	500	730	Lithium	200	J+	500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise no	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	2.91	J	2.5	15
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	1.65	J-	2.90	50
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	1.66		-	5
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.24		-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	0.04	U	0.229	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	0.02	U	0.148	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	0.03	U	0.081	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	0.09		-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	0.09		-	30

Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

- J- Result is estimated and may be biased low.
- R Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

N 12B 09	1W25S -090020 /01/16				MV 12B-0 08/0	V28S 090002 08/16				12 0	MW33S B-090047 8/18/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	47.2		0.5	1
Arsenic	0.819	J	3	3	Arsenic	5.9		3	3	Arsenic	296		7.5	3
Lithium	18.29	J+	500	730	Lithium	2,270		500	730	Lithium	12,900		2,500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unless	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, un	less other	wise no	oted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	
Radiological Constituents (pCi/L, unle	ss otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	se note	ed)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	6.04		1.74	15	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	6.57		1.84	50	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	0.770		-	5	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.342		-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	0.353		0.181	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	0.052	U	0.153	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	0.342		0.202	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	0.747		-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	1.02		-	30	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

M' 12B 08	W43SR -090066 /24/16				MV 12B-0 08/1	V44S 090039 16/16				12 0	MW46S B-090022 8/11/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	11.6		0.5	1
Arsenic	1.6	J	3	3	Arsenic	357		7.5	3	Arsenic	1.4	J	3	3
Lithium	668		500	730	Lithium	707		500	730	Lithium	3,400		500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unless	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	wise no	oted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	900		15	-	Manganese, Total (ug/L)	1,770		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	937		15	-	Manganese, Filtered (ug/L)	1,860		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	2,920		100	-	Iron, Total (ug/L)	38,400		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	2,530		100	-	Iron, Filtered (ug/L)	40,200		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.042	J	0.10	-	Nitrate (as N)	0.093	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.011		0.010	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.053	J	0.10	-	Nitrate and Nitrite (as N)	0.093	J	0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.71		0.20	-	Ammonia (as N)	7.8		1	-
Sulfate	NS	-	-	-	Sulfate	558		30	-	Sulfate	940		50	-
Sulfide	NS	-	-	-	Sulfide	2	U	2	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	1.1		0.11	-	Methane (ug/L)	720		1.1	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.023	J	0.05	-	Phosphorus, Total	0.045	J	0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	5.5		1	-	Total Organic Carbon (TOC)	61.2		3	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	12.5	J	20	-	Chemical Oxygen Demand (COD)	238		20	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

- J- Result is estimated and may be biased low.
- R Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

M 12B- 08/	W47S -090024 /11/16				MV 12B-0 08/1	V48S 990026 11/16				MW4 12 0	8S Duplica B-090073 8/11/16	te		
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	2.7	J	3	3	Arsenic	1.6	J	3	3	Arsenic	1.6	J	3	3
Lithium	1,960		500	730	Lithium	241	J	500	730	Lithium	221	J	500	730
Geochemical Parameters (mg/L, unles	ss otherwis	se note	ed)		Geochemical Parameters (mg/L, unless	otherwis	e note	d)	-	Geochemical Parameters (mg/L, un	less otherv	vise no	oted)	-
Manganese, Total (ug/L)	1,070		15	-	Manganese, Total (ug/L)	529		15	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	1,080		15	-	Manganese, Filtered (ug/L)	466		15	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	4,770		100	-	Iron, Total (ug/L)	133		100	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	4,660		100	-	Iron, Filtered (ug/L)	100	U	100	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	0.038	J	0.11	-	Nitrate (as N)	4		0.11	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	0.006	J	0.01	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	0.038	J	0.100	-	Nitrate and Nitrite (as N)	4		0.10	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	7.19		1	-	Ammonia (as N)	0.10	J	0.20	-	Ammonia (as N)	NS	-	-	-
Sulfate	700		30	-	Sulfate	217		10	-	Sulfate	NS	-	-	-
Sulfide	2	U	2	-	Sulfide	2	U	2	-	Sulfide	NS	-	-	-
Methane (ug/L)	25.1		0.11	-	Methane (ug/L)	0.67		0.11	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	0.24		0.05	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	3.5		1	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	30		20	-	Chemical Oxygen Demand (COD)	12.5	J	20	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ss otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)	-	Radiological Constituents (pCi/L, ur	less other	wise n	oted)	-
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

V 20A 08	1W51S A-090055 3/23/16				MV 20A-0 09/2	V52S 990070 21/16				23 0	MW53S B-090058 8/24/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)	-	-			GW COCs (ug/L)					GW COCs (ug/L)				-
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	1.7	J	3	3	Arsenic	1.2	J+	3	3	Arsenic	25.3		3	3
Lithium	25.1	J	500	730	Lithium	132		500	730	Lithium	500	U	500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unless	otherwis	e note	d)	-	Geochemical Parameters (mg/L, un	less other	wise no	oted)	_
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	1	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

23 0	MW54S B-090061 8/25/16			
Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)		-		
Benzene	0.5	U	0.5	1
Arsenic	1.5	J	3	3
Lithium	4.9	J+	500	730
Geochemical Parameters (mg/L, unl	ess otherwis	se note	ed)	
Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-
Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	se note	ed)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-
U-235	NS	-	-	-
U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

- U Non-detect.
- UJ Estimated non-detect.
- J Estimated concentration.
- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.
- R Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

(2) - Gross Alpha, Gross Beta and isotopic data for Radium (Ra-226, Ra-228), Thorium (Th-228, Th-230, Th-232) and Uranium (U-234, U-235, U-238) are presented in Appendix E, Tables E-1, E-2, and E-3.

12 of 12
B3 12A 08	8W02D A-090053 8/22/16				B38 10A-0 08/:	W03B 090037 16/16				B 10 0	38W07B A-090036 8/16/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	0.87	J	3	3	Arsenic	0.42	J	3	3	Arsenic	0.5	J	3	3
Lithium	11.5	J+	500	730	Lithium	41	J	500	730	Lithium	121	J	500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	d)	-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, un	less other	wise no	oted)	-
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	1.48	IJ	2.5	15	Adjusted Gross Alpha ⁽¹⁾	2.14	UJ	2.50	15	Adjusted Gross Alpha ⁽¹⁾	NS	-	-	-
Adjusted Gross Beta ^(1,2)	0.098	U	2.39	50	Adjusted Gross Beta ⁽²⁾	-0.97	J	2.15	50	Adjusted Gross Beta ⁽²⁾	NS	-	-	-
Total Radium ⁽²⁾	0.683		-	5	Total Radium ⁽²⁾	1.324		-	5	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	0.619		-	-	Total Thorium ⁽²⁾	0.376		-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	0.336	J	0.141	-	U-234	0.052	U	0.152	-	U-234	NS	-	-	-
U-235	0.058	U	0.078	-	U-235	0.031	U	0.152	-	U-235	NS	-	-	-
U-238	0.134	U	0.141	-	U-238	0.062	U	0.084	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	0.528		-	-	Total Uranium ⁽²⁾	0.145		-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	0.40		-	30	Total Uranium (ug/L)	0.18		-	30	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

B3 19/ 08	88W14D A-090041 3/17/16				B38 20A- 08/	W15D 090045 17/16				B 20 0	38W17B A-090065 8/29/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	0.77	J	3	3	Arsenic	9.1		3	3	Arsenic	1.3	J+	3	3
Lithium	32.7	J	500	730	Lithium	1,970		500	730	Lithium	1,290		500	730
Geochemical Parameters (mg/L, unle	ess otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	616		15	-	Manganese, Total (ug/L)	4,860		45	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	608		15	-	Manganese, Filtered (ug/L)	4,860		45	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	249		100	-	Iron, Total (ug/L)	10,300		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	17.2		100	-	Iron, Filtered (ug/L)	9,940		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.34		0.11	-	Nitrate (as N)	0.056	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.34		0.1	-	Nitrate and Nitrite (as N)	0.056	J	0.1	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	1.6		0.2	-	Ammonia (as N)	16.2		2	-
Sulfate	NS	-	-	-	Sulfate	477	υ	20	-	Sulfate	611		30	-
Sulfide	NS	-	-	-	Sulfide	2	U	2	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	0.33		0.11	-	Methane (ug/L)	238		0.550	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.05	U	0.05	-	Phosphorus, Total	0.12		0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	3.9		1	-	Total Organic Carbon (TOC)	7.9		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	10.2	J	20	-	Chemical Oxygen Demand (COD)	89.8		20	-
Radiological Constituents (pCi/L, unl	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	2.092	J-	2.5	15	Adjusted Gross Alpha ^(1,2)	0.31	J-	2.5	15	Adjusted Gross Alpha ^(1,2)	11.04	J	1.76	15
Adjusted Gross Beta ^(1,2)	0.46	J	3.19	50	Adjusted Gross Beta ^(1,2)	-1.45	J	3.70	50	Adjusted Gross Beta ^(1,2)	-2.58		1.875	50
Total Radium ⁽²⁾	2.902		-	5	Total Radium ⁽²⁾	0.428		-	5	Total Radium ⁽²⁾	1.879		-	5
Total Thorium ⁽²⁾	0.119		-	-	Total Thorium ⁽²⁾	0.669		-	-	Total Thorium ⁽²⁾	0.436		-	-
U-234	0.904		0.082	-	U-234	4.12		0.142	-	U-234	0	U	0.072	-
U-235	0.091	J	0.082	-	U-235	0.09	J	0.079	-	U-235	0	U	0.072	-
U-238	0.421		0.081	-	U-238	1.48		0.079	-	U-238	0	U	0.072	-
Total Uranium ⁽²⁾	1.416		-	-	Total Uranium ⁽²⁾	5.69		-	-	Total Uranium ⁽²⁾	0		-	-
Total Uranium (ug/L)	1.25		-	30	Total Uranium (ug/L)	4.40		-	30	Total Uranium (ug/L)	0		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

- **Qualifiers**
- U Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

B38W1 20A 08	7B Duplicat A-090078 8/29/16	te			B38 12B- 08/	W18DR 090008 /09/16				B38	W18DR Du 12B-0900 08/09/1	plicate 10 6	2	
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	1.1	J+	3	3	Arsenic	1.7	J	3	3	Arsenic	1.8	J	3	3
Lithium	1,350		500	730	Lithium	127	J	500	730	Lithium	132	J	500	730
Geochemical Parameters (mg/L, unle	ess otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, ur	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	•	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	•	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	1	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)		Radiological Constituents (pCi/L, unle	ss otherwis	se note	d)		Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	11.77	J	1.82	15	Adjusted Gross Alpha ^(1,2)	1.53	J	2.50	15	Adjusted Gross Alpha ^(1,2)	-1.84	J-	2.50	15
Adjusted Gross Beta ^(1,2)	9.42		2.43	50	Adjusted Gross Beta ^(1,2)	3.05		1.83	50	Adjusted Gross Beta ^(1,2)	0.50	J	1.82	50
Total Radium ⁽²⁾	1.891		-	5	Total Radium ⁽²⁾	1.721		-	5	Total Radium ⁽²⁾	0.968		-	5
Total Thorium ⁽²⁾	0.189		-	-	Total Thorium ⁽²⁾	0.125		-	-	Total Thorium ⁽²⁾	0.083		-	-
U-234	0.171		0.077	-	U-234	1.93		0.08	-	U-234	2.12		0.233	-
U-235	0.048	U	0.14	-	U-235	0.173		0.078	-	U-235	0.051	U	0.15	-
U-238	0.057	U	0.077	-	U-238	1.69		0.078	-	U-238	2.20		0.083	_
Total Uranium ⁽²⁾	0.28		-	-	Total Uranium ⁽²⁾	3.79		-	-	Total Uranium ⁽²⁾	4.37		-	-
Total Uranium (ug/L)	0.17		-	30	Total Uranium (ug/L)	5.03		-	30	Total Uranium (ug/L)	6.53		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

B3 10/ 03	38W24D A-090012 8/09/16				B38 12B- 08/	W25DR 090021 /08/16					MISSO1E 12B-0900 08/10/1	8R 17 6		
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	5	U	5	1	Benzene	1.3		0.5	1	Benzene	0.5	U	0.5	1
Arsenic	2.9	J	3	3	Arsenic	1.4	J	3	3	Arsenic	2		3	3
Lithium	142	J	500	730	Lithium	958		500	730	Lithium	128	J	500	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)		Geochemical Parameters (mg/L, unles	ss otherwis	e note	d)	-	Geochemical Parameters (mg/L, ur	nless other	wise n	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	ise not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	se note	d)	-	Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	10.81	J-	2.50	15	Adjusted Gross Alpha ^(1,2)	9.46		1.65	15	Adjusted Gross Alpha ^(1,2)	0.39	UJ	2.50	15
Adjusted Gross Beta ^(1,2)	2.92	J	2.49	50	Adjusted Gross Beta ^(1,2)	57.68		2.35	50	Adjusted Gross Beta ^(1,2)	2.08	J	2.25	50
Total Radium ⁽²⁾	1.573		-	5	Total Radium ⁽²⁾	0.756		-	5	Total Radium ⁽²⁾	0.430		-	5
Total Thorium ⁽²⁾	-0.009		-	-	Total Thorium ⁽²⁾	0.274		-	-	Total Thorium ⁽²⁾	-0.024		-	-
U-234	0.072	U	0.132	-	U-234	0.529		0.084	-	U-234	0.194		0.143	-
U-235	-0.009	U	0.133	-	U-235	0.031	U	0.084	-	U-235	0.059	U	0.079	-
U-238	0.018	U	0.132	-	U-238	0.497	1	0.084	-	U-238	0.233		0.079	-
Total Uranium ⁽²⁾	0.08		-	-	Total Uranium ⁽²⁾	1.06		-	-	Total Uranium ⁽²⁾	0.49		-	-
Total Uranium (ug/L)	0.05		-	30	Total Uranium (ug/L)	1.48		-	30	Total Uranium (ug/L)	0.69		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

M 12E 08	ISSO2BR 3-090018 3/10/16				MI 10A- 08/	SSO4B 09004B '18/16					MISS05B 12B-09003 08/15/16	R 13 5		
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	137		0.5	1
Arsenic	1.6		3	3	Arsenic	0.57	J	3	3	Arsenic	3	U	3	3
Lithium	4,280		500	730	Lithium	51.1	J+	500	730	Lithium	7,980		2,500	730
Geochemical Parameters (mg/L, unle	ess otherwi	se note	ed)	-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, un	less otherwi	se not	ed)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	2,370		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	2,420		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	6,370		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	2,490		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.11		0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.11		0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	2.5		0.20	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	1,380		100	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	1.5	J	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	4,000		5.5	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.021	J	0.050	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	20.5		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	190		20	-
Radiological Constituents (pCi/L, unl	ess otherwi	ise note	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, ur	less otherw	ise not	ted)	
Adjusted Gross Alpha ^(1,2)	5.46		1.36	15	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	9.67		2.07	15
Adjusted Gross Beta ^(1,2)	1.11		2.09	50	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	-81.24	J	7.38	50
Total Radium ⁽²⁾	0.696		-	5	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	1.321		-	5
Total Thorium ⁽²⁾	0.202		-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.013		-	-
U-234	0.807		0.225	-	U-234	NS	-	-	-	U-234	0.104	U	0.139	-
U-235	-0.02	U	0.172	-	U-235	NS	-	-	-	U-235	0.028	U	0.077	-
U-238	0.363		0.171	-	U-238	NS	-	-	-	U-238	0	U	0.076	-
Total Uranium ⁽²⁾	1.15		-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	0.132		-	-
Total Uranium (ug/L)	1.08		-	30	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	0		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

- **Qualifiers**
- U Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

MISS05 12E 08	BR Duplicat 3-090074 3/15/16	e			M 12E 08	IISS07B 3-090035 3/16/16				12	BRPZ2 B-090042 8/17/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	146		0.5	1	Benzene	0.5	U	0.5	1	Benzene	46.9		0.5	1
Arsenic	3	U	3	3	Arsenic	51.6		3	3	Arsenic	1.4	J	3	3
Lithium	8,090		2,500	730	Lithium	5,420		1,000	730	Lithium	1,500		500	730
Geochemical Parameters (mg/L, unle	ess otherwis	se note	ed)	-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, ur	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	3,970		15	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	3,900		15	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	6,910		100	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	734		100	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.096	J	0.11	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.096	J	0.10	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.71		0.20	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	2,230		100	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	2	U	2	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	18.4		0.11	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.43		0.05	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	5.2		1	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	15	J	20	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	11.59		1.97	15	Adjusted Gross Alpha ^(1,2)	3.77		1.29	15	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	-30.24		6.07	50	Adjusted Gross Beta ^(1,2)	-4.58		4.21	50	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	1.114		-	5	Total Radium ⁽²⁾	0.35		-	5	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	0.332		-	-	Total Thorium ⁽²⁾	0.29		-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	0.018	U	0.135	-	U-234	2.87		0.15	-	U-234	NS	-	-	-
U-235	0	U	0.075	-	U-235	0.19		0.09	-	U-235	NS	-	-	-
U-238	0.037	U	0.16	-	U-238	1.81		0.09	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	0.05		-	-	Total Uranium ⁽²⁾	4.87		-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	0.11		-	30	Total Uranium (ug/L)	5.39		-	30	Total Uranium (ug/L)	NS	-	-	-

Notes

NS - Not Sampled. - - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

E 12B 08	3RPZ3 3-090043 3/17/16				BF 12B-(09/	RPZ4 090003 01/16				12 0	BRPZ5 B-090004 8/08/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)			-	-	GW COCs (ug/L)	-			-	GW COCs (ug/L)	-	-		
Benzene	15.4		0.5	1	Benzene	22.1		0.5	1	Benzene	2,610		13	1
Arsenic	3	U	3	3	Arsenic	6	U	6	3	Arsenic	2	J	3	3
Lithium	756		500	730	Lithium	1,410		500	730	Lithium	2,400		500	730
Geochemical Parameters (mg/L,unles	ss otherwis	e note	d)		Geochemical Parameters (mg/L,unless	otherwise	noted)		Geochemical Parameters (mg/L,un	less otherv	vise no	ted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	7,180		30	-	Manganese, Total (ug/L)	6,660		75	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	7,640		75	-	Manganese, Filtered (ug/L)	6,610		75	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	26,300		200	-	Iron, Total (ug/L)	29,700		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	22,900		100	-	Iron, Filtered (ug/L)	24,100		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.11		0.11	-	Nitrate (as N)	4.4		0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.11		0.11	-	Nitrate and Nitrite (as N)	4.4		0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	4.1		0.40	-	Ammonia (as N)	2.3		0.20	-
Sulfate	NS	-	-	-	Sulfate	1,880		100	-	Sulfate	1,480		50	-
Sulfide	NS	-	-	-	Sulfide	2	U	2	-	Sulfide	0.31	J	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	56.8		0.11	-	Methane (ug/L)	1,030		2.2	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	2.4		0.25	-	Phosphorus, Total	0.54		0.10	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	24.8		1	-	Total Organic Carbon (TOC)	45.8		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	140		20	-	Chemical Oxygen Demand (COD)	123		20	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise note	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

Qualifiers

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

121	BRPZ9 B-090013 8/09/16				M' 23B- 08/	W2D 090050 18/16				1 12 0	WW3DR B-090038 8/16/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)	-		_		GW COCs (ug/L)	-	-	-	-	GW COCs (ug/L)	-			-
Benzene	5.9		0.5	1	Benzene	0.5	U	0.5	1	Benzene	1.2		0.5	1
Arsenic	1.2	J	3	3	Arsenic	2.4	J	3	3	Arsenic	3	U	3	3
Lithium	2,540		500	730	Lithium	1,460		500	730	Lithium	5,110		1,000	730
Geochemical Parameters (mg/L, unle	ess otherwi	ise not	ed)		Geochemical Parameters (mg/L, unles	s otherwis	se note	ed)		Geochemical Parameters (mg/L, un	less other	wise n	oted)	
Manganese, Total (ug/L)	6,700		75	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	2,430		15	-
Manganese, Filtered (ug/L)	6,480		75	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	2,390		15	-
Iron, Total (ug/L)	14,600		100	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	98,000		200	-
Iron, Filtered (ug/L)	12,900		100	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	96,400		200	-
Nitrate (as N)	0.093	J	0.11	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.15		0.11	-
Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	0.093	J	0.10	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.15		0.10	-
Ammonia (as N)	2.1		0.20	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.85		0.20	-
Sulfate	1,810		100	-	Sulfate	NS	-	-	-	Sulfate	1,770		100	-
Sulfide	0.31	J	2	-	Sulfide	NS	-	-	-	Sulfide	0.30	J	2	-
Methane (ug/L)	2,070		2.2	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	539		1.1	-
Phosphorus, Total	0.014	J	0.05	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.019	J	0.05	-
Total Organic Carbon (TOC)	15.6		1	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	46.2		1	-
Chemical Oxygen Demand (COD)	51		20	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	40		20	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	1.35		1.88	15
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	2.80		2.47	50
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	0.34		-	5
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.24		-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	2.27		0.175	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	0.111	U	0.148	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	2.08		0.08	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	4.46		-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	6.17		-	30

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

N 23B 08	/W6D 3-090068 3/30/16				M\ 12B- 08/	N23D 090054 22/16				12 0	MW24D B-090029 8/15/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	1.5		0.5	1
Arsenic	1.9	J	3	3	Arsenic	2.3	J	3	3	Arsenic	3	U	3	3
Lithium	19.7	J+	500	730	Lithium	1,020		500	730	Lithium	2,120		500	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, ur	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	2,810		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	2,570		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	716		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	356		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.041	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.041	J	0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.24		0.2	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	1,270		50	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	476		1.1	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.014	J	0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	7.1		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	23.4		20	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise note	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	5.30		1.79	15
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	-1		2.24	50
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	1.07		-	5
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	0.23		-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	6.39		0.172	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	0.06	U	0.081	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	2.45		0.145	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	8.90		-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	7.27		-	30

Notes

Qualifiers

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

N 12E 08	1W25D 3-090021 3/10/16				M\ 20A- 08/	W31D 090051 18/16				1 20 0	MW32D A-090057 8/23/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	0.87		3	3	Arsenic	5.2		3	3	Arsenic	23.2		3	3
Lithium	1,210		500	730	Lithium	2,660		500	730	Lithium	5,310		2,500	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	wise no	oted)	
Manganese, Total (ug/L)	2,890		15	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	2,910		15	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	41,700		100	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	33,700		100	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	0.069	J	0.11	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	0.069	J	0.10	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	3.8		0.40	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	598		30	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	2	U	2	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	404		0.55	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	0.034	J	0.05	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	6.2		1	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	26.6		20	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se note	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta (1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

M 12B 08	IW34D 8-090031 8/15/16				MV 23B- 08/	W39D 090063 30/16				12 0	MW42D B-090014 8/09/16			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	14.2		0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	7.3		3	3	Arsenic	1.4	J	3	3	Arsenic	0.7	J	3	3
Lithium	3,410		500	730	Lithium	45.8	J+	500	730	Lithium	36	J	500	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)	-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)	-	Geochemical Parameters (mg/L, ur	less other	wise no	oted)	
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	1,620		15	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	1,580		15	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	3,830		100	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	1,640		100	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	0.046	J	0.11	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	0.01	U	0.01	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	0.046	J	0.10	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	-	-	-	Ammonia (as N)	0.12	J	0.20	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	339		10	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	2	U	2	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	23.4		0.11	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	0.05	U	0.05	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	2.1		1	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	20	U	20	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	d)		Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

Notes

Qualifiers

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

N 12E 08	1W43D 3-090015 3/09/16				N 12E 08	1W45D 3-090046 3/18/16				MW4 12 0	5D Duplica B-090076 8/18/16	te		
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	192		0.5	1	Benzene	171		0.5	1
Arsenic	71.6		3	3	Arsenic	2.2	J	3	3	Arsenic	1.9	J	3	3
Lithium	1,930		500	730	Lithium	2,230		500	730	Lithium	2,330		500	730
Geochemical Parameters (mg/L, unle	ess otherwis	se note	ed)	1	Geochemical Parameters (mg/L, unles	ss otherwis	e note	d)	1	Geochemical Parameters (mg/L, ur	less other	wise no	oted)	
Manganese, Total (ug/L)	1,250		15	-	Manganese, Total (ug/L)	12,300		75	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	1,150		15	-	Manganese, Filtered (ug/L)	13,600		75	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	4,550		100	-	Iron, Total (ug/L)	51,500		100	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	30.2	J	100	-	Iron, Filtered (ug/L)	61,000		100	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	0.64		0.11	-	Nitrate (as N)	0.094	J	0.11	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	0.01	U	0.01	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	0.64		0.10	-	Nitrate and Nitrite (as N)	0.094	J	0.1	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	0.13	J	0.20	-	Ammonia (as N)	6.4		0.80	-	Ammonia (as N)	NS	-	-	-
Sulfate	540		30	-	Sulfate	2,350		100	-	Sulfate	NS	-	-	-
Sulfide	2	U	2	-	Sulfide	2	U	2	-	Sulfide	NS	-	-	-
Methane (ug/L)	8.4		0.11	-	Methane (ug/L)	2,630		5.5	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	0.05	U	0.05	-	Phosphorus, Total	0.016	J	0.05	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	1.8		1	-	Total Organic Carbon (TOC)	34.2		1	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	7	J	20	-	Chemical Oxygen Demand (COD)	105		20	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)		Radiological Constituents (pCi/L, u	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

Notes

Qualifiers

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

- U Non-detect.
- UJ Estimated non-detect.
- J Estimated concentration.
- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.
- R Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

MW46D 12B-090023 08/11/16					M\ 12B- 08/	V47D 090025 11/16				 12 0				
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	219		5	1	Benzene	0.87		0.5	1	Benzene	0.5	U	0.5	1
Arsenic	0.98	J	3	3	Arsenic	214		7.5	3	Arsenic	13.6		3	3
Lithium	7,740		500	730	Lithium	14,600		500	730	Lithium	3,130		500	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	m3,130500730hemical Parameters (mg/L, unless otherwise noted)anese, Total (ug/L)NSanese, Filtered (ug/L)NSTotal (ug/L)NSFiltered (ug/L)NSFiltered (ug/L)NSFiltered (ug/L)NSe (as N)NSe (as N)NSe and Nitrite (as N)NSonia (as N)NSeNS			
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	1	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	1	-	-	Ammonia (as N)	NS	1	-	-
Sulfate	NS	-	-	-	Sulfate	NS	-	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	-	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	s otherwis	e note	ed)		Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled. - - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

MW51D 20A-090056 08/23/16					MV 20A-(09/2	V52D 090071 21/16				23 0	MW53D 23B-090059 08/24/16			
	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	1.2	J	3	3	Arsenic	2.2	J+	3	3	Arsenic	1.4	J	3	3
Lithium	52.6	J	500	730	Lithium	28.5	J+	500	730	Lithium	32.1	J	500	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		Geochemical Parameters (mg/L, un	less other	3D 0059 /16 MDC Cleanup Level sult Q MDC Cleanup Level 0.5 U 0.5 1 1.4 J 3 3 2.1 J 500 730 otherwise noted) 730 730 NS - - - NS - - - <t< th=""><th></th></t<>		
Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	Manganese, Total (ug/L)	NS	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-
Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-	Iron, Total (ug/L)	NS	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-
Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-	Nitrate (as N)	NS	-	-	-
Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-	Nitrite (as N)	NS	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	Nitrate and Nitrite (as N)	NS	•	-	-	Nitrate and Nitrite (as N)	NS	-	-	-
Ammonia (as N)	NS	-	-	-	Ammonia (as N)	NS	1	-	-	Ammonia (as N)	NS	-	-	-
Sulfate	NS	-	-	-	Sulfate	NS	1	-	-	Sulfate	NS	-	-	-
Sulfide	NS	-	-	-	Sulfide	NS	•	-	-	Sulfide	NS	-	-	-
Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-	Methane (ug/L)	NS	-	-	-
Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-	Phosphorus, Total	NS	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)		Radiological Constituents (pCi/L, u	MW53D 23B-090059 08/24/16 Analyte Result Q MDC Clean Leve Cs (ug/L) 0.5 U 0.5 1 e 0.5 U 0.5 1 i: 1.4 J 3 3 i: 1.4 J 500 730 emical Parameters (mg/L, unless otherwise noted) 730 730 mese, Total (ug/L) NS - - nese, Filtered (ug/L) NS - - nese, Filtered (ug/L) NS - - (as N) NS - - - o			
Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-	Adjusted Gross Alpha ^(1,2)	NS	-	-	-
Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-	Adjusted Gross Beta ^(1,2)	NS	-	-	-
Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-	Total Radium ⁽²⁾	NS	-	-	-
Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-	Total Thorium ⁽²⁾	NS	-	-	-
U-234	NS	-	-	-	U-234	NS	-	-	-	U-234	NS	-	-	-
U-235	NS	-	-	-	U-235	NS	-	-	-	U-235	NS	-	-	-
U-238	NS	-	-	-	U-238	NS	-	-	-	U-238	NS	-	-	-
Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-	Total Uranium ⁽²⁾	NS	-	-	-
Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-	Total Uranium (ug/L)	NS	-	-	-

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

R - Rejected result.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

MW54D 23B-090062 08/25/16										
	Result	Q	MDC	Cleanup Level						
GW COCs (ug/L)		-	-	-						
Benzene	0.5	U	0.5	1						
Arsenic	4.4		3	3						
Lithium	6.2	J+	500	730						
Geochemical Parameters (mg/L, unle	ess otherwis	se note	ed)							
Manganese, Total (ug/L)	NS	-	-	-						
Manganese, Filtered (ug/L)	NS	-	-	-						
Iron, Total (ug/L)	NS	-	-	-						
Iron, Filtered (ug/L)	NS	-	-	-						
Nitrate (as N)	NS	-	-	-						
Nitrite (as N)	NS	-	-	-						
Nitrate and Nitrite (as N)	NS	-	-	-						
Ammonia (as N)	NS	-	-	-						
Sulfate	NS	-	-	-						
Sulfide	NS	-	-	-						
Methane (ug/L)	NS	-	-	-						
Phosphorus, Total	NS	-	-	-						
Total Organic Carbon (TOC)	NS	-	-	-						
Chemical Oxygen Demand (COD)	NS	-	-	-						
Radiological Constituents (pCi/L, unl	ess otherwi	se note	ed)							
Adjusted Gross Alpha ^(1,2)	NS	-	-	-						
Adjusted Gross Beta ^(1,2)	NS	-	-	-						
Total Radium ⁽²⁾	NS	-	-	-						
Total Thorium ⁽²⁾	NS	-	-	-						
U-234	NS	-	-	-						
U-235	NS	-	-	-						
U-238	NS	-	-	-						
Total Uranium ⁽²⁾	NS	-	-	-						
Total Uranium (ug/L)	NS	-	-	-						

<u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4 and E-5.

(2) - Gross Alpha, Gross Beta and isotopic data for Radium (Ra-226, Ra-228), Thorium (Th-228, Th-230, Th-232) and

Uranium (U-234, U-235, U-238) are presented in Appendix E, Tables E-1, E-2, and E-3.

Qualifiers

U - Non-detect.

R - Rejected result.

- UJ Estimated non-detect.
- J Estimated concentration.
- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.

TABLE 3-3 SUMMARY OF SURFACE WATER SAMPLING RESULTS FUSRAP MAYWOOD SUPERFUND SITE

SW-003 23A-026057 09/07/16					SW 23A-0 09/0	7-004 026058 07/16				SW-0 23 0	SW-004 Duplicate 23A-026068 09/07/16 Analyte Result Q MDC			
Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level	Analyte	Result	Q	MDC	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)					GW COCs (ug/L)				
Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1	Benzene	0.5	U	0.5	1
Arsenic	2.9	J	3	3	Arsenic	7.6		3	3	Arsenic	7.7		3	3
Lithium	15.4	J+	500	730	Lithium	556		500	730	Lithium	558		500	730
Radiological Constituents (pCi/L, unless otherwise noted)				Radiological Constituents (pCi/L, unles	s otherwis	e note	d)		Radiological Constituents (pCi/L, unless otherwise noted)					
Adjusted Gross Alpha ⁽¹⁾	2.91		2.50	15	Adjusted Gross Alpha ⁽¹⁾	3.06		2.50	15	Adjusted Gross Alpha ⁽¹⁾	NS	-	-	-
Gross Beta ⁽²⁾	3.88		1.93	50	Gross Beta ⁽²⁾	23.34		2.19	50	Gross Beta ⁽²⁾	NS	-	-	-
Total Radium ⁽³⁾	0.83		-	5	Total Radium ⁽³⁾	1.973		-	5	Total Radium ⁽³⁾	NS	-	-	-
Total Thorium ⁽³⁾	0.18		-	-	Total Thorium ⁽³⁾	0.482		-	-	Total Thorium ⁽³⁾	NS	-	-	-
U-234	0.38		0.145	-	U-234	0.50		0.156	-	U-234	NS	-	-	-
U-235	-0.02	U	0.173	-	U-235	0.064	U	0.087	-	U-235	NS	-	-	-
U-238	0.21		0.08	-	U-238	0.351		0.086	-	U-238	NS	-	-	-
Total Uranium ⁽³⁾	0.56		-	-	Total Uranium ⁽³⁾	0.915		-	-	Total Uranium ⁽³⁾	NS	-	-	-
Total Uranium (ug/L)	0.62		-	30	Total Uranium (ug/L)	1.04		-	30	Total Uranium (ug/L)	NS	-	-	-

Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

Qualifiers

U - Non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

(1) - Adjusted Gross Alpha and Adjusted Gross Gross Beta calculations are provided in Appendix E, Tables E-4.

(2) - Potassium was not collected at SW-003 and SW-004 and gross beta was not adjusted for K-40 activity.

FIGURES

 $G: Maywood_Cabrera \ GIS \ GIS_Documents \ Project_Maps \ Cabrera_April2017_Demott \ Fig_1_2_FMSS_SP.mxd$

Appendix A NJDEP Permits, Well Records and Survey Forms (Form B) for Modified and New LTM Wells

APPENDIX A

NJDEP PERMITS FOR MODIFIED AND NEW LTM WELLS

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201604681

WELL PERMIT

Modification of 2600061466

Wodine	
The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regulat enumerated in the supporting documents which are agreed to by	this permit in accordance with your application, attachments tions. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit
Certifying Driller: NICHOLAS A FALLUCCA, JOURN	NEYMAN LICENSE # 0001302
Permit Issued to: SGS NORTH AMERICA INC.	
Company Address: PO BOX 423 WEST CREEK, NJ (08092
PROPERTY OWNER	
Name: NA UNITED STATES OF AMERICA	
Organization: United States of America	
Address: 1800 Pennsylvania Ave	······
City: Washington State: District o	f Columbia Zip Code: 20006
PROPOSED WELL LOCATION	
Facility Name: FURSRAP Maywood Project	
Address: 100 W. HUNTER AVE. / BRPZ-2	
County: Bergen Municipality: Rochelle Park Two	p Lot: 1 Block: 19.01
Easting (X): 610357 Northing (Y): 752112	Local ID: BRPZ-2
Coordinate System: NJ State Plane (NAD83) - USFEET	
SITE CHARACTERISTICS	
· · · · · · · · · · · · · · · · · · ·	
PROPOSED CONSTRUCTION	
WELL USE: PIEZOMETER	Other Use(s):
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:
Depth (ft.): 50	Case ID Number:
Pump Capacity (gpm): 0	Deviation Requested: N
Drilling Method:	
Attachments:	
SPECIFIC CONDITIONS/REQUIREMENTS	
·	
	-

Approval Date:April 22, 2016Expiration Date:April 22, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit -- Page 1 of 2

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Wells PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201604681

WELL PERMIT

Modification of 2600061466

DEVIATION INFORMATION	
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/REQUIREMENTS	
A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is	
obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey	,
Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is	
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]	
For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit.	
[N.J.A.C. 7:9D-1]	
If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of	
the Bureau of Water Systems and Well Permitting, [N.J.A.C. 7:9D-1]	
If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C	
7:9D-1]	
If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or	
public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and	
Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well	
redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a	ł
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment	
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new	
well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]	
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]	
In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit	
cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation	
notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Port	al
Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]	
In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a	
manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et	
seq. [N.J.A.C. 7:9D-1]	
The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New	
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]	
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection of	D
any future application. [N.J.A.C. 7:9D-1]	
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]	
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid	
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]	
This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]	

This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]
Well Permit Number E201604691

WELL PERMIT

Modification of 2600061467

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

Name: NA UNITED STATES OF AMERICA		
Organization: United States of America	· · · · · · · · · · · · · · · · · · ·	
Address: 1800 Pennsylvania Ave	· · · · · · · · · · · · · · · · · · ·	
City: Washington State: District of	f Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: 100 W. HUNTER AVE. / BRPZ-3 confirmed by clier	nt	
County: Bergen Municipality: Rochelle Park Twp	b Lot: 1 Block: 19.01	
Easting (X): 610316 Northing (Y): 752062 Local ID: BRPZ-3 Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System (NAD83) - USFEET Image: Coordinate System (NAD83) - USFEET Image: Coordinate System (NAD83) - USFEET		
SITE CHARACTERISTICS		
PROPOSED CONSTRUCTION		
WELL USE: PIEZOMETER	Other Use(s):	
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:	
Depth (ft.): _50	Case ID Number:	
Pump Capacity (gpm): _0	Deviation Requested: N	
Drilling Method:	·	
Attachments:		
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date: April 22, 2016 Expiration Date: April 22, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Modification of 2600061467

DEVIATION INFORMATI	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201604693

WELL PERMIT

Modification of 2600060716

The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regulat enumerated in the supporting documents which are agreed to by	this permit in accordance with your application, attachments ions. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit		
Certifying Driller: NICHOLAS A FALLUCCA, JOURN	IEYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.	·		
Company Address: PO BOX 423 WEST CREEK, NJ (08092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America			
Address: 1800 Pennsylvania Ave	· · · · · · · · · · · · · · · · · · ·		
City: Washington State: District of	f Columbia Zip Code: 20006		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / BRPZ-4 confirmed by client	: ,		
County: Bergen Municipality: Rochelle Park Twg	b Lot: 1 Block: 19.01		
Easting (X): 610362 Northing (Y): 752062 Local ID: BRPZ-4 Coordinate System: NJ State Plane (NAD83) - USFEET BRPZ-4			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: PIEZOMETER	Other Use(s):		
Diameter (in): 6	Regulatory Program		
Depth (θ_{1}) : 50	Cose ID Number		
Depth (tt.): <u>50</u> Case ID Number:			
Deilling Method			
Attachments			
SPECIFIC CONDITIONS/REOUIREMENTS			

Approval Date: <u>April 22, 2016</u> Expiration Date: <u>April 22, 2017</u> Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

Modification of 2600060716

Well Permit Number E201604693

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201604695

WELL PERMIT

Modification of 2600060717

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ (08092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America	<u></u> {		
Address: 1800 Pennsylvania Ave			
City: Washington State: District of	f Columbia Zip Code: 20006		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project			
County: Bergen Municipality: Rochelle Park Twp	D Lot: 1 Block: 19.01		
Easting (X): 610321 Northing (Y): 752221 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID: BRPZ-5		
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: PIEZOMETER	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): 50	Case ID Number:		
Pump Capacity (gpm): _0	Deviation Requested: N		
Drilling Method:			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: <u>April 22, 2016</u> Expiration Date: <u>April 22, 2017</u> Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

Modification of 2600060717

DEVIATION INFORMATION	V	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
GENERAL CONDITIONS/RE	QUIREMENTS	
A copy of this permit shall be key	pt at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitted	by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is	
obtained from the Bureau of Wat	er Systems and Well Permitting the well record shall be submitted electronically through the New Jersey	
Department of Environmental Pro	otection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is	
completed.[N.J.A.C. 7:9D-1]		
All well drilling/pump installation	n activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]	
For this permit to remain valid, the [N.J.A.C. 7:9D-1]	he well approved in this permit shall be constructed within one year of the effective date of the permit.	
If the pump capacity applied for it the Bureau of Water Systems and	is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of Well Permitting, [N.J.A.C. 7:9D-1]	
If the use of the well is to be char	nged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.	
7:9D-1]		
If you or a future property owner	intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or	
public non-community water sup	ply wells), the well must be constructed as a Category 1 well per the Well Construction and	
Abandonment Regulations at N.J	A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well	
redesignated as a community wat	er supply well, the well must be constructed by a Master well driller, which would include having a	
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment		
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new		
well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]		
In accepting this permit the Prope	erty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]	
In the event that this well is not c	onstructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit	
cancellation. Unless prior written	approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation	
notification shall be submitted ele	ectronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal	
Submit Well Permit Cancellation	: by the expiration date of this permit.[N.J.A.C. 7:9D-1]	
In the event this well is abandone	d, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a	
manner satisfactory to the New Je	ersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. /:9D-1 et	
seq. [N.J.A.C. 7:9D-1]		
The granting of this permit shall i	not be construed in any way to affect the fifthe or ownership of property, and shall not make the New	
Jersey Department of Environment	ntal Protection or the State a party in any suit of question of ownership of property. [N.J.A.C. 7.9D-1]	
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any ruture application. [NJ.A.C. /:9D-1]		
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]		
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. IN I & C. 7-9D-11		
This permit is NONTRANSFERABLE [N.LA.C. 7:9D]		
This well shall not be used for the supply of potable / drinking water. IN LA.C. 7:9D-11		

Well Permit Number E201604708

WELL PERMIT

Modification of 2600061469

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302 Permit Issued to: SGS NORTH AMERICA INC. Company Address: PO BOX 423 WEST CREEK, NJ 08092 PROPERTY OWNER NA UNITED STATES OF AMERICA Name: Organization: United States of America Address: 1800 Pennsylvania Ave City: Washington State: District of Columbia Zip Code: 20006 **PROPOSED WELL LOCATION** Facility Name: FUSRAP Maywood Project

> Other Use(s): Regulatory Program

Case ID Number:

Address: 100 W. HUNTER AVE. / BRPZ-9

County: Bergen Municipality: Rochelle Park Twp

 Easting (X):
 610296
 Northing (Y):
 752290

 Coordinate System: NJ State Plane (NAD83) - USFEET

Local ID: BRPZ-9

Lot: 1 Block: 19.01

Requiring Wells/Borings: _____

Deviation Requested: N

SITE CHARACTERISTICS

PROPOSED CONSTRUCTION

WELL USE: PIEZOMETER

Diameter (in.): <u>6</u> Depth (ft.): <u>50</u> Pump Capacity (gpm): <u>0</u>

Drilling Method:

Attachments:

SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date:April 22, 2016Expiration Date:April 22, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. Tauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

Modification of 2600061469

DEVIATION INFORMATI	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201604771

WELL PERMIT

Modification of 2600014043

Mount	auon or 2000014045
The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regular enumerated in the supporting documents which are agreed to by	this permit in accordance with your application, attachments tions. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit
Certifying Driller:	
Permit Issued to: SGS NORTH AMERICA INC.	
Company Address: PO BOX 423 WEST CREEK, NJ	08092
PROPERTY OWNER	
Name: MOHAMMAD BAJWA	
Organization: Mohammad Bajwa	
Address: 90 Parkway	
City: Rochelle Park Twp State: New Jers	ey Zip Code: <u>07662</u>
PROPOSED WELL LOCATION	
Facility Name: FUSRAP Maywood Project	
Address: _90 Parkway / B38W14S Grade change. New prot.cas	ing/pad
County: Bergen Municipality: Rochelle Park Tw	p Lot: 39.02 Block: 17.01
Easting (X): 609387 Northing (Y): 752376	Local ID: B38W14S
Coordinate System: NJ State Plane (NAD83) - USFEET	
SITE CHARACTERISTICS	
PROPOSED CONSTRUCTION	
WELL USE: MONITORING	Other Use(s):
Diamotor (in): 2	Regulatory Program
Depth (\mathfrak{f}) : 20	Case ID Number
Pump Capacity (gpm): 0	Deviation Requested: N
Drilling Method	
Attachments:	
	· · · · · · · · · · · · · · · · · · ·
SPECIFIC CONDITIONS/REQUIREMENTS	
n	
·	
· · · · ·	

Approval Date:April 25, 2016Expiration Date:April 25, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski Terry Pilawski, Chief

Bureau of Water Allocation and Well Permitting

Well Permit Number

E201604771

WELL PERMIT

Modification of 2600014043

DEVIATION INFORMATIO	N	
Purpose:		
Unusual Conditions:	· · · · · · · · · · · · · · · · · · ·	
Reason for Deviation:		
Proposed Well Construction		
GENERAL CONDITIONS/R	EQUIREMENTS	
A copy of this permit shall be keep	ept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitted	d by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is	
obtained from the Bureau of Wa	ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey	
Department of Environmental P	rejection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is	
completed IN I A C 7.9D-11		
All well drilling/numn installati	on activities shall comply with NIAC 7.9D-1 at see [NIAC 7.9D-1]	
For this parmit to remain valid	the well enpressed in this normit shall be constructed within one year of the effective date of the permit	
[N.J.A.C. 7:9D-1]	uie wen approved in tins permit shan de constructed within one year of the encetive date of the permit.	
If the pump capacity applied for	is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of	
the Bureau of Water Systems an	d Well Permitting. [N.J.A.C. 7:9D-1]	
If the use of the well is to be cha	anged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.]	
7:9D-1]		
If you or a future property owne	r intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or	
public non-community water supply wells) the well must be constructed as a Category 1 well per the Well Construction and		
Abandonment Regulations at NIA C 7:0D-11 et seq. In addition if the current or future property owner intends to have this well		
redecignated as a community water supply wall the well must be constructed by a Master well driller, which would include having a		
Master well deiller on site at all times during construction of the well as specified in the Well Construction and Abandonment		
President work of the more at an unles during construction of the work, as specified in the work Construction and Abandonine in		
well would have to be installed IN LAC 7.9D-17((a))1il		
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions IN LA C 7.9D-11		
In the event that this well is not	constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit	
cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Dermitting the Cancellation		
notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal		
Submit Well Permit Cancellation - by the expiration date of this permit IN I A C 7.9D-11		
In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a		
m are event this work is abandoned, the Owner of work of the share assume full responsibility for having the work decomminissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N I & C 7.4D-1 et		
seq. [N.J.A.C. 7:9D-1]		
The granting of this permit shall	not be construed in any way to affect the title or ownership of property, and shall not make the New	
Jersey Department of Environme	ental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]	
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any future application. [N.J.A.C	. 7:9D-I]	
This name it common as sights	24	

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1] This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201604770

WELL PERMIT

Modification of 2600014042

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: <u>NICHOLAS A FAL</u>	Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302		
Permit Issued to: <u>SGS NORTH AME</u>	RICA INC.		
Company Address: PO BOX 423 WES	Company Address: PO BOX 423 WEST CREEK, NJ 08092		
PROPERTY OWNER			
Name: MOHAMMAD BAJWA			
Organization: Mohammad Bajwa			
Address: 90 Park Way	······································		
City: Rochelle Park Twp	State: New Jersey Zip Code: 07607		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: 90 Parkway / B38W14D Grade change. New prot.casing/pad County: Bergen Municipality: Rochelle Park Twp Lot: 39.02 Block: 17.01			
Easting (X): 609387 Northing (Y): 752376 Local ID: B38W14D Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): <u>60</u>	Case ID Number:		
mp Capacity (gpm): 0 Deviation Requested: N			
Drilling Method:			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date:April 25, 2016Expiration Date:April 25, 2017

Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

Modification of 2600014042

Well Permit Number
E201604770

DEVIATION INFORMATION		
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201608290

WELL PERMIT

Modification of 2600058962

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit		
Certifying Driller: <u>NICHOLAS A FALLUCCA, JOURN</u>	EYMAN LICENSE # 0001302	
Permit Issued to: SGS NORTH AMERICA INC.		
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092	
PROPERTY OWNER		
Name: NA UNITED STATES OF AMERICA		
Organization: United States of America		
Address: 1800 Pennsylvania Avenue		
City: Washington State: District of	f Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: Madison Ave /MW-6D		
County: Bergen Municipality: Rochelle Park Twp	Lot: ROW Block: ROW	
Easting (X): 608753 Northing (Y): 752067 Local ID: MW-6D		
Coordinate System: NJ State Plane (NAD83) - USFEET		
SITE CHARACTERISTICS		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
	Regulatory Program	
	Requiring Wells/Borings:	
Depth (ft.): <u>54</u>	Case ID Number:	
Pump Capacity (gpm): 0	Deviation Requested: Y	
Drilling Method: Other		
Attachments: 611043_2016_0716 Resubmitted Deviation Request.pdf		
SPECIFIC CONDITIONS/DECIUDEMENTS		
Well must be built in accordance with submitted deviation [N.J.A.C. 7.9D-2.8]		

Approval Date:July 18, 2016Expiration Date:July 18, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201608290

WELL PERMIT

Modification of 2600058962

DEVIATION INFORMATION		
Purpose:	Site investigation & remediation of contaminants with monitoring wells	
Unusual Conditions:	Located in street, access issues and shallow bedrock	
Reason for Deviation:	Fines from the fractured rock is infiltrating the open hole	
Proposed Well Construction	Sleeve the open hole with a 3" pvc casing, install a 1" pre-pack screen and 1" riser to grade sand, seal, grout remaining annulus while removing 3" sleeve	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201604710

WELL PERMIT

Modification of 2600065218

The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regulat enumerated in the supporting documents which are agreed to by	this permit in accordance with your application, attachments ions. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit		
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.	· · · · · · · · · · · · · · · · · · ·		
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA	-		
Organization: United States of America			
Address: 1800 Pennsylvania Ave			
City: Washington State: District of	f Columbia Zip Code: 20006		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: GROVE AVENUE / MW34D	· · ·		
County: Bergen Municipality: Maywood Boro	Lot: 45 Block: 124		
Easting (X): 610804 Northing (Y): 752258 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:MW34D		
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): _6	Regulatory Program Requiring Wells/Borings:		
epth (ft.): 50 Case ID Number:			
amp Capacity (gpm): 0 Deviation Requested: N			
Drilling Method:			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date:April 22, 2016Expiration Date:April 22, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

Modification of 2600065218

DEVIATION INFORMATI	ON	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605161

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302 Permit Issued to: SGS NORTH AMERICA INC. Company Address: PO BOX 423 WEST CREEK, NJ 08092 **PROPERTY OWNER** Name: NA UNITED STATES OF AMERICA Organization: United States of America Address: 1800 Pennsylvania Ave City: Washington State: District of Columbia Zip Code: 20006 PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: 100 W HUNTER AVE / B38W18DR confirmed by client / 5845 Block: 124 County: Bergen Municipality: Maywood Boro Lot: 46.01 610934 Easting (X): Northing (Y): 752226 Local ID: B38W18DR Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS **PROPOSED CONSTRUCTION** WELL USE: MONITORING Other Use(s): Regulatory Program Diameter (in.): 2 Requiring Wells/Borings: _____ Depth (ft.): 55 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Air Rotary/HSA Attachments: SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date:May 3, 2016Expiration Date:May 3, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605161

WELL PERMIT

New Well

DEVIATION INFORMATION
Purpose:
Unusual Conditions:
Reason for Deviation:
Proposed Well Construction
GENERAL CONDITIONS/REQUIREMENTS
A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]
All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]
If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of
the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]
If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and
Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new
well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]
In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit
cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]
In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et
seq. [N.J.A.C. 7:9D-1]
The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
any future application. [N.J.A.C. 7:9D-1]
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Well Permit Number E201605089

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit		
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.		
Company Address: PO BOX 423 WEST CREEK, NJ	08092	
PROPERTY OWNER		
Name: NA UNITED STATES OF AMERICA		
Organization: United States of America		
Address: 1800 Pennsylvania Ave	·	
City: Washington State: District	of Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: 100 W HUNTER AVE / B38W25SR confirmed by	client / 5845	
County: Bergen Municipality: Maywood Boro	Lot: 45 Block: 124	
Easting (X): 610497 Northing (Y): 752237	Local ID: B38W25SR	
Coordinate System: NJ State Plane (NAD83) - USFEET		
SITE CHARACTERISTICS		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:	
Depth (ft.): 22	Case ID Number:	
Pump Capacity (gpm): _0	Deviation Requested: N	
Drilling Method: Hollow Stem Augers		
Attachments:		
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2

Jerry D. P. Janski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605089

WELL PERMIT New Well

DEVIATION INFORMATION	DN	
Purpose:		
Unusual Conditions:		_
Reason for Deviation:		-
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605090

	<u>W</u>	CLL PERMIT New Well		
The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit				
Certifying Driller:	NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to:	SGS NORTH AMERICA INC.			<u></u>
Company Address:	PO BOX 423 WEST CREEK, NJ	08092		
PROPERTY OWNER				
Name: <u>NA UNITED</u>	STATES OF AMERICA	· · · · ·		
Organization: United Sta	ates of America			<u></u>
Address: 1800 Pennsylv	Ania Ave	f Calumbia	7:- C-d-: 20006	· · ·
City: washington	State:State:	or Columbia		
PROPOSED WELL LO	CATION			
Facility Name: FUSRAF	² Maywood Project	11		
Address: 100 W HUNT	ERAVE / B38W25BR confirmed by c	lient / 5845		
County: Bergen	Municipality: Maywood Boro	Lot: <u>45</u>	Block:	124
Easting (X): 610496	Northing (Y): 752239	Local ID:	B38W25BR	
Coordinate System:	NJ State Plane (NAD83) - USFEET			
SITE CHARACTERIST	ICS			
			···· • • •	
PROPOSED CONSTRU		·		
WELL USE: MONITO	RING	Other Use(s):		
Diameter (in.): 2		Requiring Wells/Boring	is:	
Depth (ft.): _55		Case ID Number:		
Pump Capacity (gpm): 0	Pump Capacity (gpm): 0 Deviation Requested: N			
Drilling Method: Air Ro	tary/HSA			
Attachments:	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·				
SPECIFIC CONDITION	IS/REQUIREMENTS			
		·		
	· · · ·			

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2 Jerry D. P. lawski Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605090

WELL PERMIT New Well

DEVIATION INFORMATION	
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/REQU	IREMENTS
A copy of this permit shall be kept at	the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted by t	the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of Water S	systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental Protec	tion's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installation ac	tivities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid, the w [N.J.A.C. 7:9D-1]	ell approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for is least	ss than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of
the Bureau of Water Systems and We	ell Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be changed 7:9D-1]	I a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property owner inte	end to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water supply	wells), the well must be constructed as a Category 1 well per the Well Construction and
Abandonment Regulations at N.J.A.C	C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community water s	upply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at all times	s during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the New Jer	sey Department of Environmental Protection will not allow the well to be redesignated, and a new
well would have to be installed. [N.J.	A.C. 7:9D-1.7((a))1i]
In accepting this permit the Property	Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]
In the event that this well is not const	tructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit
cancellation. Unless prior written app	proval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted electro	onically through the New Jersey Department of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellation : by	the expiration date of this permit.[N.J.A.C. 7:9D-1]
In the event this well is abandoned, the	ne Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New Jersey	y Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et
seq. [N.J.A.C. 7:9D-1]	
The granting of this permit shall not b	be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environmental	Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
The issuance of this permit shall not l	be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
any future application. [N.J.A.C. 7:91	D-1]
This permit conveys no rights, either	expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the obtain	ing of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertaken until	I such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFERABL	Æ [N.J.A.C. 7:9D]

Well Permit Number E201605165

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER	
Name: NA UNITED STATES OF AMERICA	·
Organization: United States of America	
Address: 1800 Pennsylvania Ave	
City: Washington State: District o	f Columbia Zip Code: 20006
PROPOSED WELL LOCATION	
Facility Name: FUSRAP Maywood Project	
Address: 100 W HUNTER AVE / MISS01AR confirmed by cl	ient / 5845
County: Bergen Municipality: Rochelle Park Tw	p Lot: 1 Block: 20.01
Easting (X): 610253 Northing (Y): 752688 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:MISS01AR
SITE CHARACTERISTICS	
· · · · · · · · · · · · · · · · · · ·	
PROPOSED CONSTRUCTION	
WELL USE: MONITORING	Other Use(s):
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:
Depth (ft.): 20	Case ID Number:
Pump Capacity (gpm): _0	Deviation Requested: N
Drilling Method: Hollow Stem Augers	
Attachments:	
SPECIFIC CONDITIONS/REQUIREMENTS	
	· · · · · · · · · · · · · · · · · · ·

Approval Date: May 3, 2016 Expiration Date: May 3, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605165

WELL PERMIT

New Well

DEVIATION INFORMATIO	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
CENERAL CONDUCTIONO	
A conv of this permit shall be	REQUIREMENTS
A well record must be submitt obtained from the Bureau of W Department of Environmental completed.[N.J.A.C. 7:9D-1]	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is /ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
All well drilling/pump installa	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for the Bureau of Water Systems a	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of and Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be cl 7:9D-1]	hanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
public non-community water s Abandonment Regulations at N redesignated as a community w Master well driller on-site at al Regulations. Otherwise, the N well would have to be installed In accepting this permit the Pro- In the event that this well is no cancellation. Unless prior writt notification shall be submitted Submit Well Permit Cancellati In the event this well is abando manner satisfactory to the New seq. [N.J.A.C. 7:9D-1] The granting of this permit sha Jersey Department of Environr The issuance of this permit sha any future application. [N.J.A.O This permit does not waive the and no work shall be undertake	In the distribution of the set
This permit is NONTRANSFE This well shall not be used for	RABLE [N.J.A.C. 7:9D] the supply of potable / drinking water. [N.J.A.C. 7:9D-1]
· · · ·	

Well Permit Number E201605156

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

Name: NA UNITED STATES OF AMERICA		· · · · · · · · · · · · · · · · · · ·	
Organization: United States of America			:
Address: _ 1800 Pennsylvania Ave			
City: Washington State:	District of Columbia	Zip Code: 20006	
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project	, ,	· · · · · · · · · · · · · · · · · · ·	
Address: 100 W HUNTER AVE / MISS01BR confirm	ned by client / 5845		
County: Bergen Municipality: Rochelle	Park Twp Lot: 1	Block: 20.01	
Easting (X): 610243 Northing (Y): 75 Coordinate System: NJ State Plane (NAD83) - US	52686 Local ID: SFEET	MISS01BR	
SITE CHARACTERISTICS			
		· · · · · · · · · · · · · · · · · · ·	
PROPOSED CONSTRUCTION		· · · · · · · · · · · · · · · · · · ·	·
WELL USE: MONITORING	Other Use(s):		
	Regulatory Program		

SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2

Jerry D. P. Tanski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605156

WELL PERMIT

New Well

DEVIATION INFORMATIO	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/H	REQUIREMENTS
A copy of this permit shall be l	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of W	ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installat	ion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid, [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of
the Bureau of Water Systems a	nd Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be ch 7:9D-1]	langed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property own	er intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water su	upply wells), the well must be constructed as a Category 1 well per the Well Construction and
Abandonment Regulations at N	J.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community w	ater supply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at al	l times during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the New Well would have to be installed	ew Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new
In accenting this permit the Pro	. [N.J.A.C. 7.9D-1.7((a))11]
In the event that this well is not	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the nermit
cancellation Unless prior writt	en approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted.	electronically through the New Jersey Denartment of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellation	on by the expiration date of this permit IN LAC 7.9D-11
In the event this well is abando	ned the Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New	Lersey Department of Environmental Protection in accordance with the provisions of N.I.A.C. 7:9D-1 et
seq. [N.J.A.C. 7:9D-1]	
The granting of this permit shall	Il not be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environn	nental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
The issuance of this permit sha	Il not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
any future application. [N.J.A.C	C. 7:9D-1]
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the	obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertake	n until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]
This well shall not be used for t	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Well Permit Number E201605096

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

Name: NA UNITED STATES OF AMERICA	
Organization: United States of America	
Address: 1800 Pennsylvania Ave	
City: Washington State: District	of Columbia Zip Code: 20006
PROPOSED WELL LOCATION	
Facility Name: FUSRAP Maywood Project	
Address: 100 W HUNTER AVE / MISS02AR confirmed by	client / 5845
County: Bergen Municipality: Maywood Boro	Lot: 46 Block: 124
Easting (X): 610857 Northing (Y): 752512 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID: MISS02AR
SITE CHARACTERISTICS	
PROPOSED CONSTRUCTION	
WELL USE: MONITORING	Other Use(s):
Diameter (in.): _2	Regulatory Program Requiring Wells/Borings:
Depth (ft.): 22	Case ID Number:
Pump Capacity (gpm): _0	Deviation Requested: N
Drilling Method: Hollow Stem Augers	· · · · · · · · · · · · · · · · · · ·
Attachments:	· · · · · · · · · · · · · · · · · · ·
414	

SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605096

WELL PERMIT New Well

DEVIATION INFORMATI	ON	
Purpose:		
Unusual Conditions:	•	
Reason for Deviation:	· · · · · · · · · · · · · · · · · · ·	
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605097

WELL PERMIT

	New Well		
The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regula enumerated in the supporting documents which are agreed to by	s this permit in accordance with your application, attachments tions. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit		
Certifying Driller:NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.	۲ ــــــــــــــــــــــــــــــــــــ		
Company Address: PO BOX 423 WEST CREEK, NJ	08092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America			
Address: 1800 Pennsylvania Ave			
City: Washington State: District of	of Columbia Zip Code: 20006		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / MISS02BR confirmed by c	lient / 5845		
County: Bergen Municipality: Maywood Boro	Lot: 46 Block: 124		
Easting (X): 610860 Northing (Y): 752493 Local ID: MISS02BR Coordinate System: NJ State Plane (NAD83) - USFEET MISS02BR			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): 22	Case ID Number:		
p Capacity (gpm): 0 Deviation Requested: N			
Drilling Method: Hollow Stem Augers	· · · · · · · · · · · · · · · · · · ·		
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: May 2, 2016 Expiration Date: May 2, 2017 Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605097

WELL PERMIT New Well

	New Well	
DEVIATION INFORMATIO	ON	
Purpose:		<u>.</u>
Unusual Conditions:		
Reason for Deviation:		,
Proposed Well Construction		
GENERAL CONDITIONS/	REQUIREMENTS	
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitte	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior writte	n approval is
obtained from the Bureau of W	ater Systems and Well Permitting the well record shall be submitted electronically through th	le New Jersey
Department of Environmental completed.[N.J.A.C. 7:9D-1]	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the	well is
All well drilling/pump installat	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]	
For this permit to remain valid	, the well approved in this permit shall be constructed within one year of the effective date of	the permit.
[N.J.A.C. 7:9D-1]		1£
the Bureau of Water Systems a	and Well Permitting. IN.I.A.C. 7:9D-11	approval of
If the use of the well is to be ch	hanged a well permit for the proposed use of the well shall be submitted for review and appro-	val. [N.J.A.C.
7:9D-1]		L
If you or a future property own	er intend to redesignate this well as a Category 1 well (domestic, non-public, community wat	er supply or
public non-community water se	upply wells), the well must be constructed as a Category 1 well per the Well Construction and	1
Abandonment Regulations at N	NJ.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have the	nis well
redesignated as a community w	vater supply well, the well must be constructed by a Master well driller, which would include	having a
Master well driller on-site at al	I times during construction of the well, as specified in the Well Construction and Abandonme	nt
Regulations. Otherwise, the N	ew Jersey Department of Environmental Protection will not allow the well to be redesignated.	, and a new
well would have to be installed	1. [N.J.A.C. 7:9D-1.7((a))11]	
In accepting this permit the Pro	pperty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D	<u></u>
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of	the permit
cancellation. Unless prior writt	en approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellat	ion
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory	Services Portal
Submit Well Permit Cancellati	on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]	·
In the event this well is abando	ned, the Owner or Well driller shall assume full responsibility for having the well decommiss	ioned in a
seq $N I A C 7.9D-11$	Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.	J. 7.9D-1 et
The granting of this permit sha	Il not be construed in any way to affect the title or ownership of property, and shall not make	the New
Jersey Department of Environm	nental Protection or the State a party in any suit or question of ownership of property. IN J.A.	C. 7:9D-11
The issuance of this permit sha	Il not be deemed to affect in any way action by the New Jersey Department of Environmental	Protection on
any future application. [N.J.A.(C. 7:9D-1]	
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]	
This permit does not waive the	obtaining of Federal or other State or local Government consent when necessary. This permit	is not valid
and no work shall be undertake	en until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:	.9D-1]
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]	
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]	

Well Permit Number E201610593

WELL PERMIT

· · · · · ·	New Well		
The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ 0	08092		
PROPERTY OWNER			
Name: NA STEPAN CHEMICAL COMPANY			
Organization: Stepan Chemical Company			
Address: 22 West Frontage Rd			
City: Northfield State: Illinois	Zip Code: 60093		
PROPOSED WELL LOCATION			
Facility Name: _FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / MISS04AR confirmed by cli	ient		
County: Bergen Municipality: Maywood Boro	Lot: 31.01 Block: 124		
Easting (X): 610499 Northing (Y): 751834 Coordinate System: NI State Plane (NAD83) - USEEET	Local ID:MISS04AR		
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): 20	20 Case ID Number:		
Pump Capacity (gpm): _0	Deviation Requested: N		
Drilling Method: Hollow Stem Augers			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: August 31, 2016 Expiration Date: August 31, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201610593

WELL PERMIT New Well

DEVIATION INFORMATION		
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction	-	
GENERAL CONDITIONS/REQUIREMENTS		
A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]		
A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval i	is	
obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jerse	ey	
Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is		
completed.[N.J.A.C. 7:9D-1]		
All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]		
For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]		
If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. IN LAC 7:9D-11		
If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval IN I.A.		
7:9D-1]	~.	
If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or		
public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and		
Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well		
redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a		
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment		
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new		
well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]		
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]		
In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit		
cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation		
notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Por	rtal	
Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]		
In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a		
manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et		
seq. [N.J.A.C. 7:9D-1]		
I he granting of this permit shall not be construed in any way to affect the fifle or ownership of property, and shall not make the New		
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]		
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection (on	
This normit converse no rights either evenessed or implied to direct with DULA C 7.0D 12		
This permit does not universely the obtaining of Foderal on other State on Local Grandward and state and an attemption of the obtaining of Foderal on other State on Local Grandward and state and an attemption of Foderal on other State on Local Grandward and state of Foderal on the state of Fod		
and no work shall be undertaken until such time as all other required annexuals and normatic have been alterined DLLAC 7.0D 11		
This normit is NONTRANSFERABLE IN LAC 7:001		
This permit is incritication (INDIA). (INDIA).		

Well Permit Number E201608024

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: NICHOLAS A FALLUCCA, JOUR	NEYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ	08092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA	- -		
Organization: United States of America	· · · · · · · · · · · · · · · · · · ·		
Address: 1800 Pennsylvania Ave	· · · · · · · · · · · · · · · · · · ·		
City: Washington State: District of	of Columbia Zip Code: 20006		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: Rear Rochelle Ave / MISS07AR confirmed by client	t / 5845		
County: Bergen Municipality: Rochelle Park Tw	Up Lot: 1 Block: 19.01		
Easting (X): 610203 Northing (Y): 752361 Local ID: MISS07AR Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): 20	Case ID Number:		
Pump Capacity (gpm): _0	Deviation Requested: N		
Drilling Method: Hollow Stem Augers			
Drilling Method: Hollow Stem Augers Attachments:			
Drilling Method: Hollow Stem Augers Attachments:			
Drilling Method: Hollow Stem Augers Attachments: SPECIFIC CONDITIONS/REQUIREMENTS			
Drilling Method: Hollow Stem Augers Attachments: SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date:July 7, 2016Expiration Date:July 7, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2

Jerry D. P. lauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201608024

WELL PERMIT New Well

DEVIATION INFORMATION		
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
GENERAL CONDITIONS/REQUIREMENTS		
A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]		
A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is		
obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey		
Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is		
completed.[N.J.A.C. 7:9D-1]		
All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]		
For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit.		
[N.J.A.C. 7:9D-1]		
If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of		
the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]		
If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.		
7:9D-1]		
If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or		
public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and		
Abandonment Regulations at N I A C 7:0D-1 1 et seq. In addition, if the current or future property owner intends to have this well		
redesignated as a community water supply well the well must be constructed by a Master well driller, which would include having a		
Master well driller on-site at all times during construction of the well as specified in the Well Construction and Abandonment		
Regulations. Otherwise the New Jersey Department of Environmental Protection will not allow the well to be redesignated and a new		
well would have to be installed [N I A (7.9D-1.7(a))]		
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N I A C 7:9D-1]		
In the event that this well is not constructed the well driller shall notify the Burgau of Water Systems and Well Dermitting of the permit		
cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Dermitting the Cancellation		
notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal		
Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]		
In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a		
manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et		
sea. [N.J.A.C. 7:9D-1]		
The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New		
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]		
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any future application. [N.J.A.C. 7:9D-1]		
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]		
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid		
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]		
This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]		
This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]		

Well Permit Number E201605108

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

I KOI EKI I OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America			
Address: 1800 Pennsylvania Ave			
City: <u>Washington</u> State: District of	f Columbia Zip Code: 20006		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / OVPZ-17R confirmed by cl	ient / 5845		
County: Bergen Municipality: Rochelle Park Tw	p Lot: 1 Block: 19.01		
Easting (X): 610330 Northing (Y): 752128	Local ID: OVPZ-17R		
Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
	Regulatory Program		
Diameter (in.): 2	Requiring Wells/Borings:		
Depth (ft.): 20	Case ID Number:		
Pump Capacity (gpm):	Deviation Requested: N		
Drilling Method: Hollow Stem Augers	·		
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Jerry D. P. lauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner Well Permit -- Page 1 of 2

Well Permit Number E201605108

WELL PERMIT New Well

DEVIATION INFORMATION

Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]
Well Permit Number E201605093

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER				
Name: NA_UNITED STATES OF AMERICA	Α		-	
Organization: United States of America			- 1- m.	1
Address: 1800 Pennsylvania Ave				
City: Washington Sta	te: District of Columbia	Zip Code:	20006	
PROPOSED WELL LOCATION				
Facility Name: FUSRAP Maywood Project				
Address: 100 W HUNTER AVE / MW-3SR con	ifirmed by client / 5845			
County: Bergen Municipality: May	wood Boro Lot: 46		Block: 124	,
Easting (X): 610585 Northing (Y): Coordinate System: NJ State Plane (NAD83	752623 Local ID	: <u>MW-3SR</u>		
SITE CHARACTERISTICS			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· ·			
PROPOSED CONSTRUCTION	· · · · · ·			
WELL USE: MONITORING	Other Use(s):			
Diameter (in.): 2	Regulatory Program Requiring Wells/Bori	ings:		
Depth (ft.): 22	Case ID Number:		· ·	
Pump Capacity (gpm): 0	Deviation Requested:	N		
Drilling Method: Hollow Stem Augers				
Attachments:				
SPECIFIC CONDITIONS/REQUIREMENTS				

Approval Date: May 2, 2016 Expiration Date: May 2, 2017 Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605093

WELL PERMIT

New Well

DEVIATION INFORMATION Purpose: Unusual Conditions: Reason for Deviation: Proposed Well Construction **GENERAL CONDITIONS/REOUIREMENTS** A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1] A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1] All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1] For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1] If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1] If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-11 If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i] In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1] In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seg. [N.J.A.C. 7:9D-1] The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1] This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1] This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D] This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Well Permit Number E201605094

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

Name: NA UNITED STATES OF AMER	UCA	
Organization: United States of America		
Address: 1800 Pennsylvania Ave		
City: Washington	State: District of Columbia	Zip Code: 20006
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project	-	
Address: 100 W HUNTER AVE / MW-3DR	confirmed by client / 5845	
County: Bergen Municipality:	Maywood Boro Lot: 46	Block: 124
······································		

Other Use(s): Regulatory Program

Easting (X): 610597 Northing (Y): 752619 Coordinate System: NJ State Plane (NAD83) - USFEET

Local ID: MW-3DR

Requiring Wells/Borings: ______ Case ID Number:

Deviation Requested: N

SITE CHARACTERISTICS

PROPOSED CONSTRUCTION

WELL USE: MONITORING

Diameter (in.): 2 Depth (ft.): 22

Pump Capacity (gpm): 0

Drilling Method: Hollow Stem Augers

Attachments:

SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605094

WELL PERMIT

New Well

DEVIATION INFORMATION Purpose: Unusual Conditions: Reason for Deviation: Proposed Well Construction **GENERAL CONDITIONS/REQUIREMENTS** A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1] A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1] All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1] For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1] If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1] If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-11 If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i] In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605111

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit		
Certifying Driller: <u>NICHOLAS A FALLUCCA, JOURN</u>	NEYMAN LICENSE # 0001302	
Permit Issued to: SGS NORTH AMERICA INC.	· · ·	
Company Address: PO BOX 423 WEST CREEK, NJ	08092	
PROPERTY OWNER		
Name: NA UNITED STATES OF AMERICA	· · · · · · · · · · · · · · · · · · ·	
Organization: United States of America	· · · · · · · · · · · · · · · · · · ·	
Address: 1800 Pennsylvania Ave		
City: Washington State: District o	f Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: _100 W HUNTER AVE / MW-43SR confirmed by cli	ent / 5845	
County: Bergen Municipality: Rochelle Park Tw	p Lot: 1 Block: 19.01	
Easting (X): 610249 Northing (Y): 752507 Local ID: MW-43SR Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET		
SITE CHARACTERISTICS		
· · · · · · · · · · · · · · · · · · ·		
PROPOSED CONSTRUCTION		
	-	
WELL USE: MONITORING	Other Use(s):	
WELL USE: MONITORING Diameter (in.): 2	Other Use(s): Regulatory Program Requiring Wells/Borings:	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number:	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0	Other Use(s):	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Deviation Requested:	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers Attachments:	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Deviation Requested:N	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers Attachments:	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Deviation Requested:N	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers Attachments: SPECIFIC CONDITIONS/REQUIREMENTS	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Deviation Requested:	
WELL USE: MONITORING Diameter (in.): 2 Depth (ft.): 20 Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers Attachments: SPECIFIC CONDITIONS/REQUIREMENTS	Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Deviation Requested:N	

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. Tauski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT New Well

DEVIATION INFORMATION	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605095

WELL PERMIT

New Well

accompanying same application, and applicable laws and regula enumerated in the supporting documents which are agreed to by	s this permit in accordance with your application, attachments ations. This permit is also subject to further conditions and stipulations y the permittee upon acceptance of the permit	
Certifying Driller: NICHOLAS A FALLUCCA, JOUR	NEYMAN LICENSE # 0001302	
Permit Issued to: SGS NORTH AMERICA INC.		
Company Address: PO BOX 423 WEST CREEK, NJ	08092	
PROPERTY OWNER		
Name: NA UNITED STATES OF AMERICA		
Organization: United States of America	·	
Address:1800 Pennsylvania Ave		
City: Washington State: District of	of Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: 100 W HUNTER AVE / MW-44S confirmed by clie	ent / 5845	
County: Bergen Municipality: Maywood Boro	Lot: 46 Block: 124	
Easting (X): 610713 Northing (Y): 752572 Coordinate System: NJ State Plane (NAD83) - USFEET Local ID: MW-44S		
SITE CHARACTERISTICS		
·		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:	
Depth (ft.): 22	Case ID Number:	
mp Capacity (gpm): _0		
Drilling Method: Hollow Stem Augers		
Attachments:		
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605095

WELL PERMIT

DEVIATION INFORMATIO	ION	
Purpose:		_
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		

Proposed well Construction

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605158

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regular enumerated in the supporting documents which are agreed to by	this permit in accordance tions. This permit is also the permittee upon accept	e with your ap subject to fun stance of the p	oplication, attachments optications and stipulations opermit
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.		i.	
Company Address: PO BOX 423 WEST CREEK, NJ	08092		·
PROPERTY OWNER		·	
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America			· · · ·
Address: 1800 Pennsylvania Ave			
City: Washington State: District o	f Columbia	Zip Code:	20006
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / MW-45D confirmed by clie	nt / 5845		
County: Bergen Municipality: Rochelle Park Tw	p Lot: 1		Block: 20.01
Easting (X): 610433 Northing (Y): 752385 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:	MW-45D	· ·
SITE CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·		
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Boring	gs:	
Depth (ft.): _55	Case ID Number:		
Pump Capacity (gpm): 0	Deviation Requested:	N	· · · · · · · · · · · · · · · · · · ·
Drilling Method: Air Rotary/HSA	· · · · · · · · · · · · · · · · · · ·		
Attachments:			
			· · · · · · · · · · · · · · · · · · ·
SPECIFIC CONDITIONS/REQUIREMENTS			
· · · · · · · · · · · · · · · · · · ·			
· · · ·			
			× <i>Di</i>
		Der	ny D. P. lawski

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

New Well

DEVIATION INFORMATIO	ON
Purnose	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
CENERAL CONDITIONO	
GENERAL CONDITIONS/	CEQUIREMENTS
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. /:9D-1]
A well record must be submitted	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of W	after Systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installat	ion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for the Bureau of Water Systems a	r is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of and Well Permitting [N I A C, 7:9D-1]
If the use of the well is to be ch 7:9D-1]	anged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property own	er intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water s	upply wells), the well must be constructed as a Category 1 well per the Well Construction and
Abandonment Regulations at N	J.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community w	vater supply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at al	l times during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the N	ew Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new
well would have to be installed	[N.J.A.C. 7:9D-1.7((a))1i]
In accepting this permit the Pro	perty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit
cancellation Unless prior writt	e annoval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellati	on : by the expiration date of this permit IN LAC 7.9D-11
In the event this well is abando	ned the Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New	Let ΔC ΔC ΔC ΔC ΔC ΔC
seg IN LA C 7.9D-11	Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7.20-1 et
The granting of this normit she	Il not be construed in any year to offect the title or evenerable of property, and shall not make the New
Integrating of this permit sha	n not be construed in any way to affect the fifte of ownership of property, and shan not make the recomposition of any source of a state of the stat
The issuence of this normit sho	lental Protection of the State a party in any suit of question of ownership of property. [R.J.A.C. 7.90-1]
The issuance of this permit sha	If not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
This accurit application. [N.J.A.C	
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the	obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertake	n until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]
	· · ·
	,

Well Permit Number E201605091

WELL PERMIT

New Well

Lot: 46

Other Use(s): Regulatory Program Block: 124

Local ID: MW-46S

Requiring Wells/Borings:

Deviation Requested: N

Case ID Number:

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302

Permit Issued to: SGS NORTH AMERICA INC.

Company Address: PO BOX 423 WEST CREEK, NJ 08092

PROPERTY OWNER

Name: NA UNITED STATES OF AMERICA

Organization: United States of America

Address: 1800 Pennsylvania Ave

City: Washington

State: District of Columbia Zip Code: 20006

PROPOSED WELL LOCATION

Facility Name: FUSRAP Maywood Project

Address: 100 W HUNTER AVE / MW-46S confirmed by client / 5845

 County:
 Bergen
 Municipality:
 Maywood Boro

 Easting (X):
 610766
 Northing (Y):
 752397

Coordinate System: NJ State Plane (NAD83) - USFEET

SITE CHARACTERISTICS

PROPOSED CONSTRUCTION

WELL USE: MONITORING

Approval Date: May 2, 2016

Expiration Date: May 2, 2017

Diameter (in.): 2 Depth (ft.): 22

Pump Capacity (gpm): 0 Drilling Method: Hollow Stem Augers

Attachments:

SPECIFIC CONDITIONS/REQUIREMENTS

Jerry D. P. lawski

Bob Martin Commissioner Bureau

Well Permit -- Page 1 of 2

Approved by the authority of:

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605091

WELL PERMIT New Well

DEVIATION INFORMATION Purpose: Unusual Conditions: Reason for Deviation: Proposed Well Construction

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C, 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-I] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605092

WELL PERMIT

New Well	
The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit	
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302	
Permit Issued to: SGS NORTH AMERICA INC.	
Company Address: PO BOX 423 WEST CREEK, NJ 08092	
PROPERTY OWNER	
Name: NA_UNITED STATES OF AMERICA	
Organization: United States of America	
Address: 1800 Pennsylvania Ave	
City: Washington State: District of Columbia Zip Code: 20006	
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: 100 W HUNTER AVE / MW-46D confirmed by client / 5845	
County: Bergen Municipality: Maywood Boro Lot: 46 Block: 124	
Easting (X): 610753 Northing (Y): 752391 Local ID: MW-46D Coordinate System: NJ State Plane (NAD83) - USFEET MW-46D	
SITE CHARACTERISTICS	
PROPOSED CONSTRUCTION	
WELL USE: MONITORING Other Use(s):	
Diameter (in.): 2 Regulatory Program Requiring Wells/Borings:	
Depth (ft.): 22 Case ID Number:	
Pump Capacity (gpm): 0 Deviation Requested: N	
Drilling Method: Hollow Stem Augers	
Attachments:	
SPECIFIC CONDITIONS/REQUIREMENTS	
· · · · · · · · · · · · · · · · · · ·	

Approval Date: May 2, 2016 Expiration Date: May 2, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605092

WELL PERMIT New Well

DEVIATION INFORMATIC	DN
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/	LEQUIREMENTS
A copy of this permit shall be l	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A wall record must be submitte	d hu the well duilles to the Dursey of Weter Contenue and Well Demutting Hulers units written engagyel is

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605110

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regula enumerated in the supporting documents which are agreed to by	s this permit in accordance with your application, attachments ations. This permit is also subject to further conditions and stipulations the permittee upon acceptance of the permit	
Certifying Driller: NICHOLAS A FALLUCCA, JOUR	NEYMAN LICENSE # 0001302	
Permit Issued to: _SGS NORTH AMERICA INC.		
Company Address: PO BOX 423 WEST CREEK, NJ	08092	
PROPERTY OWNER	· · · · · · · · · · · · · · · · · · ·	
Name: NA UNITED STATES OF AMERICA		
Organization: United States of America		
Address: 1800 Pennsylvania Ave		
City: Washington State: District of	of Columbia Zip Code: 20006	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project	· · · · · · · · · · · · · · · · · · ·	
Address: 100 W HUNTER AVE / MW-47S confirmed by clie	ent / 5845	
County: Bergen Municipality: Rochelle Park Tw	<u>p</u> Lot: <u>1</u> Block: <u>20.01</u>	
Easting (X): 610410 Northing (Y): 752564 Local ID: MW-47S Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET		
SITE CHARACTERISTICS		
· · · · · · · · · · · · · · · · · · ·		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:	
Depth (ft.): 20 Case ID Number:		
Pump Capacity (gpm): _0	Deviation Requested: N	
Drilling Method: Hollow Stem Augers	-	
Attachments:	· · · ·	
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner Jerry D. P. Kawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605110

WELL PERMIT New Well

DEVIATION INFORMATIC	DN
Purpose	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/	REQUIREMENTS
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of W	ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installat	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of
the Bureau of Water Systems a	nd Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be ch	hanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
7:9D-1]	
If you or a future property own	er intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water s	upply wells), the well must be constructed as a Category 1 well per the Well Construction and
Abandonment Regulations at N	J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community w	vater supply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at al	l times during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the N	ew Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new
well would have to be installed	l. [N.J.A.C. 7:9D-1.7((a))1i]
In accepting this permit the Pro	perty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit
cancellation. Unless prior writt	en approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellation	on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]
In the event this well is abando	ned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New	Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et
seq. [N.J.A.C. 7:9D-1]	
The granting of this permit sha	Il not be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environn	nental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
The issuance of this permit sha	Il not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
any future application. [N.J.A.C	C. 7:9D-1]
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the	obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertake	n until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Well Permit Number E201605159

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: <u>NICHOLAS A FALLUCCA, JOURN</u>	EYMAN LICENSE # 0	001302	
Permit Issued to: SGS NORTH AMERICA INC.		·	
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America			
Address: 1800 Pennsylvania Ave	turen e		
City: Washington State: District of	Columbia	Zip Code:	
PROPOSED WELL LOCATION		·	
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / MW-47D confirmed by clien	nt / 5845		
County: Bergen Municipality: Rochelle Park Twp	Lot: 1	Block: 20.01	
Easting (X): 610405 Northing (Y): 752550 Local ID: MW-47D			
Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
·			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Boring	25:	
Depth (ft.): 55 Case ID Number:			
Pump Capacity (gpm): 0	Deviation Requested:	Ν	
Drilling Method: Air Rotary/HSA			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: May 2, 2016 Expiration Date: May 2, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605159

WELL PERMIT New Well

DEVIATION INFORMATION Purpose: Unusual Conditions: Reason for Deviation: Proposed Well Construction

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605155

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: <u>NICHOLAS A FALLUCCA</u> , JOURN	EYMAN LICENSE # 0	001302	<u>.</u>
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA			
Organization: United States of America		- #79 ^{- 100}	- R.
Address: 1800 Pennsylvania Ave			
City: Washington State: District of	f Columbia	Zip Code:20006	
PROPOSED WELL LOCATION			-
Facility Name: FUSRAP Maywood Project			
Address: 100 W HUNTER AVE / MW-48S confirmed by clien	ıt / 5845		
County: Bergen Municipality: Rochelle Park Twp	• Lot:_1	Block: 20.01	
Easting (X): 610334 Northing (Y): 752704 Local ID: MW-48S Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET Image: Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
WELL USE: MONITORING	Other Use(s):		
Diameter (in): 2	Regulatory Program	~~~	
Depth (ft.): 55	Case ID Number:	go	
Pump Capacity (ppm): 0	Deviation Requested:	N	
Drilling Method: Air Rotary/HSA			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date:May 2, 2016Expiration Date:May 2, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

New Well

DEVIATION INFORMATIC	DN	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
GENERAL CONDITIONS/REQUIREMENTS		

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201605154

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302			
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092		
PROPERTY OWNER			
Name: NA UNITED STATES OF AMERICA	· · · · · · · · · · · · · · · · · · ·		
Organization: United States of America			
Address: 1800 Pennsylvania Ave			
City: Washington State: District of	Columbia Zip Code: 20006		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project			
County: Borgon Municipality: Boshelle Park Turn	Lot: 1 Block: 20.01		
Easting (X): 610334 Northing (Y): 752702 Coordinate System: NJ State Plane (NAD83) - USFEET Local ID: MW-48D			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION	· · · · ·		
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2 Regulatory Program Regulatory Wells/Borings:			
Depth (ft.): 55 Case ID Number:			
Pump Capacity (gpm): 0 Deviation Requested: N			
Drilling Method: Air Rotary/HSA			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: May 2, 2016 Expiration Date: May 2, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201605154

WELL PERMIT New Well

New Well		
DEVIATION INFORMATIO	ON	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
Toposed wen construction		
GENERAL CONDITIONS/I	REQUIREMENTS	
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitted	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is	
obtained from the Bureau of W	/ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey	
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is	
completed.[N.J.A.C. 7:9D-1]		
All well drilling/pump installat	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]	
For this permit to remain valid	, the well approved in this permit shall be constructed within one year of the effective date of the permit.	
[N.J.A.C. 7:9D-1]		
If the pump capacity applied to the Bureau of Water Systems a	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of and Well Permitting, [N.I.A.C. 7:9D-1]	
If the use of the well is to be cl	nanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.	
7:9D-1]	·	
If you or a future property own public non-community water s	ter intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or upply wells), the well must be constructed as a Category 1 well per the Well Construction and	
Abandonment Regulations at N	J.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well	
redesignated as a community v	vater supply well, the well must be constructed by a Master well driller, which would include having a	
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment		
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new		
well would have to be installed	l. [N.J.A.C. 7:9D-1.7((a))1i]	
In accepting this permit the Pro	pperty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]	
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit	
cancellation. Unless prior writt	en approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation	
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal	
Submit Well Permit Cancellati	on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]	
In the event this well is abando	ned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a	
manner satisfactory to the New	Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et	
seq. [N.J.A.C. 7:9D-1]	٠ ٨	
The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New		
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]		
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any future application. [N.J.A.C. 7:9D-1]		
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]		
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid		
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]		
Inis permit is NON I KANSFERABLE [N.J.A.C. 7:9D]		
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]	

Well Permit Number E201607079

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: <u>NICHOLAS A FALLUCCA, JOURN</u>	NEYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, NJ (08092		
PROPERTY OWNER			
Name: JOHN AND JAMIE GRYCTKO			
Organization: Homeowner			
Address: 61 Madison Ave			
City: Rochelle Park State: New Jerse	sey Zip Code: 07662		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: 61 Madison Ave confirmed by client / MW-51S			
County: Bergen Municipality: Rochelle Park Twp	Vp Lot: 26 Block: 5		
Easting (X): 609157 Northing (Y): 751619 Local ID: MW-51S Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in): 2	Regulatory Program Requiring Wells/Borings		
Depth (ft.): 20	Case ID Number:		
Pump Capacity (gpm): 0	Deviation Requested: N		
Drilling Method: Hollow Stem Augers			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			
	· · · · · · · · · · · · · · · · · · ·		

Approval Date: June 15, 2016 Expiration Date: June 15, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201607079

WELL PERMIT

New Well

DEVIATION INFORMATIO	DN	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
GENERAL CONDITIONS/REQUIREMENTS		
A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]		
A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is		
obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey		
Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is		

completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201607077

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit		
Certifying Driller: NICHOLAS A FALLUCCA, JOURN	NEYMAN LICENSE # 0001302	
Permit Issued to: SGS NORTH AMERICA INC.	-	
Company Address: PO BOX 423 WEST CREEK, NJ	08092	
PROPERTY OWNER		
Name: JOHN AND JAMIE GRYCTKO	······································	
Organization: Homeowner		
Address: 61 Madison Ave		
City: Rochelle Park Twp State: New Jers	ey Zip Code: 07662	
PROPOSED WELL LOCATION		
Facility Name: FUSRAP Maywood Project		
Address: 61 Madison Ave confirmed by client / MW-51D		
County: Bergen Municipality: Rochelle Park Tw	p Lot: 26 Block: 5	
Easting (X): 609127 Northing (Y): 751619 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:MW-51D	
SITE CHARACTERISTICS		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
Diameter (in.): _6	Regulatory Program Requiring Wells/Borings:	
Depth (ft.): _60	Case ID Number:	
Pump Capacity (gpm): _0	Deviation Requested: N	
Drilling Method: Air Rotary		
Attachments:		
· · · · · · · · · · · · · · · · · · ·		
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date:June 15, 2016Expiration Date:June 15, 2017

Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201607077

WELL PERMIT

New Well			
DEVIATION INFORMATION			
Purnose			
Linneral Candidiana			
Unusual Conditions:			
Reason for Deviation:			
Proposed Well Construction			
GENERAL CONDITIONS/I	REQUIREMENTS		
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]		
A well record must be submitt	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is		
obtained from the Bureau of W	Atter Systems and Well Permitting the well record shall be submitted electronically through the New Jersey		
Department of Environmental	Protection's Regulatory Services Portal Submit well Record: within hinery (90) days after the well is		
completed.[N.J.A.C. 7:9D-1]	the estimate the second ALLA C 70D 1 store DILLA C 70D 1		
All well drilling/pump installa	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]		
[N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.		
If the pump capacity applied for the Bureau of Water Systems a	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of and Well Permitting. [N.J.A.C. 7:9D-1]		
If the use of the well is to be cl 7:9D-11	hanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.		
If you or a future property own	her intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or		
public non-community water s	upply wells), the well must be constructed as a Category 1 well per the Well Construction and		
Abandonment Regulations at N	N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well		
redesignated as a community v	vater supply well, the well must be constructed by a Master well driller, which would include having a		
Master well driller on-site at al	I times during construction of the well, as specified in the Well Construction and Abandonment		
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))]			
In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]			
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit		
cancellation. Unless prior writh	ten approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation		
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal		
Submit Well Permit Cancellati	on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]		
In the event this well is abando	ned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a		
manner satisfactory to the New seq. [N.J.A.C. 7:9D-1]	Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et		
The granting of this permit sha	Il not be construed in any way to affect the title or ownership of property, and shall not make the New		
Jersey Department of Environm	nental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]		
The issuance of this permit sha	Il not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any future application. [N.J.A.)	C. 7:9D-1]		
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]		
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid			
and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]			
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]		
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. 7:9D-1]		
	•		

Well Permit Number E201609990

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: NICHOLAS A FALLUCCA, JOURN	VEYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.			
Company Address: <u>PO BOX 423</u> WEST CREEK, NJ	08092		
PROPERTY OWNER			
Name: NA TOWNSHIP OF ROCHELLE PARK			
Organization: Township of Rochelle Park			
Address: 151 West Passaic Street			
City: <u>Rochelle Park</u> State: <u>New Jerse</u>	ey Zip Code: <u>07662</u>		
PROPOSED WELL LOCATION			
Facility Name: FUSRAP Maywood Project			
Address: near 107 Parkway / MW-52S confirmed by client / 58	345		
County: Bergen Municipality: Rochelle Park Twp	p Lot: ROW Block: ROW		
Easting (X): 609275 Northing (Y): 752018	Local ID: MW-52S		
Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): 60	Case ID Number:		
Pump Capacity (gpm): 0 Deviation Requested: N			
Drilling Method: Air Rotary/HSA			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

Approval Date: <u>August 19, 2016</u> Expiration Date: <u>August 19, 2017</u> Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

WELL PERMIT

New Well

DEVIATION INFORMATIO	ON	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		
Troposed wen construction	· · · · · · · · · · · · · · · · · · ·	
GENERAL CONDITIONS/	REQUIREMENTS	
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]	
A well record must be submitt	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is	
obtained from the Bureau of W	vater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey	
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is	
completed.[N.J.A.C. 7:9D-1]		
All well drilling/pump installa	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]	
For this permit to remain valid	, the well approved in this permit shall be constructed within one year of the effective date of the permit.	
[N.J.A.C. 7:9D-1]		
If the pump capacity applied for	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of	
the Bureau of Water Systems a	and Well Permitting. [N.J.A.C. 7:9D-1]	
If the use of the well is to be cl	hanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.	
7:9D-1]		
If you or a future property owr	er intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or	
public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and		
Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well		
redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a		
Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment		
Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new		
well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]		
In accepting this permit the Pro	operty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]	
In the event that this well is no	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit	
cancellation. Unless prior writh	ten approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation	
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal	
Submit Well Permit Cancellati	on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]	
In the event this well is abando	ned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a	
manner satisfactory to the New	/ Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et	
seq. [N.J.A.C. 7:9D-1]		
The granting of this permit sha	Il not be construed in any way to affect the title or ownership of property, and shall not make the New	
Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]		
The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on		
any future application. [N.J.A.	C. 7:9D-1]	
This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]		
This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid		
and no work shall be undertake	en until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]	
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]	

Well Permit Number E201609991

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit			
Certifying Driller: _NICHOLAS A FALLUCCA, JOURN	EYMAN LICENSE # 0001302		
Permit Issued to: SGS NORTH AMERICA INC.	· · ·		
Company Address: PO BOX 423 WEST CREEK, NJ 0	8092		
PROPERTY OWNER			
Name: NA TOWNSHIP OF ROCHELLE PARK			
Organization: Township of Rochelle Park			
Address: 151 West Passaic Street	· · · · · · · · · · · · · · · · · · ·		
City: Rochelle Park State: New Jerse	Zip Code: 07662		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: near 107 Parkway / MW-52D confirmed by client / 5845			
County: Bergen Municipality: Rochelle Park Twp	Description Descripti Description Description Description Description Descript		
Easting (X): 609285 Northing (Y): 752011 Local ID: MW-52D Coordinate System: NJ State Plane (NAD83) - USFEET			
SITE CHARACTERISTICS			
PROPOSED CONSTRUCTION			
WELL USE: MONITORING	Other Use(s):		
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:		
Depth (ft.): _60	Case ID Number:		
Pump Capacity (gpm): 0 Deviation Requested: N			
Drilling Method: Air Rotary/HSA			
Attachments:			
SPECIFIC CONDITIONS/REQUIREMENTS			

•

Approval Date:August 19, 2016Expiration Date:August 19, 2017

Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201609991

WELL PERMIT

New Well

DEVIATION INFORMATIC	
DETIGION INFORMATIC	<u>//</u>
Purpose:	·····
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
CENERAL CONDITIONS	
GENERAL CONDITIONS/	
A copy of this permit shall be i	(ept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted obtained from the Bureau of W Department of Environmental completed.[N.J.A.C. 7:9D-1]	a by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is 'ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
All well drilling/pump installat	ion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid. [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for the Bureau of Water Systems a	r is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of nd Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be ch 7:9D-1]	anged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property own public non-community water su Abandonment Regulations at N redesignated as a community w Master well driller on-site at al Regulations. Otherwise, the N well would have to be installed In accepting this permit the Pro- In the event that this well is not cancellation. Unless prior writt notification shall be submitted Submit Well Permit Cancellation	er intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or upply wells), the well must be constructed as a Category 1 well per the Well Construction and LJ.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well vater supply well, the well must be constructed by a Master well driller, which would include having a l times during construction of the well, as specified in the Well Construction and Abandonment ew Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new . [N.J.A.C. 7:9D-1.7((a))1i] perty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1] t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit en approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal on : by the expiration date of this permit.[N.J.A.C. 7:9D-1]
In the event this well is abando manner satisfactory to the New seq. [N.J.A.C. 7:9D-1]	ned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et
The granting of this permit shall	I not be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environn	iental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
any future application. [N.J.A.	Il not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on C. 7:9D-1]
This permit conveys no rights,	either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]
This permit does not waive the	obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertake	n until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]
This permit is NONTRANSFE	RABLE [N.J.A.C. 7:9D]
This well shall not be used for t	he supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Well Permit Number E201608452

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit				
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302				
Permit Issued to: SGS NORTH AMERICA INC.	· · · · · · · · · · · · · · · · · · ·			
Company Address: PO BOX 423 WEST CREEK, NJ 08092				
PROPERTY OWNER				
Name: NA BOROUGH OF MAYWOOD				
Organization: Borough of Maywood				
Address: 15 Park Avenue				
City: Maywood Boro State: New Jersey	Zip Code:07607			
PROPOSED WELL LOCATION				
Facility Name: FUSRAP Maywood Project	· · · · ·			
Address: Hergesell Avenue / MW-53S confirmed by client				
County: Bergen Municipality: Maywood Boro	Lot: ROW Block: ROW			
Easting (X): 610722 Northing (Y): 753034	Local ID: MW-53S			
Coordinate System: NJ State Plane (NAD83) - USFEET				
SITE CHARACTERISTICS				
PROPOSED CONSERVICE ON				
PROPOSED CONSTRUCTION				
WELL USE: MONITORING	Other Use(s):			
Diameter (in.): 2	Requiring Wells/Borings:			
Depth (ft.): _55	Case ID Number:			
Pump Capacity (gpm): _0	Deviation Requested: N			
Drilling Method:Air Rotary/HSA				
Attachments:				
SPECIFIC CONDITIONS/REQUIREMENTS				

Approval Date: July 15, 2016 Expiration Date: July 15, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201608452

WELL PERMIT New Well

DEVIATION INFORMATIO	DN	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201608451

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit				
Certifying Driller: NICHOLAS A FALLUCCA, JOURNEYMAN LICENSE # 0001302				
Permit Issued to: SGS NORTH AMERICA INC.	. <u> </u>			
Company Address: PO BOX 423 WEST CREEK, NJ	08092			
PROPERTY OWNER	·			
Name: NA BOROUGH OF MAYWOOD				
Organization: Borough of Maywood				
Address: 15 Park Avenue				
City: Maywood Boro State: New Jers	Zip Code: 07607			
PROPOSED WELL LOCATION				
Facility Name: FUSRAP Maywood Project				
Address: Hergesell Avenue / MW-53D confirmed by client				
County: Bergen Municipality: Maywood Boro	Lot: ROW Block: ROW			
Easting (X): 610713 Northing (Y): 753019 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:MW-53D			
SITE CHARACTERISTICS				
· · · · · · · · · · · · · · · · · · ·				
PROPOSED CONSTRUCTION				
WELL USE: MONITORING	Other Use(s):			
Diameter (in.): 2	Regulatory Program			
	Requiring Wells/Borings:			
Depth (ft.): 55	Requiring Wells/Borings: Case ID Number:			
Depth (ft.): <u>55</u> Pump Capacity (gpm): <u>0</u>	Requiring Wells/Borings: Case ID Number: Deviation Requested:			
Depth (ft.): <u>55</u> Pump Capacity (gpm): <u>0</u> Drilling Method: <u>Air Rotary/HSA</u>	Requiring Wells/Borings: Case ID Number: Deviation Requested:			
Depth (ft.): 55 Pump Capacity (gpm): 0 Drilling Method: <u>Air Rotary/HSA</u> Attachments:	Requiring Wells/Borings:			
Depth (ft.): 55 Pump Capacity (gpm): 0 Drilling Method: Air Rotary/HSA Attachments:	Requiring Wells/Borings:			
Depth (ft.): 55 Pump Capacity (gpm): 0 Drilling Method: Air Rotary/HSA Attachments: SPECIFIC CONDITIONS/REQUIREMENTS	Requiring Wells/Borings:			
Depth (ft.): 55 Pump Capacity (gpm): 0 Drilling Method: Air Rotary/HSA Attachments: SPECIFIC CONDITIONS/REQUIREMENTS	Requiring Wells/Borings:			

Approval Date: July 15, 2016 Expiration Date: July 15, 2017 Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201608451

WELL PERMIT

New Well

	· · · · · · · · · · · · · · · · · · ·
DEVIATION INFORMATIO	N
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/R	EQUIREMENTS
A copy of this permit shall be k	ept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitted obtained from the Bureau of Wa Department of Environmental P completed.[N.J.A.C. 7:9D-1]	d by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is ater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey rotection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
All well drilling/pump installati	on activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid, [N.J.A.C. 7:9D-1]	the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for the Bureau of Water Systems an	is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of d Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be cha 7:9D-1]	anged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property owne public non-community water su Abandonment Regulations at N. redesignated as a community wa	r intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or pply wells), the well must be constructed as a Category 1 well per the Well Construction and J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well ater supply well, the well must be constructed by a Master well driller, which would include having a

well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new

Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

Well Permit Number E201608454

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit				
Certifying Driller: NICHOLAS A FALLUCCA, JOU	JRNEYMAN LICENSE # 0	0001302		
Permit Issued to: SGS NORTH AMERICA INC.	SGS NORTH AMERICA INC.			
Company Address: PO BOX 423 WEST CREEK, N	J 08092	-		
PROPERTY OWNER Name: NA BOROUGH OF MAYWOOD				
Organization: Borough of Maywood		n - 1		
Address: 15 Park Avenue				
City: Maywood Boro State: New J	ersey	Zip Code:		
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project				
Address: Eccelston Avenue / MW-54S confirmed by client				
County: Bergen Municipality: Maywood Bord	Det: ROW	Block: ROW		
Easting (X): 611200 Northing (Y): 752798 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:	MW-54S		
SITE CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·				
PROPOSED CONSTRUCTION	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
WELL USE: MONITORING	Other Use(s):	· · · · · · · · · · · · · · · · · · ·		
Diameter (in.): 2	Regulatory Program Requiring Wells/Boring	gs:		
Depth (ft.): _55	Case ID Number:			
Pump Capacity (gpm): 0	Deviation Requested:	<u>N</u>		
Drilling Method: Air Rotary/HSA				
Attachments:				

SPECIFIC CONDITIONS/REQUIREMENTS

Approval Date: July 15, 2016 Expiration Date: July 15, 2017

Approved by the authority of: Bob Martin Commissioner

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201608454

WELL PERMIT New Well

DEVIATION INFORMATION	ON	
Purpose:		
Unusual Conditions:		
Reason for Deviation:		
Proposed Well Construction		

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C. 7:9D-1]

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation : by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1] The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1] This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]
Well Permit Number E201608453

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit									
Certifying Driller: <u>NICHOLAS A FALLUCCA, JOURN</u>	IEYMAN LICENSE # 0001302								
Permit Issued to: SGS NORTH AMERICA INC.									
Company Address: PO BOX 423 WEST CREEK, NJ	08092								
PROPERTY OWNER									
Name: NA BOROUGH OF MAYWOOD	×								
Organization: Borough of Maywood									
Address: 15 Park Avenue									
City: Maywood Boro State: New Jersey Zip Code: 07607									
PROPOSED WELL LOCATION Facility Name: FUSRAP Maywood Project Address: Eccelston Avenue / MW-54D confirmed by client									
County: Bergen Municipality: Maywood Boro	Lot: ROW Block: ROW								
Easting (X): 611195 Northing (Y): 752788 Coordinate System: NJ State Plane (NAD83) - USFEET	Local ID:MW-54D								
SITE CHARACTERISTICS									
PROPOSED CONSTRUCTION									
WELL USE: MONITORING	Other Use(s):								
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:								
Depth (ft.): _55	Case ID Number:								
Pump Capacity (gpm): _0	Deviation Requested: N								
Drilling Method: Air Rotary/HSA									
Attachments:	· ·								
	· · · · · · · · · · · · · · · · · · ·								
SPECIFIC CONDITIONS/REQUIREMENTS									

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Approval Date:July 15, 2016Expiration Date:July 15, 2017

Approved by the authority of: Bob Martin Commissioner

Well Permit -- Page 1 of 2

Well Permit Number E201608453

WELL PERMIT

	New Well
DEVIATION INFORMATI	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	
GENERAL CONDITIONS/	REQUIREMENTS
A copy of this permit shall be	kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]
A well record must be submitt	ed by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is
obtained from the Bureau of W	Vater Systems and Well Permitting the well record shall be submitted electronically through the New Jersey
Department of Environmental	Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is
completed.[N.J.A.C. 7:9D-1]	
All well drilling/pump installa	tion activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]
For this permit to remain valid [N.J.A.C. 7:9D-1]	, the well approved in this permit shall be constructed within one year of the effective date of the permit.
If the pump capacity applied for	or is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of
the Bureau of Water Systems a	and Well Permitting. [N.J.A.C. 7:9D-1]
If the use of the well is to be ci 7:9D-1]	hanged a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.
If you or a future property own	ner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or
public non-community water s	supply wells), the well must be constructed as a Category I well per the Well Construction and
Abandonment Regulations at N	N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well
redesignated as a community v	water supply well, the well must be constructed by a Master well driller, which would include having a
Master well driller on-site at al	Il times during construction of the well, as specified in the Well Construction and Abandonment
Regulations. Otherwise, the N	New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new
well would have to be installed	d. [N.J.A.C. 7:9D-1.7((a))1i]
In accepting this permit the Pro	operty Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]
In the event that this well is no cancellation. Unless prior write	t constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit ten approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation
notification shall be submitted	electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal
Submit Well Permit Cancellati	ion : by the expiration date of this permit.[N.J.A.C. 7:9D-1]
In the event this well is abando	oned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a
manner satisfactory to the New	v Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et
seq. [N.J.A.C. 7:9D-1]	
The granting of this permit sha	Il not be construed in any way to affect the title or ownership of property, and shall not make the New
Jersey Department of Environr	nental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]
The issuance of this permit sha	all not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on
any future application. [N.J.A.	
I his permit conveys no rights,	eitner expressed, or implied to divert water. [N.J.A.C. /:9D-1]
I have a second and the second and t	o obtaining of Federal or other State or local Government consent when necessary. This permit is not valid
and no work shall be undertake	en until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7.9D-1]
This permit is NON I KANSFE	CRADLE [NJ.A.C. / 19D]
This well shall not be used for	the supply of potable / drinking water. [N.J.A.C. /:9D-1]

APPENDIX A

NJDEP WELL RECORD FOR MODIFIED AND NEW LTM WELLS

Well Permit Number E201604681

_

			MONIT	ORING WE	<u>LL RECORD</u>				
PROPERTY	OWNER: _]	NA UNITED	STATES OF AN	/IERICA					
Company/Org	ganization: <u>U</u>	nited States of	America			• 18 to 11.			
Address: 18	800 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 200	006	·····			
WELL LOC	ATION: FU	RSRAP Mayw	vood Project						
Address: 10	0 W. HUNTE	R AVE. / BRP	Z-2						
County: Ber	rgen	Municipalit	y: <u>Rochelle Pa</u>	rk Twp	_ Lot:_1	Block:	19.01		
Easting (X): 610357 Northing (Y): 752112 DATE WELL STARTED: April 25, 2016									
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: April 25, 2016									
WELL USE:	PIEZOMET	TER.							
Other Use(s)	:				Local ID: BI	RPZ-2			
WELL CON	STRUCTION	٩.							
Total Depth	Drilled (ft.):	62	Finished We	ll Depth (ft.):	62	Well Surface: Ab	ove Grade		
- (Denth to	Depth to	Diameter	• • • _	Material	Wot/Rati	ng/Screen # Used		
	Top (ft.)	Bottom (ft.)	(inches)		Wateria		bs/ch no.)		
Borehole	0	40	10						
Borehole	40	62	6						
Casing	0	42	2		PVC		40		
Casing	0	40	6		Steel	1	9 lbs/schd		
Screen	42	62	2		рус		.010		
[Depth to	Depth to	Outer	Inner		Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	42	6	2	36	584	45		
Grout	0	40	10	6	42	858	50		
Gravel Pack	40	62	6	2		. #1 sand	·		
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method:				
ADDITIONA Protective Car Static Water I Water Level M Well Develop Method of De	AL INFORMA sing: Yes Level: 25 ft. t Measure Tool: ment Period: sevelopment: su	ATION elow land surfi tape 4 hrs. rge & pump	ace	Pun Tot Dril Dril Hea	np Capacity: _ gpm al Design Head: _ fi Iling Fluid: Il Rig: <u>DK-5</u> Ilth and Safety Plan	t. Submitted? <u>Yes</u>			
Pump Type:									
ATTACHM	<u>en 15:</u>								
GEOLOGIC	LOG)thar fill							
25 - 23. winte t	10 01ack 01 - 0	v sands cand-a	ilt mixtures						
38 - 40: red bi	rown WR - We	athered Rock	shale						
40 - 62: red bi	rown CR - Cor	npetent Rock b	edrock						
ADDITIONA	L INFORMA	TION: well i	nstalled 2001 w	ith flush mount.	SGS modified to 8	" stick up.			

Wesley M Eichfeld, Driller of Record: MASTER LICENSE # 592848

Well Permit Number E201604691

MONITORING WELL RECORD

PROPERTY	OWNER: _	NA UNITED	STATES OF AN	MERICA		<u> </u>				
Company/Or	Company/Organization: United States of America									
Address: 18	800 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 2	0006					
WELL LOC	ATION: FU	SRAP Maywo	od Project							
Address: 10	0 W. HUNTE	R AVE. / BRP	Z-3 confirmed b	by client						
County: Be	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	Lot:1	Block: 1	9.01			
Easting (X):	610316	Northing	(Y): 752062		DATE WELL S	TARTED: April 25, 2	016			
Coordi	nate System: N	IJ State Plane (NAD83) - USFI	EET	DATE WELL COM	PLETED: April 25, 2	.016			
WELL USE:	PIEZOMET	TER								
Other Use(s): Local ID: BRPZ-3										
WELL CONSTRUCTION										
Total Depth	Drilled (ft.):	57	Finished We	ll Depth (ft.):_	57	Well Surface: Abo	ve Grade			
	Depth to	Depth to	Diameter		Material	Wgt/Ratin	g/Screen # Used			
Borehole	10p (IL.)	35	(inches)			(10	s/cfi ho.)			
Borehole	35	57				· · · ·				
Casing	0	37	2	· • • • • •	PVC		40			
Casing	0	35	6		Steel	19	ibs/schd			
Screen	37	57	2		pvc		.010			
i	Depth to	Denth to	Outer	Inner		Material				
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)			
Grout	0	37	6	2	584	36	40			
Grout	0	35	10	6	658	42	45			
Gravel Pack	35	57	6	2		#1 sand				
Grouting Met	hod: <u>Pressure</u>	e method (Tren	nie Pipe)	Di	rilling Method: <u>Air</u>	Rotary				
ADDITIONA Protective Ca Static Water I Water Level N Well Develop Method of De	AL INFORMA sing: <u>Yes</u> Level: <u>20</u> ft. b Measure Tool: ment Period: <u>-</u> evelopment: <u>su</u>	ATION elow land surfi <u>tape</u> 4 hrs. rge & pump	ace	Pu Ta Di Ha	imp Capacity: _ gpm otal Design Head: _ fi rilling Fluid: rill Rig: <u>T-450</u> ealth and Safety Plan	Submitted? <u>Yes</u>				
гипр турс.	7NTS+ .									
							· · · · · · · · · · · · · · · · · · ·			
0 - 25: white f	DUG									
25 - 33: red h	rown SM - Silt	v sands sand-s	ilt mixtures							
33 - 35: red bi	rown WR - We	athered Rock	shale							
35 - 57: red bi	rown CR - Con	npetent Rock b	edrock							
ADDITIONA	L INFORMA	TION: well i	nstalled 2001 w	ith flush moun	t. SGS modified to 8	" stick up.				

Well Permit Number E201604693

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA					
Company/Org	ganization: <u>U</u>	nited States of	America						
Address: 18	800 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 20	006				
WELL LOC	ATION: <u>FU</u>	SRAP Maywo	od Project						
Address: 10	0 W HUNTE	R AVE / BRP2	2-4 confirmed by	/ client					
County: Ber	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	Lot:1	Block: 19	.01		
Easting (X): Coordin	610362 nate System: N	Northing	(Y): <u>752062</u> NAD83) - USFI		DATE WELL S	TARTED: April 25, 20 PLETED: April 25, 20	016		
WELL USE:	PIEZOMET	`ER		~		<u> </u>			
Other Use(s): Local ID: BRPZ-4									
WELL CON	STRUCTION	1							
Total Depth Drilled (ft.): 61 Finished Well Depth (ft.): 61 Well Surface: Above Grade									
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	Wgt/Rating (lbs	z/Screen # Used s/ch no.)		
Borehole	0	40	10						
Borehole	40	61	6						
Casing	0	40	6		Steel	19	lbs/schd		
Screen									
]	Depth to	Depth to	Outer	Inner		Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	40	10	6	48	752	50		
Gravel Pack				-					
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dr	illing Method: <u>Air</u>	Rotary			
ADDITIONA	L INFORMA	ATION							
Protective Cas	sing: <u>Yes</u>			Pu	mp Capacity: _ gpm				
Static Water I	Level: <u>25</u> ft. b	elow land surf	ace	To	tal Design Head: _ f	. .			
Well Develop	ment Period:	<u>tape</u> 4 brs		Dr Dr	iling Fluid:				
Method of De	velopment: air	<u>+</u> lift. surge, and	l pump	He	alth and Safety Plan	Submitted? Yes			
Pump Type:	- F	, <u>,</u>	<u> </u>			<u> </u>			
ATTACHME	ENTS:								
GEOLOGIC	LOG								
0 - 25: white t	o black OT - O	Other fill							
25 - 37: red br	own SM - Silt	y sands, sand-s	ilt mixtures						
37 - 61: red br	own CR - Cor	npetent Rock b	edrock						
ADDITIONA	L INFORMA	TION: 6" op	en hole 40-61"						
well installed	2001 with flus	h mount. SGS	modified to stic	k up.	·				

Well Permit Number E201604695

MONITORING WELL RECORD

PROPERTY	OWNER:	NA UNITED	STATES OF A	MERICA					
Company/Or	ganization: <u>U</u>	Inited States of	America						
Address: 11	800 Pennsylva	nia Ave Washi	ngton, District o	of Columbia 20	006				
WELL LOC	ATION: _FL	JSRAP Maywo	od Project		· ·				
Address: 10	00 W HUNTE	R AVE / BRPZ	2-5						
County: Be	rgen	Municipalit	y: <u>Rochelle Pa</u>	rk Twp	Lot:1	Block: 19	9.01		
Easting (X):	610321	Northing	(Y): 752221		DATE WELL S	TARTED: April 25, 2	016		
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: April 25, 2016									
WELL USE:	PIEZOMET	ſER .				<u></u>			
Other Use(s)	:				Local ID: _BF	VPZ-5			
WELL CON	STRUCTION	1							
Total Depth	Drilled (ft.):	62	Finished We	ll Depth (ft.):	62	Well Surface: Abo	ve Grade		
-	Depth to	Depth to	Diameter	· · · / <u>· · · · · · · · · · · · · · · ·</u>	Material	Wat/Ratin	g/Screen # Used		
	Top (ft.)	Bottom (ft.)	(inches)		Widteria	(lb	s/ch no.)		
Borehole	0	40	10			· · · · · · · · · · · · · · · · · · ·			
Borehole	40	62	6						
Casing	0	42	2		PVC		40		
Casing	0	40	6		Steel	19	lbs/schd		
Screen	42	62	2		pvc		.010		
	Depth to	Depth to	Outer	Inner		Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	40	6	2	36	584	30		
Grout	0	40	10	6	48	752	45		
Gravel Pack	40	62	0	2		#1 sand			
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method: <u>Air</u>	Rotary			
ADDITIONA Protective Cas	sing: Yes	ATION		Pun	np Capacity: _ gpm				
Static Water I Water Level N	Level: <u>43</u> ft. t	tand surface	ace	Tot	al Design Head: _ ft lling Eluid:	•			
Well Develop	ment Period:	<u>tape</u> 4 hrs.		Dri	il Rig: T-450				
Method of De Pump Type:	velopment: su	rge, air lift, pu	nping	Hea	lth and Safety Plan	Submitted? Yes			
ATTACHMI	ENTS:						· · · · · · · · · · · · · · · · · · ·		
GEOLOGIC	LOG					·····			
0 - 25: white t	o black OT - O	Other fill mater	ial	· · · · · · · · · · · · · · · · · · ·	· · ·				
25 - 37: red/bi	rown SM - Silt	ty sands, sand-s	silt mixtures	/		· · · · · · · · · · · · · · · · · · ·			
37 - 40: red/bi	rown WR - We	eathered Rock s	shale						
40 - 62: red bi	rown CR - Cor	npetent Rock b	edrock						
ADDITIONA	L INFORMA	ATION: well i	nstalled 2001 w	ith a flush moun	t. SGS modified w	ell to 8" stick up protec	tive casing.		

Wesley M Eichfeld, Driller of Record: MASTER LICENSE # 592848

Well Permit Number E201604708

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA	·			
Company/Org	ganization: <u>U</u>	nited States of	America					
Address: 18	00 Pennsylvar	nia Ave Washi	ngton, District o	of Columbia 20	006			
WELL LOC	ATION: FU	SRAP Maywo	od Project				<u> </u>	
Address: 10	0 W. HUNTE	R AVE. / BRP	Z-9					
County: Ber	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	Lot:	Block: 19	9.01	
Easting (X):	610296	Northing	(Y): 752290		DATE WELL S	TARTED: April 26, 2	016	
Coordi	nate System: N	IJ State Plane (NAD83) - USFI	EET D	ATE WELL COM	PLETED: April 26, 2	016	
WELL USE:	PIEZOMET	ER						
Other Use(s)	:				Local ID: BI	RPZ-9	·	
WELL CON	STRUCTION	I						
Total Depth	Drilled (ft.)	56	Finished We	ll Depth (ft.):	56	Well Surface: Abo	ve Grade	
		Dudid	D'un star		Matarial	Wet/Detin	-/Caroon # Usad	
	Deptn to Top (ft.)	Bottom (ft.)	(inches)		Material	wgi/Rating	s/ch no.)	
Borehole	0	32	10					
Borehole	32	56	6					
Casing	0	32	6		Steel	19	lbs/schd	
Screen								
]	Depth to	Depth to	Outer	Inner		Material		
_	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout Grout Deals	0	32	10	6	48	752	35	
Gravel Pack		(1 J (T)	·		 :	D . (
Grouting Met	hod: Pressur	e method (Trer	nie Pipe)	Dr	lling Method: <u>Air</u>	Kotary		
ADDITIONAL INFORMATIONPump Capacity: _ gProtective Casing: YesPump Capacity: _ gStatic Water Level: 25 ft. below land surfaceTotal Design HeadWater Level Measure Tool: tapeDrilling Fluid:Well Development Period: 4 hrs.Drill Rig: T-450Method of Development: surge, airlift, pumpHealth and Safety FPump Type:Pump Type:						t. Submitted? <u>Yes</u>		
ATTACHMI	ENTS:							
GEOLOGIC 0 - 25: white t	LOG o black OT - C	Other fill						
23 - 28: red bi	rown SM - Sill	y sands, sand-	shit mixtures	• •				
32 - 56: red bi	rown CR - Cor	npetent Rock h	edrock					
	LINEODI	TION						
well installed	2001 with flus	h mount. SGS	modified to stic	k up.				

Well Permit Number E201604710

MONITORING WELL RECORD

PROPERTV	OWNER:	NA UNITED :	STATES OF AN	/IERICA						
Company/Or	ganization U	nited States of	America							
Address 19	RAA Dennsylvay	nia Ave Weshi	noton District o	f Columbia 200	106					
	JUU I CHIISYIVAI	ina Ave wasin	'	1 Columbia 200	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
WELL LOC	ATION: FU	SRAP Maywo	od Project	ı	· · · · · · · · · · · · · · · · · · ·					
Address: G	ROVE AVEN	UE/MW34D								
County: <u>Be</u>	rgen	_ Municipalit	y: <u>Maywood B</u>	ого	Lot: 45		Block: 12	.4		
Easting (X): 610804 Northing (Y): 752258 DATE WELL STARTED: April 26, 2016										
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: April 26, 2016										
WELL USE:	MONITOR	ING								
Other Use(s)	:				Local ID: <u>M</u>	<u>W34</u>	D			
WELL CON	STRUCTION	4								
Total Depth	Drilled (ft.):	53	Finished We	ll Depth (ft.):	53	Well	Surface: Aboy	ve Grade		
	Depth to	Depth to	Diameter		Material		Wgt/Ratin	g/Screen # Used		
Parahala	Top (ff.)	Bottom (ft.)	(inches)				(lbs/ch no.)			
Borehole	19	10	14							
Casing	10	20	10		Steel		•	10 lb		
Casing	0	18	10	· · · · · · · · · · · · · · · · · · ·	Steel			40		
Screen	. 0	10	FU		Steel			- 		
	Depth to Top (ft.)	Depth to Bottom (ft.)	Outer Diameter (in.)	Inner Diameter (in)	Bentonite (lbs)	Ne	Material at Cement (lbs)	Water (gal)		
Grout	0	28	10	6	47		859	73		
Grout	0	18	14	10	45		828	70		
Gravel Pack										
Grouting Met	hod: Pressure	e method (Tren	nie Pipe)	Dri	lling Method: Air	Rota	у			
ADDITIONAL INFORMATION Protective Casing: Yes Static Water Level: 23 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: tape Well Development Period: _ hrs. Method of Development: Pump Type:										
ATTACHMI	ENTS:									
GEOLOGIC	LOG									
0 - 6: grey/bro	own OT - Othe	r crushed stone	& mulch							
0 - 18: red/bro	rown SC - Claye	ey sands, sand-	ciay mixtures							
10 - 33: red/b)		amered Kock	sin, sandstone	· · · · · · · · · · · · · · · · · · ·						
ADDITIONA well installed	L INFORM 2002 with 6" a	TION: 6" op above grade cas	en hole well 28 sing. It was dam	- 53' aged and SGS r	nodified by repairin	ng 6"	casing and adding	12" stick up.		

Wesley M Eichfeld, Driller of Record: MASTER LICENSE # 592848

Well Permit Number E201604771

MONITORING WELL RECORD

BBABEBTY	OWNED.							
PROPERTY	UWNER:		DAJWA					
Company/Org	ganization: N	ionammad Baj	wa			· · · · · · · · · · · · · · · · · · ·		
Address: <u>90</u>	Parkway Roc	helle Park Tw	o, New Jersey 0	7662	······································	•		
WELL LOC	ATION: _FU	SRAP Maywo	od Project					
Address: 90	Parkway / B3	8W14S Grade	change. New pr	ot.casing/pad				
County: Ber	gen	_ Municipalit	y: Rochelle Pa	rk Twp	Lot: <u>39.02</u>	Block: <u>1</u>	7.01	
Easting (X):	609467	Northing	(Y): 752411		DATE WELL S	Г АRTED: Мау 4, 20	16	
Coordin	nate System: N	J State Plane (NAD83) - USFI	EET	DATE WELL COM	PLETED: May 4, 20	16	
WELL USE:	MONITOR	ING						
Other Use(s)					Local ID: B3	8W14S		
WELL CON	STRUCTION	1						
Total Depth Drilled (ft.): 14 Finished Well Depth (ft.): 14 Well Surface: Flush Mount								
ſ	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	Wgt/Ratin	g/Screen # Used s/ch no.)	
Borehole	0	14	6					
Casing	0	5	2	St	ainless Steel		316	
Screen	5	14	2	S	ainless steel		.020	
	Depth to	Depth to	Outer	Inner		Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout	0	3	6	2	3	46	4	
Gravel Pack	3	<u>14</u>	<u> </u>	2		#1 sand		
Grouting Met	nod: Pressure	e method (Iren	nie Pipe)	Di	illing Method:		··· · · · · · · · · · · · · · · · · ·	
ADDITIONA Protective Cas Static Water I Water Level N Well Develop Method of De Pump Type:	ADDITIONAL INFORMATION Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: 8 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: tape Drilling Fluid: Well Development Period: 1 hrs. Drill Rig: Method of Development: pump Health and Safety Plan Submitted? Yes							
ATTACHME	ENTS:							
GEOLOGIC	LOG				~	· · · ·		
U - 5: white to	black SP - Po	orly graded san	ids and gravelly	sands, little or	no tines	·		
5 - 14: red bro	wn SP - Poorl	y graded sands	and gravelly sal	nds, little or no	fines			
ADDITIONA new 9" flush n	L INFORMA	TION: well i	nstalled in 1988	with flush mo	unt. Grade changed	so SGS modified well	and finished with a	
					,			

Wesley M Eichfeld, Driller of Record: MASTER LICENSE # 592848

Well Permit Number E201604770

PROPERTY	OWNER:	MOHAMMAD) BAJWA							
Company/Organization: Mohammad Bajwa										
Address: 90) Park Way Ro	chelle Park Tv	vp, New Jersey	07607						
WELL LOC	ATION: _FU	SRAP Maywo	od Project							
Address: 90) Parkway / B3	8W14D Grade	change. New p	rot.casing/pad						
County: <u>Be</u>	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	Lot: 39.02		Block:	7.01		
Easting (X):	609469	Northing	(Y): <u>752414</u>		DATE WELL S	TART	ED: May 4, 201	6		
Coordi	nate System: N	ij State Plane (NAD83) - USFI		DATE WELL COM	PLET	ED: May 4, 201	6		
WELL USE:	MONITOR	ING		<u> </u>						
Other Use(s)					Local ID: <u>B3</u>	88W14	D			
WELL CON	STRUCTION	1								
Total Depth Drilled (ft.): 52 Finished Well Depth (ft.): 52 Well Surface: Flush Mount								h Mount		
	Depth to Top (ft)	Depth to Bottom (ft)	Diameter (inches)		Material		Wgt/Ratin	g/Screen # Used		
Borehole	100 (10.)	Dottoin (it.)	(inclics)				(10	s/on no.)		
Screen										
	Depth to	Depth to	Outer	Inner		· · · · · · · · · · · · · · · · · · ·	Material			
0	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in	Bentonite (lbs.)	Neat	Neat Cement (lbs.) Water (gal.)			
Grout Gravel Pack										
Grouting Met	hod: Pressure	e method (Tren	nie Pipe)	D	illing Method:			·····		
ADDITIONA Protective Ca Static Water I Water Level I Well Develop Method of De Pump Type:	Grouting Method: Pressure method (Tremie Pipe) Drilling Method: ADDITIONAL INFORMATION Pump Capacity: _ gpm Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: _ ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: Drilling Fluid: Well Development Period: _ hrs. Drill Rig: Method of Development: Health and Safety Plan Submitted?									
ATTACHMI	ENTS:									
GEOLOGIC 0 - 6: white to	LOG black OT - Of	ther fill materia								
6 - 15: red bro	own SW - Wel	l-graded sands	and gravelly sar	ds, little or no	fines					
15 - 32: red bi	rown WR - We	athered Rock	shale							
32 - 52: red b	rown CR - Cor	npetent Rock b	edrock		· · · · ·					
ADDITIONA in tech def nor well installed	L INFORMA tice. in 1988 with fl	TION: Not e lush mount. G	nough informati rade changed so	on on the well SGS modified	record provided to c well and finished w	omplet	e well constructi 9" flush mount.	on detail as requested		

Well Permit Number E201605161

PROPERTY	OWNER: 1	NA UNITED	STATES OF A	MERICA						
Company/Organization: United States of America										
Address: 18	100 Pennsylva	nia Ave Washi	ngton District c	f Columbia 20						
<u></u>	700 I Ollilâyi va		ngion, District e		,000					
WELL LOC	ATION: FU	JSRAP Maywo	od Project							
Address: 10	0 W HUNTE	R AVE / B38W	18DR confirme	ed by client / 5	8 45	-				
County: Ber	rgen	Municipalit	y: <u>Maywood E</u>	Boro	Lot: <u>46.01</u>		Block: 124	4		
Easting (X):	610934	Northing	(Y): 752226		DATE WELL ST	ГARI	ED: June 14, 20	16		
Coordi	nate System: N	JJ State Plane (NAD83) - USF	EET	DATE WELL COM	PLET	ED: July 7, 2016			
WELL USE:	MONITOR	ING					<u> </u>			
Other Use(s): Local ID: B38W18DR										
WELL CON	STRUCTION	J.					. *			
Total Depth Drilled (ft.): 71 Finished Well Depth (ft.): 71 Well Surface: Flush Mount										
	Depth to	Depth to	Diameter	Material			Wgt/Rating	/Screen # Used		
	Top (ft.)	Bottom (ft.)	(inches)				(lbs	/ch no.)		
Borehole	0	46	10							
Borehole	46	71	6	1 : 						
Casing	0	46	6		Steel		SC	ch 40		
Screen										
	Depth to	Depth to	Outer	Inner			Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in	Bentonite (lbs.)	Nea	t Cement (lbs.)	Water (gal.)		
Grout	0	46	10	6	45		1128	84		
Gravel Pack										
Grouting Met	hod: Pressur	e method (Tren	nie Pipe)	Di	illing Method: <u>Air I</u>	Rotar	у			
ADDITIONA	L INFORMA	ATION		Du	m Consitu am					
Static Water I	.evel: 8.5 ft. l	below land surf	face	ru Te	inp Capacity gpin ital Design Head f	ł				
Water Level N	Aeasure Tool:	m scope		Di	illing Fluid:					
Well Develop	ment Period: _	<u>1</u> hrs.		Dr	ill Rig: schramm T 4	<u>50</u>				
Method of De	velopment: <u>air</u>	<u>lift</u>		He	alth and Safety Plan	Subm	itted? <u>Yes</u>			
Pump Type:										
ATTACHME	ENTS:									
GEOLOGIC	LOG			· · ·						
0 - 15: black (DT - Other fill									
15 - 30: redish	SP - Poorly g	raded sands an	d gravelly sands	s, little or no fi	nes					
30 - 36: redish	WR - Weathe	ered Rock shale	;		····					
36 - 71: redish	CR - Compet	ent Rock shale								
ADDITIONA	L INFORMA	TION: open	rock hole		· · · · · · · · · · · · · · · · · · ·		<u></u>			

Well Permit Number E201605089

MONITODING WELL DECODD

			MONIT	URING WE	LL RECORD				
PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA					
Company/Org	ganization: <u>U</u>	Inited States of	America						
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 200	006				
WELL LOC	ATION: FU	JSRAP Maywo	od Project						
Address: 10)0 W HUNTE	RAVE/B38W	/25SR confirme	d by client / 584	5		·		
County: Ber	rgen	Municipalit	y: Maywood B	loro	Lot: 45	Block: 12	24		
Easting (V)	610407) Louthing	(X), 750007						
Coordii	nate System: N	Northing	(Y): <u>752257</u> NAD83) - USFI		DATE WELL SI	IARTED: May 9, 20.	10		
WELL USE.		ING		<u> </u>	ATE WELL COM	PLETED: May 10, 20	/10		
Other Use(s)			·····		Local ID: B3	8W258R			
WELL CON	STRUCTION	1							
Total Depth	Drilled (ft.):	13	Finished We	ll Depth (ft.):	12.5	Well Surface: Abo	ve Grade		
	Depth to	Depth to	Diameter		Material	Wgt/Ratin	g/Screen # Used		
Borabola	Top (ft.)	Bottom (ft.)	(inches)	(lbs/ch no.)					
Casing	0	75	2		PVC		ach 40		
Screen	7.5	12.5	2		PVC	····	.010		
·	Depth to	Denth to	Outer	Inner		Material			
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.) Water (gal.			
Grout	0	4	7	2	5	86	7		
Gravel Pack	4	6	7	2		#00 Filpro			
Gravel Pack	6	13	7	2		#1 Filpro			
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dril	lling Method: Holl	ow Stem Augers	, ,		
ADDITIONA Protective Cas Static Water I Water Level M	L INFORM A sing: <u>Yes</u> Level: <u>6</u> ft. be Measure Tool:	ATION low land surfact <u>m scope</u>	ce	Pun Tot Dril	np Capacity: _ gpm al Design Head: _ ft ling Fluid:				
Well Develop	ment Period: _	<u>1</u> hrs.		Dril	l Rig: Mobile B-80	0-1			
Pump Type:	velopment: <u>Pu</u>	mp / Surge		пеа	In and Salety Plan	Submitted? <u>Yes</u>			
ATTACHME	ENTS:								
GEOLOGIC	LOG								
0 - 5: Brown-I	Red OT - Othe	r Fill							
5 - 10: Brown	-Red SW - We	ell-graded sand	s and gravelly sa	ands, little or no	fines				
10 - 13: Brow	n-Red GM - S	ilty gravels, gra	vel-sand-silt mi	xtures					
ADDITIONA	L INFORMA	TION:							

Well Permit Number E201605090

MONITORING WELL RECORD

PROPERTY	OWNER: 1	NA UNITED	STATES OF AN	MERICA	•	• · · ·	<u> </u>			
Company/Org	ganization: <u>U</u>	nited States of	America							
Address: 18	800 Pennsylvai	nia Ave Washi	ngton, District o	of Columbia 200)06					
WELL LOC	ATION: FU	SRAP Maywo	od Project							
Address: 10	0 W HUNTEI	R AVE / B38W	/25BR confirme	ed by client / 584	15					
County: Be	rgen	_ Municipalit	y: Maywood B	loro	Lot: 45	Block: 12	4			
Easting (V)	610406	Northing	(V), 75000	· · · · ·	DATE WELLS		116			
Coordi	ate System: N	Northing	(1): <u>732239</u> NAD83) - USF	EET D.	DATE WELLS.	I ARTED: <u>May 16, 20</u>	10			
WELL USE: MONITORING										
Other Use(s): Local ID: B38W25BR										
WELL CON	STRUCTION	I					_			
Total Depth	Drilled (ft.):	58	Finished We	ell Depth (ft.):	58	Well Surface: Abov	ve Grade			
Depth to Depth to Diameter Material Wgt/Rating/Screen # Used Tran (A) Dettern (A) (inclusion)										
Top (ft.) Bottom (ft.) (inches) (lbs/ch no.) Borehole 0 33 10 (lbs/ch no.)										
Borehole	33	58	6							
Casing	0	33	6		Steel		.280			
Screen										
	Depth to	Depth to	Outer	Inner		Material				
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)			
Grout Group Deals	0	33	10	6	56	1012	86			
Gravel Pack		.1.1.(m	·				, <u>,</u> ,			
Grouting Met	hod: Pressure	e metnod (Iren	nie Pipe)		lling Method: <u>Air</u>	Kotary/HSA	<u></u>			
ADDITIONAL INFORMATIONPump Capacity: _ gpmProtective Casing: YesPump Capacity: _ gpmStatic Water Level: 5 ft. below land surfaceTotal Design Head: _ ft.Water Level Measure Tool: m scopeDrilling Fluid:Well Development Period: 1 hrs.Drill Rig: Mobile B-80Method of Development: air liftHealth and Safety Plan Submitted? YesPump Type:Pump Type:										
ATTACHMI	ENTS:									
GEOLOGIC 0 - 5: Brown-1 5 - 13: Brown 13 - 19: Brow 19 - 23: Brow 23 - 58: Brow	LOG Red OT - Othe -Red GM - Sil n-Red WR - W n/red WR - W n/red CR - Co	r Fill ty gravels, grav /eathered Rock eathered Rock mpetent Rock	/el-sand-silt mix Sandstone Sandstone/Shale Sandstone/Shale	e	·					
ADDITIONA										

Well Permit Number E201605165

MONITORING WELL RECORD

PROPERTY	OWNER: 1	NA UNITED S	STATES OF AN	/ERICA						
Company/Organization: United States of America										
Address: 18	: M Pennsviva	nia Ave Washi	orton District o	f Columbia 200						
<u></u>	oo i ciiisyivai		igion, District o		,00	<u> </u>				
WELL LOC	ATION: <u>FU</u>	SRAP Maywo	od Project							
Address: 10	0 W HUNTEI	RAVE / MISS	01AR confirmed	l by client / 584	5					
County: Ber	gen	_ Municipalit	: Rochelle Pa	rk Twp	_ Lot: 1		Block: 20.	01		
Easting (X):	610253	Northing	(Y): <u>752688</u>		DATE WELL ST	ARTED:	June 7, 2016	5		
Coordin	nate System: N	IJ State Plane (NAD83) - USFI	EET D.	ATE WELL COM	PLETED:	June 7, 2016	5		
WELL USE:	MONITOR	ING	· · · · · · · · · · · · · · · · · · ·							
Other Use(s): Local ID: MISS01AR										
WELL CONSTRUCTION										
Total Depth	Drilled (ft.):	15	Finished We	ll Depth (ft.):	14	Well Surfac	e: Abov	e Grade		
Denth to Denth to Diameter Material WorkRating/Screen # Used										
Depin toDepin toDiameterMaterialWgb Raing/Screen # OsedTop (ft.)Bottom (ft.)(inches)(lbs/ch no.)										
Borehole	0	15	7							
Casing	0	9	2	· · ·	PVC		SC	ch 40		
Screen	9	14	2		PVC		• •	010		
ſ	Depth to	Depth to	Outer	Inner	· .	Ma	terial			
<u> </u>	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cem	ent (lbs.)	Water (gal.)		
Grout Grouel Back	0	5	7	2	6	10 #00	8 Filmro	9		
Gravel Pack	5	15	7	2		#00 #11	Filpro			
Grouting Met	hod Pressure	e method (Tren	nie Pine)	<u>~</u>] Dri	lling Method: Holl	ow Stem Ai	igers			
Grouting Method: Pressure method (Tremie Prpe) Drilling Method: Hollow Stem Augers ADDITIONAL INFORMATION Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: 10 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: m scope Drilling Fluid: Well Development Period: 1 hrs. Drill Rig: Mobile B-80 Method of Development: Pump / Surge Health and Safety Plan Submitted? Yes Pump Type: ATT ACHMENTS:										
CEOLOGIC										
0 - 8: Brown-Red OT - Other Fill										
8 - 11: Brown-Red SM - Silty sands, sand-silt mixtures										
11 - 15: Brown-Red GM - Silty gravels, gravel-sand-silt mixtures										
ADDITIONA	L INFORMA	TION:		-						

Well Permit Number E201605156

MONITORING WELL RECORD

PROPERTY OWNER: NA UNITED STATES OF AMERICA											
Company/Or;	ganization: <u>U</u>	nited States of	America				<u> </u>				
Address: 18	00 Pennsylva	nia Ave Washii	ngton, District o	f Columbia 200	006	· · · · · · · · · · · · · · · · · · ·					
WELL LOC	ATION: _FU	SRAP Maywo	od Project			·					
Address: 100 W HUNTER AVE / MISS01BR confirmed by client / 5845											
County: Be	gen	Municipality	y: <u>Rochelle Pa</u>	rk Twp	_ Lot:_ 1	Block: 20	0.01				
Easting (X):	610243	Northing	(Y): 752686		DATE WELL S	FARTED: May 31, 20)16				
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: August 22, 2016											
WELL USE: MONITORING											
Other Use(s): Local ID: MISS01BR											
WELL CONSTRUCTION											
WELL CONSTRUCTION Total Depth Drilled (ft.): 61 Well Surface: Above Grade											
Depth to Diameter Material Wgt/Rating/Screen # Used											
Top (ft.) Bottom (ft.) (inches)											
Borehole	0	38	10								
Casing	38	01	6		Staal						
Casing	0	38	0		Steel		scii40				
Bercell	• • • •										
	Depth to	Depth to	Outer	Inner		Material	W (s, s, t)				
Grout	1 ορ (π.)	29 BOILON (IL.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)				
Gravel Pack			10		00	940					
Grouting Met	hod: Pressur	e method (Tren	nie Pipe)	Dri	lling Method: Air	Rotary					
ADDITIONAL INFORMATION Protective Casing: Yes Static Water Level: 10 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: m scope Well Development Period: 1 hrs. Method of Development: air lift Pump Type:											
ATTACHMI	ENTS:										
GEOLOGIC LOG 0 0 - 10: brown OT - Other fill 10 10 - 20: redish brown SM - Silty sands, sand-silt mixtures 20 20 - 28: redish WR - Weathered Rock sandstone 28 28 - 61: redish CR - Competent Rock bedrock 28 ADDITIONAL INFORMATION: open hole bedrock 28											

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting

Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201605096

MONITORING WELL RECORD

			MONT	UKING WE	LL KECOKD							
PROPERTY	OWNER: _]	NA UNITED	STATES OF AN	MERICA			,					
Company/Or	ganization: U	nited States of	America			·						
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	of Columbia 20	006							
WELL LOC	ATION: _FU	SRAP Maywo	od Project									
Address: 10	0 W HUNTE	R AVE / MISS	02AR confirme	d by client / 584	-5							
County: Be	rgen	Municipalit	y: Maywood E	Boro	Lot: 46	Block:	124					
Easting (X): 610857 Northing (Y): 752512 DATE WELL STARTED: July 5, 2016												
Coordin	ate System: N	U State Plane ((1): <u>732312</u> NAD83) - USFI		DATE WELLS	DIFTED: July 3, 2	2016					
WELL USE: MONITORING												
Other Use(s)					Local ID: M	15507 A R						
Other Use(s)	•	. <u></u>	· · · · ·				<u></u>					
WELL CON	STRUCTION	I										
Total Depth	Drilled (ft.):	19	Finished We	ell Depth (ft.):	19	Well Surface: F	lush Mount					
Depth toDepth toDiameterMaterialWgt/Rating/Screen # UsedTop (ft.)Bottom (ft.)(inches)(lbs/ch no.)												
Top (ft.) Bottom (ft.) (inches) (lbs/ch no.) Borehole 0 19 8 (lbs/ch no.)												
Casing	0	14	2		PVC		sch 40					
Screen	14	19	2		PVC	· · ·	.010					
	Depth to	Depth to	Outer	Inner	· · ·	Material						
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.) Water (gal.)					
Grout Gravel Pack	0	12	8	2	12	<u> 282</u> #1 filmo	18					
Grouting Met	hod: Gravity	method		Dri	lling Method: Hol	low Stem Augers						
		TION		DII		ion Stem Hugers	<u></u>					
Protective Ca	sing: <u>No</u>	<u>Anon</u>		Pur	np Capacity: _ gpm							
Static Water I	Level: <u>8</u> ft. be	low land surfa	ce	Tot	al Design Head: _ f	t.						
Water Level I Well Develop	Measure Tool: ment Period:	<u>m scope</u> 1 brs		Dri	lling Fluid: ll Rig: schramm T 4	150						
Method of De	velopment: <u>w</u>	nale pump		Hea	alth and Safety Plan	Submitted? Yes						
Pump Type:												
ATTACHMI	ENTS:											
GEOLOGIC	LOG	· · · ·				·····						
U - 5: brown (brown SM - S	ilty cando cond	silt mixturee		- 1 10-11-11-11-11-11-11-11-11-11-11-11-11-1							
		inty sands, sand	-sint inizitures			·····						
ADDITIONAL INFORMATION:												

Well Permit Number E201605097

MONITORING WELL RECORD

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA		·						
Company/Or	ganization: U	nited States of	America									
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 20	006							
WELL LOC		ISRAP Maywo	od Project		· •							
Address 10	$\frac{1}{10000000000000000000000000000000000$			d has allowed / 50	45		<u></u>					
Address: I	JU W HUNTE	KAVE/MISS	UZBR confirmed	a by client / 584								
County: <u>Be</u>	rgen	_ Municipalit	y: <u>Maywood B</u>	loro	Lot:	Block: <u>12</u>						
Easting (X):	610860	Northing	(Y): <u>752493</u>		DATE WELL S	FARTED: June 21, 20	16					
Coordi	nate System: N	IJ State Plane (NAD83) - USFI	EET D	ATE WELL COM	PLETED: July 7, 201	7					
WELL USE:	MONITOR	ING										
Other Use(s)	:				Local ID: _M	ISS02BR						
WELL CON	STRUCTION	1										
Total Depth	Drilled (ft.):	62	Finished We	ll Depth (ft.):_	62	Well Surface: Flus	h Mount					
Depth to Diameter Material Wgt/Rating/Screen # Used												
Depth to Wg/ Rating/Screen # Osed Top (ft.) Bottom (ft.) (inches) (lbs/ch no.) (lbs/ch no.)												
Borehole	0	38	10									
Borehole	38	62	6									
Casing	0	38	6		Steel	s	ch 40					
Screen												
	Depth to	Depth to	Outer	Inner		Material						
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)					
Grout	0	38	10	6	30	940	60					
Gravel Pack												
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dr	illing Method: _ Air	Rotary						
ADDITIONAL INFORMATION Protective Casing: No Static Water Level: 16 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: m scope Well Development Period: 1 hrs. Method of Development: air lift Pump Type:												
ATTACHMI	ENTS:											
GEOLOGIC LOG												
0 - 10: brown OT - Other fill												
10 - 19: redisł	10 - 19: redish SC - Clayey sands, sand-clay mixtures											
19 - 28: redish WR - Weathered Rock shale												
28 - 62: redish	28 - 62: redish CR - Competent Rock shale											
ADDITIONA	L INFORMA	TION: open	rock hole		<u> </u>							

Well Permit Number E201610593

MONITORING WELL RECORD

					<u>EE RECORD</u>							
PROPERTY		NA STEPAN	CHEMICAL CO	JMPANY			· · · · ·					
Company/Or	ganization: <u>S</u>	tepan Chemica	l Company				<u></u>					
Address: 22	2 West Frontag	e Rd Northfiel	d, Illinois 6009	3								
WELL LOC	ATION: _FU	SRAP Maywo	od Project									
Address: 10	0 W HUNTE	R AVE / MISS	04AR confirme	d by client		·						
County: Ber	rgen	_ Municipalit	y: <u>Maywood E</u>	loro	Lot: 31.01	Block: <u>1</u> 2	24					
Easting (X): 610499 Northing (Y): 751834 DATE WELL STARTED: September 6, 2016												
Coordin	nate System: N	IJ State Plane (NAD83) - USF	EET D	ATE WELL COM	PLETED: September	6, 2016					
WELL USE:	MONITOR	ING										
Other Use(s): Local ID: MISS04AR												
WELL CONSTRUCTION												
Total Depth Drilled (ft.): 15 Finished Well Depth (ft.): 15 Well Surface: Above Grade												
Depth to Diameter Material Wgt/Rating/Screen # Used												
Top (ft.) Bottom (ft.) (inches) Bernholz 0 15												
Borehole 0 15 7												
Casing	10	10	2		PVC		010					
	10	15	4		FVC		.010					
	Depth to Top (ft)	Depth to Bottom (ft)	Outer	Inner Dismeter (in)	Dentonita (lha)	Material	Water (gol)					
Grout	0	6	7	2	7	129	11					
Gravel Pack	6	8	7	2		#00 Filpro						
Gravel Pack	8	15	7	2		#1 Filpro						
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method: <u>Hol</u>	ow Stem Augers	4					
ADDITIONAL INFORMATION Protective Casing; Yes Static Water Level; 13 ft. below land surface Total Design Head; _ ft. Water Level Measure Tool; m scope Well Development Period; 1 hrs. Method of Development: Pump / Surge Pump Type:												
<u>ATTACHME</u>	ENTS:											
GEOLOGIC	LOG											
0 - 5: Brown-J	Red OT - Othe	r Fill										
5 - 10: Brown-Red SM - Silty sands, sand-silt mixtures												
I0 - 15: Brow	10 - 15: Brown-Red GM - Silty gravels, gravel-sand-silt mixtures											
ADDITIONA	L INFORMA	TION:										

Well Permit Number E201608024

MONITORING WELL RECORD

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
Company/Or;	ganization: <u>U</u>	Inited States of	America				·				
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	fColumbia 20	006						
WELLIOC		ISP & P Mayawa	od Project		· ·						
Address D	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	/ MCCO7 A		-1:							
Address: K	ear Rochelle A	ve/MISSU/A	K confirmed by	client/ 5845							
County: Be	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	_ Lot:_1	Block: _	19.01				
Easting (X):	610203	Northing	(Y): <u>752361</u>		DATE WELL ST	TARTED: July 7, 2	016				
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: July 7, 2016											
WELL USE:	MONITOR	ING									
Other Use(s)	:				Local ID: MI	SS07AR					
WELL CON	STRUCTION	N									
Total Depth	Drilled (ft.):	12.5	Finished We	ll Depth (ft.):	12.5	Well Surface: Al	oove Grade				
Depth to Depth to Diameter Material Wgt/Rating/Screen # Used Tor (ft) Detterm (ft) (inclus)											
Top (ft.) Bottom (ft.) (inches) Darabala 0 12.5											
Casing	0	12.5	0 2		DVC		sch 40				
Screen	7.5	12.5	2		PVC		010				
Bereen	7.5	12,5	2								
	Depth to Top (ft)	Depth to Bottom (ft)	Outer Diameter (in)	Inner Diameter (in)	Bentonite (lbs)	Material Neat Cement (lbs.)	Water (gal)				
Grout	0	3.5	6	2	3	54	5				
Gravel Pack	3.5	5.5	6	2		#00 Filpro					
Gravel Pack	5.5	12.5	6	2		#1 Filpro					
Grouting Met	hod: <u>Pressur</u>	e method (Trer	nie Pipe)	Dri	lling Method: Air]	Rotary					
ADDITIONA	L INFORMA	ATION									
Protective Cas	sing: <u>Yes</u>			Pur	np Capacity: _ gpm						
Static Water I	Level: <u>8</u> ft. be	low land surfa	ce	Tot	al Design Head: _ ft	•					
Water Level M	Measure Tool:	<u>m scope</u>		Dri	lling Fluid:	`					
Method of De	ment Period:	<u>1.5</u> nrs. - 1 10		Dri	II Kig: <u>Schramm 450</u>	<u>J</u> Submitted? Ver					
Pump Type:	velopilient. <u>an</u>				in and Salety Fian	Submitted: <u>1 cs</u>					
ATTACHMI	ENTS:										
GEOLOGIC	LOG				· · · · · · · · · · · · · · · · · · ·]				
0 - 5: Brown-J	Red OT - Othe	r fill	· · · ·				· · · · · · · · · · · · · · · · · · ·				
5 - 12.5: Brown-Red GM - Silty gravels, gravel-sand-silt mixtures											
ADDITIONAL INFORMATION:											
nna											

Well Permit Number E201605093

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA								
Company/Or	Company/Organization: United States of America											
Address: 18		nia Ave Washi	noton District c	of Columbia, 200	06		<u>_</u>					
//ddic53	500 I Chilisyiva			n columbia 200								
WELL LOC	ATION: FU	JSRAP Maywo	od Project									
Address: 10	0 W HUNTE	RAVE/MW-3	SR confirmed	by client / 5845			· · · · · · · · · · · · · · · · · · ·					
County: Ber	rgen	Municipalit	y: <u>Maywood E</u>	loro	Lot:46	Block: 1	24					
Easting (X):	610585	Northing	(Y): 752623		DATE WELL S	FARTED: June 1, 20	16					
Coordin	Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: June 1, 2016											
WELL USE:	MONITOR	ING				<u>.</u>						
Other Use(s)	:				Local ID: <u>M</u>	W-3SR						
WELL CON	STRUCTION	J										
Total Depth	Drilled (ft.):	20	Finished We	ll Depth (ft)	19	Well Surface: Flue	sh Mount					
10020 2 0 p u		Doot to										
Depth toDepth toDiameterMaterialWgt/Rating/Screen # UsedTop (ft.)Bottom (ft.)(inches)(lbs/ch no.)												
Iop (ft.) Bottom (ft.) (inches) (lbs/ch no.) Borehole 0 20 8 (lbs/ch no.)												
Casing	0	14	2		PVC		sch 40					
Screen	14	19	2		PVC		.010					
]	Depth to	Depth to	Outer	1nner		Material	·					
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)					
Grout Crowel Deek	0	10	8	2	16	287 #00 Filme	24					
Gravel Pack	10	20	8	2		#00 Flipro #1 Filpro						
Grouting Met	hod Pressur	e method (Tren	nie Pine)	 Dri	lling Method · Holl	ow Stem Augers						
				Dire	ang Method	ow Stelli Augers	1					
Protective Cas	sing: Yes	ATION		Pun	no Capacity: gom							
Static Water L	.evel: <u>12</u> ft. b	elow land surfa	ace	Tot	al Design Head: _ ft							
Water Level N	Aeasure Tool:	<u>m scope</u>		Dri	lling Fluid:		· · · · ·					
Well Develop	ment Period: _	$\frac{1}{1}$ hrs.		Dril	ll Rig: <u>Mobile B-80</u>	0						
Pump Type:	velopment: <u>Pu</u>	<u>imp7 Surge</u>		пеа	inn and Salety Plan	Submitted? <u>Tes</u>						
ATTACHME	ENTS:											
GEOLOGIC	LOG											
0 - 7: Brown-I	Red OT - Othe	r Fill										
7 - 10: Brown	-Red SM - Silt	ty sands, sand-s	silt mixtures									
10 - 17: Brown-Red ML - Inorganic silts, very fine sands, rock four, silty or clayey fine sands												
17 - 20: Brown/red GC - Clayey gravels, gravel-sand-clay mixtures some Weathered Rock												
ADDITIONA	L INFORMA	TION:										

Well Permit Number E201605094

PROPERTY OWNER: NA UNITED STATES OF AMERICA										
Company/Organization: United States of America										
Address: 18	00 Pennsylva	nia Ave Washi	ngton, District o	fColumbia 20	006		· .			
WELL LOC	ATION: _FU	SRAP Maywo	od Project				8.2 - S. 			
Address: 10	0 W HUNTE	RAVE/MW-3	3DR confirmed	by client / 5845						
County: Ber	rgen	_ Municipalit	y: <u>Maywood B</u>	loro	Lot: 46	<u> </u>	Block: 12			
Easting (X):	610597	Northing	(Y): <u>752619</u>		DATE WELL ST	FAR	Г ЕD: <u>May 26, 20</u>	16		
Coordi	nate System: N	IJ State Plane (NAD83) - USFI	EET D.	ATE WELL COM	PLE	FED: July 26, 20	16		
WELL USE: MONITORING										
Other Use(s): Local ID: _MW-3DR										
WELL CON	STRUCTION	ł								
Total Depth	Drilled (ft.):	63	Finished We	ll Depth (ft.):	63	Well	Surface: Flus	h Mount		
Depth toDepth toDiameterMaterialWgt/Rating/Screen # UsedTop (ft,)Bottom (ft,)(inches)(lbs/ch no.)										
Borehole	0	38	10							
Borehole	38	63	6							
Casing	0	38	6		Steel		S	ch 40		
Screen				,				·····		
[Depth to	Depth to	Outer	Inner			Material			
i	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Nea	at Cement (lbs.)	Water (gal.)		
Grout	0	38	10 🕫	6	15		940	60		
Gravel Pack										
Grouting Met	hod: Pressure	e method (Tren	nie Pipe)	Dri	lling Method: Air l	Rotar	у			
ADDITIONA	L INFORMA	ATION								
Protective Cas	sing: <u>No</u>			Pun	np Capacity: _ gpm					
Static Water I	.evel: <u>12</u> ft. b	elow land surf	ace	Tot	al Design Head: _ ft					
Water Level N	Aeasure Tool:	<u>m scope</u>		Dri	lling Fluid:					
Well Develop	ment Period: _	<u>1</u> hrs.		Dri	ll Rig: <u>schramm t45</u>	0				
Method of De	velopment: <u>air</u>	<u>· lift</u>		Hea	ilth and Safety Plan	Subn	nitted? <u>Yes</u>			
Pump Type:										
ATTACHMENTS:										
GEOLOGIC LOG										
U - 10: brown U1 - Other fill										
10 - 19: redish SC - Clayey sands, sand-clay mixtures										
19 - 63: redish CR - Competent Rock shale										
ADDITIONA	ADDITIONAL INFORMATION: open rock hole									

Well Permit Number E201605111

MONITORING WELL RECORD

DODEDTY OWNED. NA UNITED STATES OF AMERICA											
PROPERTY OWNER: NA UNITED STATES OF AMERICA											
Company/Organization: United States of America											
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	fColumbia 200)06		-				
WELL LOC	ATION: FU	ISRAP Maywo	od Project				•				
Address: 100 W HUNTER AVE / MW-43SR confirmed by client / 5845											
County: Bergen Municipality: Rochelle Park Twn Lot: 1 Block: 19.01											
County. Deigen infuniteipanty. Koenene rak i wp Lot: 1 Block. 19.01											
Easting (X): 610249 Northing (Y): 752507 DATE WELL STARTED: May 11, 2016											
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: May 11, 2016											
WELL USE: MONITORING											
Other Use(s): Local ID: _MW-43SR											
Total Depth Drilled (ft.): 8.5 Finished Well Depth (ft.): 8.5 Well Surface: Above Grade											
Depth toDiameterMaterialWgt/Rating/Screen # UsedTop (ft)Bottom (ft)(inches)											
Top (ft.)Bottom (ft.)(inches)(ibs/ch no.)Borehole0 8.5 8											
Casing	0	3.5	2		PVC		S	:h 40			
Screen	3.5	8.5	2		PVC			010			
	Depth to	Depth to	Outer	Inner			Material				
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Ne	at Cement (lbs.)	Water (gal.)			
Grout Grout Deals	0	1.5	8	2	2		47 #00 Files	4			
Gravel Pack	1.5	2.5	8	2			#UU Filpro #1 Filpro				
Grouting Mot	L.J	mothod	0	2	lling Mathady Hal	low	#1 Flipio				
				D1.		10 % 5	stem Augers				
ADDITIONA Protective Ca	<u>AL INFORM/</u> sing: Yes	ATION		- Pur	n Canacity: anm						
Static Water I	evel: 6 ft. be	low land surfa	ce	Tot	al Design Head: f	t.					
Water Level N	Measure Tool:	m scope		Dri	lling Fluid:						
Well Develop	ment Period: _	<u>1</u> hrs.		Dri	ll Rig: <u>Mobile B-80</u>						
Method of De	velopment: <u>Pu</u>	<u>ımp / Surge</u>		Hea	lth and Safety Plan	Subr	nitted? <u>Yes</u>				
Pump Type:											
ATTACHMI	ENTS:										
GEOLOGIC	LOG										
0 - 5: Brown-Red OT - Other Fill											
5 - 8.5: Brown-Red SM - Silty sands, sand-silt mixtures Weathered Rock											
ADDITIONA	L INFORMA	ATION:									

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Well Permit Number E201605095

. . ODING WELL DECODD

			MUNIT	URING WE	LL RECORD							
PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA								
Company/Or	ganization: _U	inited States of	America									
Address: 18	 300 Pennsylva	nia Ave Washi	ngton, District o	of Columbia 20	006							
					·							
WELL LUC		SKAP Maywu		11 / 60.45			. ·					
Address: 10	OU W HUNTE	KAVE/MW-	44S confirmed t	by client / 5845								
County: Be	rgen	_ Municipalit	y: <u>Maywood B</u>	loro	_ Lot: <u>46</u>		Block: 12	.4				
Easting (X):	610713	Northing	(Y): <u>752572</u>		DATE WELL S	TAR	TED: June 2, 201	6				
Coordin	nate System: N	IJ State Plane (NAD83) - USFI	EET D	ATE WELL COM	PLE	TED: June 6, 201	6				
WELL USE: MONITORING												
Other Use(s): Local ID: MW-44S												
WELL CONSTRUCTION												
WELL CONSTRUCTION Total Depth Drilled (ft): 14 Well Surface: Fluch Mount												
Total Depth Drilled (ft.): 14 Finished Well Depth (ft.): 14 Well Surface: Flush Mount												
Depth toDepth toDiameterMaterialWgt/Rating/Screen # UsedTop (ft.)Bottom (ft.)(inches)(lbs/ch no.)												
Iop (ff.) Bottom (ff.) (inches) (inches) Borehole 0 14 8 (inches)												
Casing	0	9	2		PVC		s	ch 40				
Screen	9	14	2		PVC			.010				
	Depth to	Depth to	Outer	Inner			Material	, · •				
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Ne	at Cement (lbs.)	Water (gal.)				
Grout	0	6	8	2	10		<u>172</u>	15				
Gravel Pack	<u>6</u> 8	14	8 8	2			#1 Filpro					
Grouting Met	hod Pressur	e method (Trer	nie Pine)	 Dri	lling Method: Hol	low S	Stem Augers					
				DII		10 11 1						
Protective Ca	sing: Yes	ATION		Pur	np Capacity: gpm			·				
Static Water I	Level: <u>10</u> ft. t	elow land surf	àce	Tot	al Design Head: _ f	t.						
Water Level N	Measure Tool:	m scope		Dri	lling Fluid:							
Well Develop	ment Period:	<u> </u> hrs.		Dri	ll Rig: <u>Mobile B-80</u> of the and Safety Plan	Subr	nitted? Ves					
Pump Type:		<u>imp7 Surge</u>		1100	and Safety I fail	Bubi	inted: <u>105</u>					
ATTACHMI	ENTS:											
GEOLOGIC	LOG											
0 - 9: Brown-J	Red OT - Othe	r Fill										
9 - 10: Brown	-Red GM - Sil	ty gravels, grav	vel-sand-silt mix	ctures								
10 - 14: Brown-Red WR - Weathered Rock Sandstone												
ADDITIONA	L INFORMA	ATION:										

Well Permit Number E201605158

MONITORING WELL RECORD

PROPERTY	OWNER: _]	NA UNITED	STATES OF AN	MERICA							
Company/Or	Company/Organization: United States of America										
Address: 18	800 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 20	006						
WELL LOC	ATION: _FU	SRAP Maywo	od Project								
Address: 10	0 W HUNTE	RAVE/MW-	45D confirmed b	oy client / 5845							
County: Ber	rgen	Municipalit	y: <u>Rochelle Pa</u>	rk Twp	_ Lot: 1	Block: 20).01				
Easting (X):	610433	Northing	(Y): <u>752385</u>		DATE WELL ST	[ARTED: June 9, 201	6				
Coordin	nate System: N	IJ State Plane (NAD83) - USFI	EET D.	ATE WELL COM	PLETED: August 22,	2016				
WELL USE:	MONITOR	ING									
Other Use(s): Local ID: MW-45D											
WELL CONSTRUCTION											
Total Depth	Drilled (ft.):	63	Finished We	ll Depth (ft.):	63	Well Surface: Abo	ve Grade				
Depth to Depth to Diameter Material Wgt/Rating/Screen # Used Top (ft.) Bottom (ft.) (inches) (ibs/ch no.)											
Borehole	0	38	10				Z=				
Borehole	38	63	6								
Casing	0	38	6		Steel	S	ch 40				
Screen											
[Depth to	Depth to	Outer	Inner		Material					
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)				
Grout	0	38	10	6	60	960	64				
Gravel Pack				· · · · ·	· · ·						
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method: Air]	Rotary					
ADDITIONAL INFORMATIONProtective Casing: YesPump Capacity: _ gpmStatic Water Level: 10 ft. below land surfaceTotal Design Head: _ ft.Water Level Measure Tool: m scopeDrilling Fluid:Well Development Period: 1 hrs.Drill Rig: schramm T450Method of Development: airliftHealth and Safety Plan Submitted? YesPump Type:Pump Type:											
ATTACHMENTS:											
GEOLOGIC LOG											
0 - 12: brown	OT - Other fill	1 1 1 1	7 21 4	1*1 ~							
12 - 21: redish	1 SP - Poorly g	raded sands an	a gravelly sands	s, little or no fin	es		·				
21 - 28: redish WR - Weathered Rock sandstone											
25 - 03: redish	I UK - Compet	ent KOCK siltst	one								

ADDITIONAL INFORMATION: openhole 38/63

Well Permit Number E201605091

MONTODINC WELL DECODD

			MONIT	URING WE	LL RECORD		
PROPERTY	OWNER: _1	NA UNITED	STATES OF AN	MERICA			
Company/Org	ganization: U	nited States of	America				
Address: 18	300 Pennsylvar	nia Ave Washi	ngton, District o	f Columbia 20	006		-
WELL LOC	ATION: FU	SRAP Maywo	od Project				
Address: 10	0 W HUNTEI	RAVE/MW-4	46S confirmed b	oy client / 5845			
County: Ber	rgen	Municipalit	y: <u>Maywood</u> B	loro	Lot: 46	Block: 12	4
Easting (X)	610766	Northing	(Y)· 752397		DATE WELL S	FARTED: May 10, 20	16
Coordin	nate System: N	J State Plane (NAD83) - USF	ATE WELL COM	PLETED: May 10, 20	16	
WELL USE:	MONITOR	ING				-	
Other Use(s)	:				Local ID: <u>M</u>	W-46S	
WELL CON	STRUCTION	ł					
Total Depth	Drilled (ft.):	18	Finished We	ell Depth (ft.):	17.5	Well Surface: Abo	ve Grade
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	Wgt/Rating (lbs	g/Screen # Used s/ch no.)
Borehole	0	18	8				
Casing	0	12.5	2		PVC	S	ch 40
Screen	12.5	17.5	2		PVC		.010
[Depth to	Depth to	Outer	Inner		Material	i
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout	0	9	8	2	14	259	22
Gravel Pack	9	11.5	8	2		#00 Filpro	
Gravel Pack	11.5	10 	0 . D'	2			
Grouting Met	hod: Pressur	e method (Iren	nie Pipe)	Dri	lling Method: Hol	low Stem Augers	
ADDITIONA Protective Cas Static Water I Water Level N Well Develop Method of De Pump Type:	AL INFORMA sing: Yes Level: <u>11</u> ft. b Measure Tool: ment Period: _ evelopment: Pu	ATION pelow land surf <u>m scope</u> <u>1</u> hrs. imp / Surge	àce	Pur Tot Dri Hea	np Capacity: _ gpm al Design Head: _ f lling Fluid: ll Rig: <u>Mobile B-80</u> alth and Safety Plan	t. Submitted? <u>Yes</u>	
ATTACHMI	ENTS:						
GEOLOGIC	LOG					· · · · · · · · · · · · · · · · · · ·	
0 - 5: Brown-	Red OT - Othe	r Fill	· · · ·				
5 - 10: Brown	-Red SM - Silt	ty sands, sand-	silt mixtures				
10 - 18: Brow	n-Red GC - C	layey gravels, g	gravel-sand-clay	mixtures		· · · •	
ADDITIONA	L INFORMA	ATION:					

Well Permit Number E201605092

PROPERTY	OWNER: _1	NA UNITED	STATES OF AN	MERICA			
Company/Or;	ganization: <u>U</u>	nited States of	America				_ <u>.,</u>
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	f Columbia 200)06	***,****	
WELL LOC	ATION:	SRAP Maywo	od Project				
Address: 10	0 W HUNTE	RAVE/MW-4	46D confirmed b	oy client / 5845			
County: Be	rgen	_ Municipalit	y: <u>Maywood B</u>	oro	_ Lot: <u>46</u>	Block: 124	4
Easting (X): 610753 Northing (Y): 752391					DATE WELL ST	FARTED: May 18, 20	16
Coordi	nate System: N	IJ State Plane (NAD83) - USFI	EET DA	ATE WELL COM	PLETED: June 6, 2010	6
WELL USE:	MONITOR	ING					
Other Use(s)	:				Local ID: <u>M</u>	W-46D	
WELL CON	STRUCTION	ł					
Total Depth	Drilled (ft.):	57	Finished We	ll Depth (ft.):	57	Well Surface: Abov	e Grade
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material Wgt/Rating/Screen #			
Borehole	0	32	10				
Borehole	32	57	6	·····			
Casing	0	32	6		Steel	S	ch 40
Screen							
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout Grovel Pack	0	32	10	6	40	1100	80
Cravel Fack	L.J. D					D - (<u>.</u>
Grouting Met	nod: Pressure		nie Pipe)	Dn	ining wiethod: <u>Air</u>	Kolary	
ADDITIONA Protective Ca Static Water I Water Level N Well Develop Method of De Pump Type:	AL INFORM / sing: Yes Level: <u>16</u> ft. b Measure Tool: ment Period: _ welopment: <u>air</u>	ATION below land surfa <u>m scope</u> 1_ hrs. • <u>lift</u>	àce	Pun Tot Dril Dril Hea	np Capacity: gpm al Design Head: fi lling Fluid: I Rig: <u>schramm T 4</u> lth and Safety Plan	<u>50</u> Submitted? <u>Yes</u>	
ATTACHMI	ENTS:						
GEOLOGIC	LOG DT - Other fill				······································		
10 - 17: redist	$\frac{51 - 0.0001 \text{ m}}{1 - 0.0001 \text{ m}}$	nds sand-silt n	nixtures				
17 - 23: redish	1 WR - Weathe	ered Rock shale					
23 - 57: redist	1 CR - Compet	ent Rock shale			*		
ADDITIONA							

Well Permit Number E201605110

MONITORING WELL RECORD

				0						
PROPERTY	OWNER: _	NA UNITED	STATES OF A	MERICA						
Company/Or	Company/Organization: United States of America									
Address: 18	300 Pennsylva	nia Ave Washi	ngton, District o	of Columbia 200)06		•	<u></u>		
WELL LOC	ATION: FU	JSRAP Maywo	od Project							
Address: 1(0 W HINTE	RAVE/MW-	47S confirmed b	w client / 5845				<u>_</u>		
County: Bergen Municipality: Rochelle Park Twp Lot: 1 Block: 20.01										
Easting (X):	610410	Northing	(Y): <u>752564</u>		DATE WELL ST	FART	ED: <u>May 12, 20</u>)16		
Coordi	nate System: N	J State Plane (NAD83) - USF	EET DA	ATE WELL COM	PLET	ED: May 12, 20)16		
WELL USE:	MONITOR	ING								
Other Use(s)	:				Local ID: M	W-47S	'			
WELL CON	STRUCTION	1								
Total Depth	Drilled (ft.):	13	Finished We	ell Depth (ft.):	12	Well S	Surface: Abo	ve Grade		
	Depth to	Depth to	Diameter	6	Material		Wgt/Ratin	g/Screen # Used		
	Top (ft.)	Bottom (ft.)	(inches)	(lbs/ch no.)				s/ch no.)		
Borehole	0	13	8					1.40		
Casing	0	7	2		PVC		S	sch 40		
Screen	7	12	2		PVC			.010		
	Depth to	Depth to	Outer	Inner			Material			
Guard	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat	eat Cement (lbs.) Water (gal.			
Grout Gravel Pack		4	8	2	6		115 [#00 Filmro	10		
Gravel Pack		13	8	2			#1 Filpro			
Grouting Met	hod: Pressur	e method (Tren	nie Pine)	Dril	ling Method: Holl	low Ste	em Augers			
		TION	ine i ipe)					witana		
Protective Ca	sing: Yes			Pun	no Capacity: gpm					
Static Water I	.evel: <u>5</u> ft. be	low land surfa	ce	Tot	al Design Head: _ ft					
Water Level N	Aeasure Tool:	m scope		Dril	ling Fluid:					
Well Develop	ment Period:	<u>1</u> hrs.		Dril	l Rig: <u>Mobile B-80</u>	Q., L.,	4- 10 V			
Pump Type:	velopment: <u>Pt</u>	<u>imp / Surge</u>		Hea	ith and Safety Plan	Suomi	tted? <u>Yes</u>			
ATTACHMI	ENTS:									
GEOLOGIC	LOG									
0 - 5: Brown-	Red OT - Othe	er Fill					· · · · · · · · · · · ·			
5 - 12; Brown	-Red SM - Sil	ty sands, sand-s	silt mixtures							
12 - 13: Brow	n-Red WR - W	Veathered Rock	Sandstone							
ADDITIONA	L INFORMA	ATION:								

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Well Permit Number E201605159

MONITORING WELL RECORD

PROPERTY	OWNER: _!	NA UNITED	STATES OF A	MERICA					
Company/Org	ganization: <u>U</u>	nited States of	America						
Address: 18	00 Pennsylva	nia Ave Washi	ngton, District o	fColumbia 20	006		<u></u>		
WELL LOC	ATION: <u>FU</u>	SRAP Maywo	od Project						
Address: 10	0 W HUNTEI	RAVE / MW-4	47D confirmed	by client / 5845					
County: Ber	rgen	_ Municipalit	y: <u>Rochelle Pa</u>	rk Twp	_ Lot: <u>1</u>		Block: 20	.01	
Easting (X): _610405 Northing (Y): _752550					DATE WELL ST	ГART	ED: June 2, 201	6	
Coordinate System: NJ State Plane (NAD83) - USFEET					ATE WELL COM	PLET	ED: August 22,	2016	
WELL USE:	MONITOR	ING						· · · · ·	
Other Use(s)	:				Local ID: M	W-47 I	2		
WELL CON	STRUCTION	I							
Total Depth	Drilled (#)	63	Finished We	ll Denth (ft):	63	Well	Surface: Abo	ve Grade	
		05	- Finished we			** 011 1			
	Depth to Top (ft)	Depth to Bottom (ft.)	Diameter (inches)		Material		Wgt/Rating/Screen # Used		
Borehole	0	38	10				(10.	* on no.9	
Borehole	38	63	6						
Casing	0	38	6		Steel		s	ch 40	
Screen									
]	Depth to	Depth to	Outer	Inner			Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Nea	eat Cement (lbs.) Water (gal.)		
Grout	0	38	10	6	60		940	64	
Gravel Pack									
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method: _ Air]	Rotary	/		
ADDITIONA Protective Cas	L INFORMA	TION		Pur	np Capacity: gpm				
Static Water L	Level: <u>9</u> ft. be	low land surfa	ce	Tot	al Design Head: _ ft	.			
Water Level N	Measure Tool:	m scope		Dri	lling Fluid:				
Well Develop	ment Period:	<u>1</u> hrs.		Dri	II Rig: <u>schramm T4</u>	50 Sul-	Had Var		
Pump Type:	velopment. <u>an</u>	<u>1111</u>		пеа	and Safety Plan	Suom	med? <u>1 es</u>		
АТТАСНМИ	ENTS:								
CEOLOCIC			······	······································	······································				
0 - 10: brown	OT - Other fil	I							
10 - 18: redish	brown SP - P	oorly graded sa	ands and gravell	y sands, little or	no fines				
18 - 28: redish	WR - Weathe	ered Rock sand	stone				•		
28 - 63: redish	n CR - Compet	ent Rock sand	stone		<u> </u>			· · · · · · · · · · · · · · · · ·	

ADDITIONAL INFORMATION: openhole 38/63

Well Permit Number E201605155

MONITORING WELL RECORD

PROPERTY	OWNER:	NA UNITED	STATES OF AN	MERICA	· · · · · · · · · · · · · · · · · · ·			<u></u>		
Company/Organization: United States of America										
Address: 1800 Pennsylvania Ave Washington, District of Columbia 20006										
WELL LOC	ATION: _FL	JSRAP Maywo	od Project					· B		
Address: 10	0 W HUNTE	RAVE/MW-	48S confirmed b	y client / 5845						
County: Bergen Municipality: Rochelle Park Twp Lot: 1 Block: 20.01										
Easting (X): Coordin	Easting (X): 610334 Northing (Y): 752704 DATE WELL STARTED: June 1, 2016 Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: June 1, 2016									
WELL USE:	MONITOR	ING	- - -				1.001 <u></u>			
Other Use(s)	:				Local ID: M	W-48	S			
WELL CON	STRUCTION	4								
Total Depth Drilled (ft.): 20 Finished Well Depth (ft.): 19 Well Surface: Above Grade										
· [Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material			z/Screen # Used		
Borehole	0	20	8							
Casing	0	14	2		PVC		S	ch 40		
Screen	14	19	2		PVC		· · · · · · · · · · · · · · · · · · ·	.010		
[Denth to	Depth to	Outer	Inner			Motorial	· · · · · · · · · · · · · · · · · · ·		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Ne	at Cement (lbs.)	Water (gal.)		
Grout	0	10	8	2	16	1	287	24		
Gravel Pack	10	13	8	2			#00 Filpro			
Gravel Pack	13	20	8	2			#1 Filpró			
Grouting Met	hod: <u>Pressur</u>	e method (Trer	nie Pipe)	Dri	lling Method: <u>Hol</u>	low S	tem Augers			
ADDITIONA Protective Cas Static Water I Water Level M Well Develop Method of De Pump Type:	L INFORMA sing: Yes evel: <u>12</u> ft. t Measure Tool: ment Period: _ velopment: <u>Pu</u>	ATION below land surf <u>m scope</u> <u>1</u> hrs. imp / Surge	ace	Pun Tota Dril Dril Hea	np Capacity: _ gpm al Design Head: _ f ling Fluid: l Rig: <u>Mobile B-80</u> lth and Safety Plan	t. Subn	nitted? <u>Yes</u>			
ATTACHME	ENTS:									
GEOLOGIC	LOG									
0 - 7: Brown-1	Red OT - Othe	r Fill					-			
7 - 10: Brown	Red SM - Silt	ty sands, sand-s	silt mixtures							
10 - 17: Brow	n-Red GM - S	ilty gravels, gra	vel-sand-silt mi	xtures Mostly S	ilt					
17 - 20: Brown	n/red GM - Sil	ity gravels, grav	vel-sand-silt mix	tures Weathered	d Rock					
ADDITIONAL INFORMATION:										

Well Permit Number E201605154

MONITORING WELL RECORD

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Well Permit Number E201607079

MONITORING WELL RECORD

PROPERTY	OWNER:	JOHN AND JA	MIE GRYCTI	<u>KO</u>	·	· · ·		
Company/Or	ganization: <u>H</u>	lomeowner	-					
Address: 61	I Madison Ave	Rochelle Park	, New Jersey 0	7662				
			- d D===================================					
WELL LUC		SKAP Maywo		2		+- <i>**</i>		
Address: 6	Madison Ave	e confirmed by	client / MW-51	8				
County: <u>Be</u>	rgen	_ Municipalit	y: <u>Rochelle</u> Pa	rk Twp	_ Lot: <u>26</u>	Block: 5	· · · · · · · · · · · · · · · · · · ·	
Easting (X):	609157	Northing	(Y): 751619		DATE WELL ST	ARTED: June 29, 20)16	
Coordi	nate System: N	J State Plane (NAD83) - USF	EET D	ATE WELL COM	PLETED: July 7. 201	6	
WELL USE:	MONITOR	ING				· · · · · · · · · · · · · · · · · · ·		
Other Use(s)	• <u></u>			<u>v</u>	Local ID: M	W-51S		
Other Use(s)	•		-			W-515		
WELL CON	STRUCTION	ŧ.						
Total Depth	Drilled (ft.):	19	Finished We	ll Depth (ft.):	19	Well Surface: Flus	h Mount	
	Depth to	Depth to	Diameter		Material		Wgt/Rating/Screen # Used	
	Top (ft.)	Bottom (ft.)	(inches)			(lb	s/ch no.)	
Borehole	0	19	6		DUO		1.40	
Casing	0	9 10	2		PVC	5	ch 40	
Screen	9	19	2		pvc		.010	
	Depth to	Depth to	Outer	Inner		Material		
Grout	1 op (ft.)	Bottom (π)	Diameter (in.)	Diameter (in)	Bentonite (Ibs.)	Neat Cement (lbs.)	Water (gal.)	
Gravel Pack	7	19	6	2	5	#1 filpro		
Grouting Met	hod: Gravity	method		Dri	lling Method: Air I	Rotary	<u></u>	
						· · · · · · · · · · · · · · · · · · ·		
Protective Ca	sing: No	ATION		Pun	np Capacity: gpm			
Static Water I	Level: <u>9</u> ft. be	low land surfa	ce	Tot	al Design Head: _ ft			
Water Level N	Measure Tool:	<u>m scope</u>		Dril	ling Fluid:			
Well Develop	ment Period:	<u>1</u> hrs.		Dril	l Rig: <u>schramm T45</u>	<u>60</u> G. 1. 1. 19 M		
Pump Type:	velopment: <u>wi</u>	tale pump		Hea	ith and Safety Plan	Submitted? Yes		
ATTACHMI	ENTS:							
GEOLOGIC	LOG							
0 - 5: brown (DT - Other fill							
5 - 17: redish	SM - Silty san	ds, sand-silt mi	ixtures					
17 - 19: redisl	1 WR - Weathe	ered Rock shale	2					
ADDITIONA	L INFORMA	ATION:				-		
		• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •					

Well Permit Number E201607077

PROPERTY	OWNER:	JOHN AND JA	MIE GRYCT	0					
Company/Org	anization: H	omeowner		<u></u>					
Address: 61	Madison Ave	Rochelle Park	Twn. New Jers	ev 07662					
		``````````````````````````````````````		- <u></u>					
WELL LOC.	ATION: <u>FU</u>	SRAP Maywo	od Project						
Address: 61	Madison Ave	confirmed by	client / MW-51	D					
County: Ber	gen	Municipality	y: Rochelle Pa	rk Twp	Lot: 26	<u> </u>	Block: 5	<u></u>	
Easting (X):	609127	Northing	(Y): <u>751619</u>		DATE WELL ST	<b>FAR</b>	<b>FED:</b> June 27, 20	16	
Coordin	ate System: N	IJ State Plane (	NAD83) - USFI	EET DA	ATE WELL COM	PLE	<b>FED:</b> July 7, 2016	<u>.</u>	
WELL USE:	MONITOR	ING		<u> </u>					
Other Use(s):	:	+	ı.		Local ID: <u>M</u>	<b>W-5</b> 1	D		
WELL CON	STRUCTION								
Total Depth Drilled (ft.):       54       Finished Well Depth (ft.):       54       Well Surface:       Flush Mount									
Γ	Depth to	Depth to	Diameter	Material Wgt/Rating/Screen #				/Screen # Used	
	Top (ft.)	Bottom (ft.)	(inches)				(lbs	(lbs/ch no.)	
Borehole	0	29	10		·				
Borehole	29	54	6						
Casing	0	29	6		Steel		S	ch 40	
Screen									
	Depth to	Depth to	Outer	Inner			Material		
Crout	Top (ff.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Ne	at Cement (lbs.)	Water (gal.)	
Gravel Pack	. 0	29	10	0			152		
Grouting Meth	nod; Pressur	e method (Tren	nie Pipe)	Dril	ling Method: Air	Rotar	٠v		
ADDITIONA Protective Cas Static Water L Water Level N	L INFORMA ing: <u>No</u> evel: <u>12</u> ft. b feasure Tool:	ATION below land surfa m scope	ace	Pun Tota Dril	p Capacity: _ gpm al Design Head: _ fi ling Fluid:	t.			
Well Develop Method of Dev Pump Type:	ment Period: _ velopment: <u>air</u>	<u>1</u> hrs. lift		Dril Hea	l Rig: <u>schramm t 45</u> lth and Safety Plan	5 <u>0</u> Subn	nitted? <u>Yes</u>		
ATTACHME	NTS:								
GEOLOGIC	LOG								
0 - 5: brown $0$	T - Other fill	1 1 11,							
5 - 1/2 redish	WP Westh	as, sand-slit mi	ixtures						
19 - 54: redish	CR - Compet	ent Rock shale	• • • • • • • • • • • • • • • • • • • •						
ADDITIONA	L INFORMA	TION: open	rock hole				·····		

Well Permit Number E201609990

#### MONITORING WELL RECORD

PROPERTY	OWNER: _]	NA TOWNSH	IP OF ROCHE	LLE PARK			<u>.                                    </u>		
Company/Organization: _Township of Rochelle Park									
Address: 15	51 West Passai	c Street Roche	lle Park, New Je	ersey 07662	2		-		
WELL LOC	ATION: <u>FU</u>	SRAP Maywo	od Project						
Address: ne	ar 107 Parkwa	iy / MW-52S c	onfirmed by clie	ent / 5845					
County: Ber	rgen	_ Municipalit	y: <u>Rochelle</u> Pa	rk Twp		Lot: ROW	Block: R	OW	
Easting (X):609275 Northing (Y):752018						DATE WELL ST	ARTED: August 31	2016	
Coordinate System: NJ State Plane (NAD83) - USFEET DATE WELL COMPLETED: August 31, 2016							2016		
WELL USE:	MONITOR	ING							
Other Use(s)	:					Local ID: M	W-52S		
WELL CON	STRUCTION	1						·	
Total Depth Drilled (ft.):       11       Finished Well Depth (ft.):       11       Well Surface:       Flush Mount									
-	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		]	Material	Wgt/Ratin (lb	g/Screen # Used s/ch no.)	
Borehole	0	11	7						
Casing	0	6	2			PVC		sch 40	
Screen	6	1I	2			PVC		.010	
1	Depth to	Depth to	Outer	Inner	<u>.</u>		Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter	(in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout	0	4	7	2		53	86	7	
Gravel Pack	4	· 11	7	2			#1 Filpro		
Grouting Met	hod: <u>Pressur</u>	e method (Trer	nie Pipe)		Dril	ling Method: Holl	ow Stem Augers		
ADDITIONAL INFORMATION         Protective Casing: Yes         Static Water Level: 7 ft. below land surface         Water Level Measure Tool: m scope         Well Development Period: 1 hrs.         Method of Development: Pump / Surge         Pump Type:					Pump Capacity: _ gpm Total Design Head: _ ft. Drilling Fluid: Drill Rig: <u>Schramm 450</u> Health and Safety Plan Submitted? <u>Yes</u>				
ATTACHM	ENTS:								
GEOLOGIC	LOG								
0 - 5: Brown-	Red OT - Othe	er Fill	1						
5 - 11; brown/	rea SM - Silty	sands, sand-si	it mixtures						
ADDITIONA	L INFORM	ATION:							

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Well Permit Number E201609991

### **MONITORING WELL RECORD**

PROPERTY	OWNER:	NA TOWNSH	IP OF ROCHE	LLE PARK						
Company/Org	ganization: <u>T</u>	ownship of Ro	chelle Park			/				
Address: 15	51 West Passai	c Street Roche	lle Park, New Je	ersey 07662	-					
WELL LOC	ATION: _FU	SRAP Maywo	od Project			0.10.8				
Address: ne	ar 107 Parkwa	ay / MW-52D c	confirmed by cli	ent / 5845						
County:         Bergen         Municipality:         Rochelle Park Twp         Lot:         ROW         Block:         ROW										
Easting (X):	609285	Northing	(Y): 752011	EET .	DATE WELL ST	FARTED: August 29,	2016			
WELL USE.			1111203) - 0511		DATE WELL COM	PLETED: August 30,	2016			
Other Hee(s)	. MONITOR				Local ID: M	W-52D				
Other Use(s)	•					¥¥ - 52.0				
WELL CON	STRUCTION	1								
Total Depth	Drilled (ft.):	62	Finished We	ll Depth (ft.):_	62	Well Surface: Flus	h Mount			
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material	Wgt/Rating (lbs	g/Screen # Used s/ch no.)			
Borehole	0	37	10							
Borehole	37	62	6							
Casing	0	37	6		Steel		.280			
Screen										
]	Depth to	Depth to	Outer	Inner		Material				
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)			
Grout	0	37	10	6	63	1135				
Gravel Pack			•							
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	D	rilling Method: <u>Air</u>	Rotary				
ADDITIONAL INFORMATION         Protective Casing: Yes         Static Water Level: 58.5 ft. below land surface         Total Design Head: _ ft.         Water Level Measure Tool: m scope         Well Development Period: 1 hrs.         Method of Development: air lift         Pump Type:										
ATTACHME	ENTS:						· • • • • • • • • • • • • • • • • • • •			
GEOLOGIC	LOG	C11			- <del></del>					
0 - 5: Brown-J	ked OT - Othe	r fill	14							
3 - 10: brown/	red SIVI - SIIIy	sands, sand-si	it mixtures	turon						
23 - 27: brown	n/red WR - W	esthered Rock	sandstone			•				
27 - 62: brown	n/red CR - Cor	npetent Rock s	andstone		<u></u>		· · · ·			
			Deals Hala 27 (	(O)	· · · · · · · · · · · · · · · · · · ·		 			
		inou: Open	NUCK HULE 3/-C	14						

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Well Permit Number E201608452

#### NITODINC WELL DECODD .

		-	MUNIT	URING WE	LL KECUKD			
PROPERTY	OWNER:	NA BOROUG	H OF MAYWO	OOD				
Company/Or	ganization: B	orough of May	wood					
Address: 15	5 Park Avenue	Maywood Boi	o, New Jersey	07607	<del> </del>		<u> </u>	
WELL LOC	ATION: FU	SRAP Maywo	od Project			- <del></del>	-	
Address: H	ergesell Avenu	ue / MW-53S c	onfirmed by clie	ent	-			
County: Be	rgen	Municipalit	y: Maywood B	loro	Lot: ROW	Block: R	ow	
Easting (X): 610699 Northing (Y): 753050 DATE WELL STARTED: July 21, 2016								
Coordin	nate System: N	J State Plane (	NAD83) - USF	EET DA	ATE WELL COM	PLETED: July 26, 20	16	
WELL USE:	MONITOR	ING						
Other Use(s)	:				Local ID: _M	W-53S		
WELL CON	STRUCTION	4		•				
Total Depth	Drilled (ft.):	16	Finished We	ell Depth (ft.):	16	Well Surface: Flus	h Mount	
	Depth to	Depth to	Diameter		Material	Wgt/Ratin	g/Screen # Used	
	Top (ft.)	Bottom (ft.)	(inches)			(lb	s/ch no.)	
Borehole	0	16	. 8					
Casing	0	11	2		PVC		sch 40	
Screen	11	16	2		PVC		.010	
	Depth to	Depth to	Outer	Inner		Material		
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)	
Grout	0	7	8	2	6	141	8	
Gravel Pack	9	16	8	2		#I filpro		
Grouting Met	hod: Gravity	method		Dri	lling Method: <u>Holl</u>	low Stem Augers		
ADDITIONA	L INFORM	ATION						
Protective Ca	sing: <u>Yes</u>	1		Pun	np Capacity: _ gpm			
Static Water I	Level: <u>b</u> ft. be	low land surfa	ce	l ot Drii	al Design Head: _ π lling Eluid:	<b>[.</b>		
Well Develor	ment Period:	1 hrs.		Dri	ll Rig: schramm T 4	50		
Method of De	velopment: w	hale pump		Hea	Ith and Safety Plan	Submitted? Yes		
Pump Type:							,	
ATTACHM	ENTS:					14 ME (***********************************		
GEOLOGIC	LOG							
0 - 5: brown (	DT - Other fill							
5 - 16: redish	brown SM - S	ilty sands, sand	-silt mixtures					
ADDITIONA	L INFORM	ATION:						
New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201608451

## MONITORING WELL RECORD

PROPERTY	OWNER:	NA BOROUG	H OF MAYWO	00D			
Company/Or	panization B	orough of May	wood		·······		
Address 16	Dask Asianua	Manuard Day	Norra Lancara d	7607		17 - 17 km	
Address: 1	Park Avenue	Iviay wood Bor	o, New Jersey	J/0U/	7 77 NPAR_ 312	<u></u>	
WELL LOC	ATION: _FU	SRAP Maywo	od Project				- 1940
Address: H	ergesell Avenu	ie / MW-53D c	onfirmed by cli	ent			·
County: Be	rgen	_ Municipality	y: Maywood B	oro	_ Lot: ROW	Block: R	OW
Easting (X):	610713	Northing	(Y): 753019		DATE WELL ST	ARTED: July 19, 20	)16
Coordi	nate System: N	J State Plane (	NAD83) - USFI	EET D	ATE WELL COM	PLETED: August 31	, 2016
WELL USE:	MONITOR	ING					· · · · · · · · · · · · · · · · · · ·
Other Use(s)	:				Local ID: M	W-53D	
WELL CON	STRUCTION	ł					
Total Depth	Drilled (ft.):	62	Finished We	ll Depth (ft.):	62	Well Surface: Flux	sh Mount
	Depth to	Depth to	Diameter		Material	Wgt/Ratin	g/Screen # Used
	Top (ft.)	Bottom (ft.)	(inches)			(18	os/ch no.)
Borehole	0	42	10		· · · · · · · · · · · · · · · · · · ·		
Borehole	42	62	6				
Casing	0	42	6		Steel		sch 40
Screen	•						
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout	0	42	10	6	45	1128	72
Gravel Pack							
Grouting Met	hod: <u>Pressur</u>	e method (Tren	nie Pipe)	Dri	lling Method:Air l	Rotary	
ADDITIONA Protective Ca Static Water I Water Level N Well Develop Method of De Pump Type:	AL INFORMA sing: <u>No</u> Level: <u>6</u> ft. be Measure Tool: ment Period: _ evelopment: <u>air</u>	ATION low land surfac <u>m scope</u> <u>1</u> hrs. lift	ce	Pun Tot Dril Dril Hea	np Capacity: gpm al Design Head: ft Iling Fluid: Il Rig: <u>schramm T45</u> Ith and Safety Plan	50 Submitted? <u>Yes</u>	
ATTACHMI	ENTS:	· =/11.1					
GEOLOGIC	LOG						
0 - 10: brown	OI - Other III	l _ d					
10 - 25: redisi	1 SIVI - SILTY Sa	nus, sand-sut n	nixtures				
32 - 62: redist	CR - Compet	ent Rock shale					
	LINFORM		rock hole				

Company: SGS NORTH AMERICA INC.

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201608454

## MONITORING WELL RECORD

PROPERTY	OWNER: _]	NA BOROUG	H OF MAYWO	OD			
Company/Org	ganization: <u>B</u>	orough of May	wood				
Address: 15	Park Avenue	Maywood Bor	o, New Jersey	07607			
WELL LOC	ATION: FU	JSRAP Maywo	od Project				
Address: Ed	celston Aven	ue / MW-54S c	onfirmed by clip	enf		· · · · · · · · · · · · · · · · · · ·	
County: Ber	rgen	Municipalit	v Maywood B	lom	Lot' ROW	Block R	
			y. <u>May wood E</u>		_ 101	DIOCK. <u></u>	
Easting (X):	611200	Northing	(Y): <u>752798</u>		DATE WELL ST	FARTED: July 28, 20	16
Coordin	nate System: N	J State Plane (	NAD83) - USFI	EET D	ATE WELL COM	PLETED: July 28, 20	16
WELL USE:	MONITOR	ING					
Other Use(s)	•				Local ID:	W-54S	
WELL CON	STRUCTION	J				••	
Total Depth	Drilled (ft.):	11	Finished We	ll Depth (ft.):	10.5	Well Surface: Flus	h Mount
	Depth to	Depth to	Diameter		Material	Wgt/Ratin	g/Screen # Used
	Top (ft.)	Bottom (ft.)	(inches)			<u>(lb</u>	s/ch no.)
Borehole	0		7		DUO		1. 40
Casing	<u> </u>	2.5	2		PVC PVC		<u>an 40</u>
Screen	J.J	10.5	2		PVC		.010
	Depth to	Depth to Bottom (ft)	Outer Diameter (in)	Inner Diameter (in)	Pontonite (lbs.)	Material	Water (gal)
Grout	0	4	7	2	5	86	7
Gravel Pack	4	11	7	2		#1 Filpro	
Grouting Met	hod: <u>Pressur</u>	e method (Trer	nie Pipe)	Dri	lling Method: Holl	ow Stem Augers	
ADDITIONA	L INFORMA	ATION					
Protective Cas	sing: <u>Yes</u>	1 1 1		Pur	np Capacity: _ gpm		
Static water I Water Level M	.evei: <u>/</u> π. be Aeasure Tool:	n scope	ce	lot Dri	al Design Head: _ π lling Fluid:	•	
Well Develop	ment Period: _	<u>1</u> hrs.		Dri	ll Rig: <u>Schramm 45(</u>	<u>)</u>	
Method of De	velopment: <u>pu</u>	imp		Hea	lth and Safety Plan	Submitted? Yes	
	INTS.						-
CFOLOCIC							
0 - 5: Brown-l	Red OT - Othe	ər fill					
5 - 11: Brown	-Red SM - Sili	ty sands, sand-:	silt mixtures				
ADDITIONA	L INFORMA	ATION:			···	h	

Company: SGS NORTH AMERICA INC.

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201608453

PROPERTY OWNER:       NA BOROUGH OF MAYWOOD         Company/Organization:       Borough of Maywood         Address:       15 Park Avenue Maywood Broo, New Jersey 07607         WELL LOCATION:       FUSRAP Maywood Project         Address:       Eacelston Avenue / MW-54D confirmed by client         County:       Bergen       Municipality:         Maywood Broip       Lot:       ROW         Basing (X):       611195       Northing (Y):         Coordinate System: NJ State Plane (NAD83) - USFEET       DATE WELL STARTED:       July 27, 2016         WELL CONSTRUCTION       Depth to       Depth to       Depth to         Total Depth Drifted (h):       79       Finished Well Depth (ft.):       78.5       Well Surface:       Fluck Mount         Sorehole       0       38       10       0       0       0       0         Sorehole       0       38       6       Steel       .280       28       70         Sorehole       0       38       6       Steel       .280       70       26       28       70       26       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 </th <th></th> <th></th> <th></th> <th><u>MONIT</u></th> <th>ORING WE</th> <th>LL RECORD</th> <th></th> <th></th>				<u>MONIT</u>	ORING WE	LL RECORD		
Company/Organization:       Borough of Maywood         Address:       15 Park Avenue Maywood Boro, New Jersey 07607         WELL LOCATION:       FUSRAP Maywood Project         Address:       Eccelston Avenue / MW-54D confirmed by client         County:       Bergen       Municipality:       Maywood Boro         Lot:       ROW       Block:       ROW         Easting (X):       611195       Northing (Y):       752788       DATE WELL STARTED:       July 25, 2016         Coordinate System: NJ State Plane (NAD3) - USFEET       DATE WELL COMPLETED:       July 27, 2016         WELL CONSTRUCTION       Total Depth Northing (Y):       752.788       DATE WELL COMPLETED:       July 27, 2016         WELL CONSTRUCTION       Total Depth to       Depth to       Diameter       Matorial       (Bs/ch no.)         Sorehole       38       79       6	PROPERTY	OWNER: _]	NA BOROUG	H OF MAYWO	DOD			
Address:       15 Park Avenue Maywood Boro, New Jersey 07607         WELL LOCATION:       FUSRAP Maywood Project         Address:       Eocelston Avenue / MW-54D confirmed by client         County:       Bergen       Municipality:       Maywood Boro       Lot; ROW       Block: ROW         Easting (X):       611195       Northing (Y):       752788       DATE WELL STARTED; July 25, 2016         Coordinate System: NJ State Plane (NAD83) - USPEET       DATE WELL COMPLETED; July 27, 2016         WELL CONSTRUCTION       Total Depth to Isotic (h, ):       79       Finished Well Depth (h;):       78.5       Well Surface;       Flash Mount         Total Depth to       Depth to       Diameter       Material       Wgt/Rating/Screen # Used         Sorehole       0       38       6       Steel       280         Screen       58.5       2       PVC       soft 40         Saing       0       58.5       2       PVC       ollo         Screen       58.5       78.5       2       PVC       ollo         Saing       0       38       6       Steel       280       ollo         Screen       58.5       78.5       2       PVC       ollo       ollo         Saung <td< td=""><td>Company/Or</td><td>ganization: B</td><td>orough of May</td><td>/wood</td><td></td><td></td><td></td><td></td></td<>	Company/Or	ganization: B	orough of May	/wood				
WELL LOCATION: _FUSRAP Maywood Project         Address: _Eccelston Avenue / MW-54D confirmed by client         County:Bergen Municipality: _Maywood Boo       Lot: _ROW	Address: 1	5 Park Avenue	Maywood Bo	ro, New Jersey	07607			
WELL DOCATION:							· <u>u</u>	
Address:       Eccelston Avenue / MW-34D confirmed by client         County:       Bergen       Municipality:       Maywood Boro       Lot:       ROW       Block:       ROW         Easting (X):       611195       Northing (Y):       752788       DATE WELL STARTED;       July 25, 2016       DATE WELL COMPLETED;       July 27, 2016         Coordinate System: NJ State Plane (NAD83) - USFEET       DATE WELL COMPLETED;       July 27, 2016       DATE WELL COMPLETED;       July 27, 2016         WELL CONSTRUCTION       Total Depth Toilled (ft.):       79       Finished Well Depth (ft.):       78.5       Well Surface;       Flush Mount         Monetoeid       0       38       10       Identical       Wgt/Rating/Screen # Used       (lbs/ch no.)         Borehole       0       38       10       Identical	WELL LOC	ATION: FU	SKAP Maywo	od Project			-	0.11 - 1
County:       Bergen       Municipality:       Maywood Boro       Lot:       ROW       Block:       ROW         Easting (X):       611195       Northing (Y):       752788       DATE WELL STARTED:       July 25, 2016         Coordinate System: NJ State Plane (NAD83) - USFEET       DATE WELL COMPLETED:       July 27, 2016         WELL USE:       MONITORING       Local ID:       MW-54D         WELL CONSTRUCTION       Total Depth to       Depth to       Diameter         Top (ft.)       Bottom (ft.)       (inches)       Material       Wgt/Rating/Screen # Used         3orehole       0       38       10	Address: <u>E</u>	ccelston Avenu	ue / MW-54D (	confirmed by cli	ient			
Easting (X):       611195       Northing (Y):       752788         Coordinate System: NJ State Plane (NAD83) - USFEET       DATE WELL STARTED:       July 25, 2016         WELL USE:       MONITORING       Date WELL COMPLETED:       July 27, 2016         WELL USE:       MONITORING       Local ID:       MW-54D         WELL CONSTRUCTION       Total Depth Drilled (ft.):       79       Finished Well Depth (ft.):       78.5         Top (ft.)       Depth to       Depth to       Discover # Used (lbs/ch no.)         Borehole       0       38       10         3orehole       38       79       6         Casing       0       58.5       2       PVC       sch 40         Sarene       58.5       78.5       2       PVC       old         Screen       58.5       78.5       2       PVC       old         Toout       0       54       6       2       46       165       99         Travel Pack       56.5       6       2       #100 Filpro       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	County: <u>Be</u>	rgen	_ Municipalit	y: <u>Maywood E</u>	Boro	Lot: ROW	Block: R	OW
Coordinate System: NJ State Plane (NAD83) - USFEET       DATE WELL COMPLETED: July 27, 2016         WELL USE: MONITORING	Easting (X):	611195	Northing	(Y): 752788		DATE WELL S	<b>FARTED:</b> July 25, 20	16
WELL USE:       MONITORING         Local ID: _MW-54D         Depth to Setter (ft.):	Coordi	nate System: N	JJ State Plane (	NAD83) - USF	EET D	ATE WELL COM	PLETED: July 27, 20	16
Depth to       Depth to       Diameter       Material       Wgt/Rating/Screen # Used         30rehole       0       38       10         30rehole       38       79       6         2asing       0       38.5       2       PVC       sch 40         2asing       0       38.6       Steel       .280         Screen       58.5       2       PVC       .010         2asing       0       38       6       Steel       .280         Screen       58.5       2       PVC       .010       .010         2asing       0       38       6       Steel       .280       .280         Screen       58.5       7.8.5       2       PVC       .010       .010         3rout       0       54       6       2       46       828       70         3rout       0       54.5       6       2       #00 Filpro	WELL USE		ING	· · · · ·				<u> </u>
Durier Use(s):       Lucan ID:       Num-34D         WELL CONSTRUCTION       Total Depth to       Depth to       Diameter       Material       Well Surface:       Flush Mount         Depth to       Depth to       Diameter       Material       Wgr/Rating/Screen # Used         Grehole       0       38       10       (lbs/ch no.)         Borehole       38       79       6       (lbs/ch no.)         Casing       0       58.5       2       PVC       sch 40         Casing       0       38       6       Steel       .280         Screen       58.5       78.5       2       PVC       .010         Depth to       Depth to       Outer       Inner       Material       Material         Top (ft.)       Bottom (ft.)       Diameter (in.)       Bentonite (lbs.)       Neat Cement (lbs.)       Water (gal.)         3rout       0       54       6       2       #46       828       70         3rout       0       38       10       6       64       1165       99         3ravel Pack       56.5       79       6       2       #00 Filpro       Filpro       Filpro         3rout       0			<u> </u>				W 54D	
WELL CONSTRUCTION         Total Depth Drilled (ft.): 79 Finished Well Depth (ft.): 78.5 Well Surface: Flush Mount         Depth to Top (ft.)       Depth to Bottom (ft.)       Diameter (inches)       Material       Wgt/Rating/Screen # Used (lbs/ch no.)         30rehole       0       38       10	Other Use(s)					Local ID: M	W-34D	
Total Depth Drilled (ft.):       79       Finished Well Depth (ft.):       78.5       Well Surface:       Flush Mount         Depth to Top (ft.)       Depth to Bottom (ft.)       Diameter (inches)       Wgt/Rating/Screen # Used (ibs/ch no.)         Borehole       0       38       10       Wgt/Rating/Screen # Used (ibs/ch no.)         Borehole       38       79       6       Colspan="4">Colspan="4">Wgt/Rating/Screen # Used (ibs/ch no.)         Borehole       38       79       6       Colspan="4">Colspan="4">Wgt/Rating/Screen # Used (ibs/ch no.)         Borehole       38       79       6       Colspan="4">Colspan="4">Colspan="4">Colspan="4">Wgt/Rating/Screen # Used (ibs/ch no.)         Borehole       38       79       6       Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Cols	WELL CON	STRUCTION	J					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Total Depth	Drilled (ft.):	79	Finished We	ell Depth (ft.):	78.5	Well Surface: Flus	h Mount
Top (ft.)Bottom (ft.)(inches)(ibs/ch no.)Borehole03810Borehole38796Casing058.52PVCStreen58.578.52PVCScreen58.578.52PVCDepth toDepth toOuterInnerMaterialTop (ft.)Bottom (ft.)Diameter (in.)Bentonite (lbs.)Neat Cement (lbs.)Water (gal.)Grout054624682870Grout054624682870Grout03810664116599Gravel Pack56.57962#100 FilproGravel Pack56.57962#116Frouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryDDITIONAL INFORMATION 'potective Casing: YesPump Capacity: _gpmgpmStatic Water Level:60 ft. below land surfaceTotal Design Head: _ ft.Vater Level Measure Tool:1 hrs.Drilling Fluid:Vethod of Development:air liftHealth and Safety Plan Submitted? Yes'ump Type:YTTACHMENTS:FillFEOLOGIC LOG'- 5: Brown-Red OT - Other fill		Depth to	Depth to	Diameter		Material	Wet/Ratin	g/Screen # Used
Borehole03810Borehole38796Casing058.52PVCCasing0386SteelCasing0386SteelScreen58.578.52PVCOuterInnerMaterialTop (ft.)Botton (ft.)Diameter (in.)Diameter (in)Bentonite (lbs.)Neat Cement (lbs.)Water (gal.)Grout0546246O38106641165Grout038106641165Grout038106641165Grout038106641165Grout038106641165Grout0381062#10Grout038106641165Grout0381062#10Grout0381062#10Grout162#10#100Grout162#10Grout111Grout111Grout111Grout11Grout11Grout11Grout11Grout11Grout11 </td <td></td> <td>Top (ft.)</td> <td>Bottom (ft.)</td> <td>(inches)</td> <td></td> <td></td> <td>(lb</td> <td>s/ch no.)</td>		Top (ft.)	Bottom (ft.)	(inches)			(lb	s/ch no.)
Borehole         38         79         6           Casing         0         58.5         2         PVC         sch 40           Casing         0         38         6         Steel         .280           Screen         58.5         78.5         2         PVC         .010           Depth to Top (ft.)         Depth to Bottom (ft.)         Dumeter (in.)         Diameter (in.)         Bentonite (lbs.)         Neat Cement (lbs.)         Water (gal.)           3rout         0         54         6         2         46         828         70           3rout         0         38         10         6         64         1165         99           3ravel Pack         54         56.5         6         2         #40         828         70           3ravel Pack         54.5         79         6         2         #40         1165         99           3ravel Pack         56.5         79         6         2         #100         700           3ravel Pack         56.5         79         6         2         #100         700           3ravel Pack         56.5         79         6         2         #100         700	Borehole	0	38	10				
Casing058.52PVCsch 40Casing0386Steel.280Screen58.578.52PVC.010Depth to Top (ft.)Depth to Bottom (ft.)Outer Diameter (in.)Inner Diameter (in)MaterialGrout054624682870Grout054624682870Grout03810664116599Gravel Pack5456.562#00 FilproGravel Pack56.57962#1 FilproGrouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryVDDITIONAL INFORMATION Vater Level Measure Tool:m scopeDrilling Fluid: Health and Safety Plan Submitted?Vell Development Period:1 hrs. I hrs.Drill Rig: Schramm 450 Health and Safety Plan Submitted?VTTACHMENTS:Forout <b>EOLOGIC LOG</b>	Borehole	38	79	6				
Casing0386Steel.280Screen58.578.52 $PVC$ .010Depth to Top (ft.)Depth to Bottom (ft.)Outer Diameter (in.)Inner Diameter (in.)MaterialBrout054624682870Brout03810664116599Bravel Pack5456.562#00 FilproBravel Pack56.57962#1 FilproBrouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryStructive Casing: Yes Static Water Level:Pump Capacity: _ gpm Total Design Head: _ ft.Pump Capacity: _ gpm Drilling Fluid:Well Development Period:1 hrs. Drill Rig:Drill Rig: Schramm 450 Health and Safety Plan Submitted? YesVartActHMENTS:E $Ves$ Fresure and fullVartAct Log $Log$ $Ves$ $Ves$ Static DoGIC LOG $V$ - 5: Brown-Red OT - Other fill $Ves$	Casing	0	58.5	2		PVC	S	sch 40
Screen58.578.52 $PVC$ .010Depth to Top (ft.)Depth to Bottom (ft.)Diameter (in.)Diameter (in.)Bentonite (lbs.)Neat Cement (lbs.)Water (gal.)Grout054624682870Grout03810664116599Gravel Pack5456.562#00 FilproGravel Pack5456.562#11 FilproGrouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryADDITIONAL INFORMATION Protective Casing: YesPump Capacity: _ gpmStatic Water Level: 60 ft. below land surfacePump Capacity: _ gpmNethod of Development Period:_ hrs.Drilling Fluid:Drilling Fluid:Well Development Period:_ hrs.Drill Rig: Schramm 450Vetmod of Development:air liftHealth and Safety Plan Submitted? YesYEDLOGIC LOG- 5: Brown-Red OT - Other fill	Casing	0	· 38	6		Steel		.280
Depth to Top (ft.)         Depth to Bottom (ft.)         Outer Diameter (in.)         Inner Diameter (in.)         Material           Grout         0         54         6         2         46         828         70           Grout         0         38         10         6         64         1165         99           Grout         0         38         10         6         64         1165         99           Grout         0         38         10         6         64         1165         99           Gravel Pack         54         56.5         6         2         #00 Filpro         #00 Filpro           Grouting Method:         Pressure method (Tremie Pipe)         Drilling Method:         Air Rotary         Metrial           ADDITIONAL INFORMATION         Pump Capacity: _ gpm         Static Water Level: 60 ft. below land surface         Total Design Head: _ ft.           Vater Level Measure Tool: m scope         Drilling Fluid:         Drilling Fluid:         Well Development Period: _ hrs.         Drilling Fluid:           Velto of Development: air lift         Health and Safety Plan Submitted? Yes         Pump Type:         Yes           YEACOGIC LOG	Screen	58.5	78.5	2		PVC		.010
Top (ft.)Bottom (ft.)Diameter (in.)Diameter (in.)Bentonite (lbs.)Neat Cement (lbs.)Water (gal.)Grout054624682870Grout03810664116599Gravel Pack5456.562#00 FilproGravel Pack56.57962#1 FilproGrouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryGrouting Method:Pressure method (Tremie Pipe)Drilling Method:Air RotaryADDITIONAL INFORMATIONPump Capacity: _ gpmStatic Water Level: 60 ft. below land surfaceTotal Design Head: _ ft.Portective Casing: YesYesDrilling Fluid:Health and Safety Plan Submitted? YesVell Development Period: 1 hrs.Drill Rig: Schramm 450Atert Action of Development: air liftHealth and Safety Plan Submitted? YesYump Type:YesYTTACHMENTS:FEOLOGIC LOG- 5: Brown-Red OT - Other fill		Depth to	Depth to	Outer	Inner		Material	
Grout         0         54         6         2         46         828         70           Grout         0         38         10         6         64         1165         99           Grout         2         #00 Filpro         37         97         6         2         #00 Filpro           Grouting Method:         Pressure method (Tremie Pipe)         Drilling Method:         Air Rotary         11           ADDITIONAL INFORMATION         Pressure method (Tremie Pipe)         Drilling Method:         Air Rotary         11           Portective Casing: Yes         Pump Capacity: _ gpm         11         11         11         11           Portective Casing: Yes         Pump Capacity: _ gpm         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         1		Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Stout     0     38     10     6     64     1163     99       Gravel Pack     54     56.5     6     2     #00 Filpro       Gravel Pack     56.5     79     6     2     #1 Filpro       Gravel Pack     S6.5     79     6     2     #1 Filpro       Gravel Pack     Pressure method (Tremie Pipe)     Drilling Method: _Air Rotary	Grout	0	54	6	2	46	828	70
Site	Gravel Pack	54	56.5	10 6	2	04	#00 Filpro	
Grouting Method:       Pressure method (Tremie Pipe)       Drilling Method:       Air Rotary         ADDITIONAL INFORMATION       Pump Capacity: _ gpm         Protective Casing:       Yes       Pump Capacity: _ gpm         Static Water Level:       60       ft. below land surface       Total Design Head: _ ft.         Water Level Measure Tool:       m scope       Drilling Fluid:       Drilling Fluid:         Well Development Period:       1 hrs.       Drill Rig:       Schramm 450         Atethod of Development:       air lift       Health and Safety Plan Submitted?       Yes         ATTACHMENTS:       SeoLOGIC LOG       - 5: Brown-Red OT - Other fill       Image: Schramm 450       Image: Schramm 450	Gravel Pack	56.5	79	6	2		#1 Filpro	
ADDITIONAL INFORMATION         Protective Casing: Yes       Pump Capacity: _ gpm         Static Water Level: 60 ft. below land surface       Total Design Head: _ ft.         Water Level Measure Tool: m scope       Drilling Fluid:         Water Level Measure Tool: 1 hrs.       Drill Rig: Schramm 450         Method of Development: air lift       Health and Safety Plan Submitted? Yes         Pump Type:       Mathematical Safety Plan Submitted? Yes         Mathematical Log       Safety Plan Submitted? Yes         Safety Plan Submitted? Yes       Safety Plan Submitted? Yes         Safety Plan Submitted? Yes       Safety Plan Submitted? Yes         Safety Plan Submitted? Yes       Safety Plan Submitted? Yes	Grouting Met	hod: Pressur	e method (Trer	nie Pipe)	Dri	lling Method: Air	Rotary	
Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: <u>60</u> ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: <u>m scope</u> Drilling Fluid: Well Development Period: <u>1</u> hrs. Drill Rig: <u>Schramm 450</u> Method of Development: <u>air lift</u> Health and Safety Plan Submitted? <u>Yes</u> Pump Type: <u>ATTACHMENTS:</u> <u>FEOLOGIC LOG</u> - 5: Brown-Red OT - Other fill	ADDITION		TION					·
Static Water Level: 60 ft. below land surface       Total Design Head: _ ft.         Water Level Measure Tool: m scope       Drilling Fluid:         Well Development Period: 1 hrs.       Drill Rig: Schramm 450         Method of Development: air lift       Health and Safety Plan Submitted? Yes         Pump Type:       TTACHMENTS:         SEOLOGIC LOG       5: Brown-Red OT - Other fill	Protective Ca	sing: Yes			Pur	np Capacity: _ gpm		
Water Level Measure Tool: m scope       Drilling Fluid:         Well Development Period: 1 hrs.       Drill Rig: Schramm 450         Method of Development: air lift       Health and Safety Plan Submitted? Yes         Pump Type:       Health and Safety Plan Submitted? Yes         MTTACHMENTS:       FEOLOGIC LOG         - 5: Brown-Red OT - Other fill       Health and Safety Plan Submitted?	Static Water I	Level: <u>60</u> ft. t	elow land surf	àce	Tot	al Design Head: _ f	t.	
Method of Development: <u>air lift</u> Pump Type: ATTACHMENTS: GEOLOGIC LOG 1 - 5: Brown-Red OT - Other fill	Water Level I Well Develor	Measure Tool:	m scope		Dri	lling Fluid: Il Pig: Sabramm 450	0	
Pump Type: ATTACHMENTS: GEOLOGIC LOG - 5: Brown-Red OT - Other fill	Method of De	velopment: ai	<u>i</u> lift		Hea	alth and Safety Plan	Submitted? Yes	
ATTACHMENTS: GEOLOGIC LOG - 5: Brown-Red OT - Other fill	Pump Type:					•		
GEOLOGIC LOG - 5: Brown-Red OT - Other fill	ATTACHM	ENTS:						
) - 5: Brown-Red OT - Other fill	GEOLOGIC	LOG						·····
	0 - 5: Brown-	Red OT - Othe	r fill				-	······
- 10: Brown-Red SM - Silty sands, sand-silt mixtures	5 - 10: Brown	-Red SM - Silt	ty sands, sand-	silt mixtures				
0 - 23: Brown-Red GC - Clayey gravels, gravel-sand-clay mixtures	10 - 23: Brow	n-Red GC - Cl	layey gravels, g	gravel-sand-clay	mixtures			
23 - 28: brown/red WR - Weathered Rock sandstone	23 - 28: brow	n/red WR - We	eathered Rock	sandstone				
28 - 79: brown/red CR - Competent Rock sandstone	28 - 79: brow	n/red CR - Cor	npetent Rock s	andstone				<u></u>
ADDITIONAL INFORMATION:	ADDITIONA	L INFORMA	TION:		,			

Nicholas A Fallucca, Driller of Record: JOURNEYMAN LICENSE # 0001302

Company: SGS NORTH AMERICA INC.

## APPENDIX A

## NJDEP SURVEY FORM B FOR MODIFIED AND NEW LTM WELLS

	New Jersey Department of Environment Site Remediation Program	ironment	al Protection	
	Monitoring Well Certification Fo	orm B - Lo	ocation Certification	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION			
Sit	e Name: FUSRAP Maywood Superfund Site			· · · · · · · · · · · · · · · · · · ·
Lis	t all AKAs:			
Str	eet Address: 100 West Hunter Avenue			
Mu	nicipality: Maywood		(Township, Borough or City)	
C0	unty: Bergen		Zip Code: 07607	
Pro	gram Interest (PI) Number(s):		Case Tracking Number(s	):
SE	CTION B. WELL OWNER AND LOCATION			
1.	Name of Well Owner USACE			
2.	Well Location (Street Address) 90 Park Way, R	ochelle Par	k, NJ	
З.	Well Location (Municipal Block and Lot) Bl	lock# 41.01	1 Lot # 1	7.01
SE	CTION C. WELL LOCATION SPECIFICS			
1	Well Permit Number (This number must be permar	ently affixe	d to the well casing): E20160477	'1
2	Site Well Number (As shown on application or plan	s): B38W-	-14S	
3.	Geographic Coordinate NAD 83 to nearest 1/100 o	f a second:		
	Latitude: North 40 53 52.87		Lonaitude: West 74 04 30.94	
4.	New Jersey State Plane Coordinates NAD 83 datu	m, US surve	ev feet units, to nearest foot:	
	North 752329		East 609536	
5.	Elevation of Top of Inner Casing (cap off) at referen	nce mark (r	nearest 0.01'): 44.17	
	Elevation Top of Outer casing: 44.72	Eleva	tion of ground: 44.54	
	Check one: X NAVD 88 NVGD29	On Site Dat	tum 🔲 Other	
6.	Source of elevation datum (benchmark, number/de here, assume datum of 100', and give approximate	scription and actual ele	nd elevation/datum). If an on-site evation (referencing NAVD 88).	datum is used, identify
	NAVD88 ESTABLISHED BY GPS METHO	DDS.		
7	Significant observations and notes			
	•			
SE	CTION D. LAND SURVEYOR'S CERTIFICATION		SEAL	
l ce	rtify under penalty of law that I have personally examin	ed and am	familiar with the	
info	rmation submitted in this document and all attachment	s and that, t	ased on my inquiry of	
sub	mitted information is true, accurate and complete:	n aware that	there are significant	
per	alties for submitting false information including the pos	sibility of an	e and imprisonment.	.1.1
Pro	fessional Land Surveyor's Signature:	$\checkmark$		Date/2e///
Su	veyor's Name: PAUL EMILIUS, Jr.	/	License Numb	er: 3/186
Firr	n Name: LAYOUT, INC.		_ Certificate of Authorization	#: <u>24GA28114600</u>
Ma	ling Address 24 KANOUSE ROAD			07405
City	//Town: NEWFOUNDLAND	State	NJ Zip	Code: 0/435
Ph	one Number (973) 249-0900	Ext.:	Fax: <u>(</u> 97	3) 838-6433

New Jersey Department of Enviro	onmenta	al Protection	
Site Remediation Program			
Maniforing Wall Cartification For	D   -	antin Contification	
Wonitoring weil Certification For	п в - Lo	cation Certification	Date Stamp
			(For Department use only)
SECTION A. SITE NAME AND LOCATION			
Site Name: FUSRAP Maywood Superfund Site			
List all AKAs:			
Street Address: 100 West Hunter Avenue		······································	
Municipality: Maywood		(Township, Borough or City)	
County: Bergen		Zip Code: 07607	
Program Interest (PI) Number(s):		Case Tracking Number(s	):
SECTION B. WELL OWNER AND LOCATION			
1. Name of Well Owner USACE	<u> </u>		
2. Well Location (Street Address) 90 Park Way, Rock	helle Park	, NJ	
3. Well Location (Municipal Block and Lot) Bloc	:k <b>#</b> 41.01	Lot # 1	7.01
SECTION C. WELL LOCATION SPECIFICS			
Well Permit Number (This number must be permaner	utly affixed	to the well casing) E20160477	0
2. Site Well Number (As shown on application or plans):	B38W-	14D	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second:		
Latitude: North 40 53 52.83	0000110.	Longitude: West 74.04.30.85	
4. New Jersev State Plane Coordinates NAD 83 datum.	— US surve	v feet units, to nearest foot:	
North 752325		East 609543	
5. Elevation of Top of Inner Casing (cap off) at reference	– e mark (n	earest 0.01'); 44.45	
Elevation Top of Outer casing: 44.77	Elevati	on of ground: 44.53	
Check one: 🕅 NAVD 88 🔲 NVGD29 🗌 Or	— ι Site Datι	um Other	
6. Source of elevation datum (benchmark, number/desc	ription and	d elevation/datum). If an on-site	datum is used, identify
here, assume datum of 100', and give approximated a	ictual elev	ation (referencing NAVD 88).	•
NAVD88 ESTABLISHED BY GPS METHOD	)S.		
7. Significant observations and notes:	·		
SECTION D. LAND SURVEYOR'S CERTIFICATION			
I certify under penalty of law that I have personally examined	and am fa	miljar with the	-
information submitted in this document and all attachments a	ind that, be	ased on my inquiry of	с. 1
submitted information is true, accurate and complete. Lam a	ware that i	here are significant	
penalties for submitting false information including the possible	villet of fine	and imprisonment.	11-1-
Professional Land Surveyor's Signature:	$\geq$	<u> </u>	Date20///
Surveyor's Name: PAUL EMILIUS, Jr.		License Numbe	er: 3/186
Firm Name: LAYOUT, INC.		Certificate of Authorization	#: 24GA28114600
Mailing Address 24 KANOUSE ROAD			
City/Town: NEWFOUNDLAND	State	NJ Zip	Code: 07435
Phone Number (973) 249-0900	Ext.:	Fax: <u>(</u> 973	3) 838-64 <u>33</u>

New Jersey Department of Environm Site Remediation Program	ental Protection
Monitoring Well Certification Form B	- Location Certification Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	· · · · · · · · · · · · · · · · · · ·
Municipality: Maywood	(Township, Borough or City)
County: Bergen	Zip Code: 07607
Program Interest (PI) Number(s):	Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) 100 West Hunter Avenue	9
3. Well Location (Municipal Block and Lot) Block# 1	.9.01 Lot # 1
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently a	ffixed to the well casing): E201604681
2. Site Well Number (As shown on application or plans): BF	₹PZ-2
3. Geographic Coordinate NAD 83 to nearest 1/100 of a seco	ond:
Latitude: North 40 53 50.71	Longitude: West 74 04 20.71
4. New Jersey State Plane Coordinates NAD 83 datum, US s	survey feet units, to nearest foot:
North 752114	East 610323
5. Elevation of Top of Inner Casing (cap off) at reference ma	rk (nearest 0.01'): <u>54.62</u>
Elevation Top of Outer casing: 53.28 E	levation of ground: 53.28
Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site	Datum 🗌 Other
<ol> <li>Source of elevation datum (benchmark, number/descriptio here, assume datum of 100', and give approximated actual</li> </ol>	n and elevation/datum). If an on-site datum is used, identify I elevation (referencing NAVD 88).
NAVD88 ESTABLISHED BY GPS METHODS.	
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL
I certify under penalty of law that I have personally examined and	am familiar with the
those individuals immediately responsible for obtaining the inform	ation, believe the
submitted information is true, accurate and complete am aware penalties for submitting false information including the possibility	that there are significant
Professional Land Surveyor's Signature	Date 1/20/177
Surveyor's Name PAUL EMILIUS. Jr.	License Number 37186
Firm Name: LAYOUT, INC.	Certificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
Citv/Town: NEWFOUNDLAND Stat	e NJ Zip Code 07435
Phone Number (973) 249-0900 Ext.	: Fax: (973) 838-6433

New Jersey Department of Environmental Protection	
Monitoring Well Certification Form B - Location Certification	Data Stamp
	(For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or City	/)
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number	s):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) 100 West Hunter Avenue, Rochelle Park, NJ	
3. Well Location (Municipal Block and Lot) Block# 19.01 Lot #	1
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing): E2016046	91
2. Site Well Number (As shown on application or plans): BRPZ-3	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North <u>40 53 50.12</u> Longitude: West <u>74 04 21.04</u>	1
<ol> <li>New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 752055</li> <li>East 610298</li> </ol>	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 54.91	
Elevation Top of Outer casing: 55.25 Elevation of ground: 53.22	
Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	e datum is used, identify
NAVD88 ESTABLISHED BY GPS METHODS.	
7. Significant observations and notes	
SECTION D. LAND SURVEYOR'S CERTIFICATION	· · · · · · · · · · · · · · · · · · ·
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on row inquiry of those individuals immediately reponsible for obtaining the information submitted in the	
submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fipe and imprisonment.	
Professional Land Surveyor's Signature:	Date 1/20/17
Surveyor's Name: PAUL EMILIUS, Jr. License Numb	ber: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization	n#: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
City/Town: NEWFOUNDLAND State NJ Zi	p Code: 07435
Phone Number (973) 249-0900 Ext.: Fax: (97	(3) 838-6433

	New Jersey Department of Environment Site Remediation Program	ironment	al Protection		
	Monitoring Well Certification Fo	orm B - L	ocation Certifica	ition	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION				
Sit	e Name: FUSRAP Maywood Superfund Site				
Lis	t all AKAs:		-		
Str	eet Address: 100 West Hunter Avenue				·
Mu	nicipality: Maywood		(Township, Bor	ough or City)	
Co	unty: Bergen	<u>.</u>	Zip Code: 076	607	
Pro	ogram Interest (PI) Number(s):		Case Tracki	ng Number(s):	·
SE	CTION B. WELL OWNER AND LOCATION			· · ·	
1.	Name of Well Owner USACE				
2.	Well Location (Street Address) 100 West Hunte	r Avenue, I	Rochelle Park, NJ		
3.	Well Location (Municipal Block and Lot) BI	ock# 19.0	1	Lot # 1	
SE	CTION C. WELL LOCATION SPECIFICS		· · · · · · · · · · · · · · · · · · ·		
	Well Permit Number (This number must be perman	onthy office	d to the well easing):	E201604693	
2	Site Well Number (As shown on application or plan		a to the well casing). A		<u></u>
3	Geographic Coordinate NAD 83 to pearest 1/100 o	fasecond:	•		
<b>,</b>	Latitude: North 40 53 51.03	a second.	Longitude: Mest	74 04 20 68	
4	New Jersey State Plane Coordinates NAD 83 datu	m US surv	ev feet units to near	ast foot:	
- <b>T</b> .	North 752146		East 610325		
5.	Elevation of Top of Inner Casing (cap off) at referer	nce mark (i	nearest 0.01'): <u>55.11</u>		
	Elevation Top of Outer casing: <u>55.39</u>	Eleva	tion of ground: 53.00		
	Check one: 🛛 NAVD 88 🗌 NVGD29	On Site Da	tum 🗌 Other		
6.	Source of elevation datum (benchmark, number/de here, assume datum of 100', and give approximated	scription ar d actual ele	nd elevation/datum). Evation (referencing N	lf an on-site d IAVD 88).	atum is used, identify
	NAVD88 ESTABLISHED BY GPS METHO	DDS.			
7.	Significant observations and notes:				
SE	CTION D. LAND SURVEYOR'S CERTIFICATION		10.	SEAL	
1 ce	rtify under penalty of law that I have personally examin	ed and am	familiar with the	_	- 
tho:	rmation submitted in this document and all attachments se individuals immediately responsible for obtaining the	s and that, t	ased on my inquiry of	f :	
sub	mitted information is true, accurate and complete. 1 an	n aware that	there are significant		. ·
per	arries for submitting farse information including the pos	sibility of in	e and imprisonment.		11- 1-
		///	<u> </u>	·	$- \text{Date} \frac{12a/1'}{2^{3}196}$
Sui		<i>•</i>	Lic	cense Number	240429414600
			_ Certificate of A	uthorization #	240AZ0114000
			N I		07425
		_ State	INJ	Zip (	
l Pho	DIRE NUMBER (3/3) 243-0300	Ext.:		- ⊢ax: (973)	030-0433

New Jersey Department of E Site Remediation Program	nvironment	al Protection	
			Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION		· · · · · · · · · · · · · · · · · · ·	(i or Department use only)
Site Name: FUSRAP Maywood Superfund Site		· · · · · · · · · · · · · · · · · · ·	
List all AKAs:			
Street Address: 100 West Hunter Avenue		а	
Municipality: Maywood	· · ·	(Township, Borough or City)	
County: Bergen		Zip Code: 07607	
Program Interest (PI) Number(s):		Case Tracking Number(s)	
SECTION B. WELL OWNER AND LOCATION			
1. Name of Well Owner USACE			
2. Well Location (Street Address) 100 West Hu	Inter Avenue, F	tochelle Park, NJ	
3. Well Location (Municipal Block and Lot)	Block# 19.01	Lot # <u>1</u>	
SECTION C. WELL LOCATION SPECIFICS			
1. Well Permit Number (This number must be perr	manently affixed	to the well casing): E20160469	5
2. Site Well Number (As shown on application or p	lans): BRPZ-	5	
3. Geographic Coordinate NAD 83 to nearest 1/10	0 of a second:	74 04 00 00	
Latitude: North 40 53 51.10	·	Longitude: West 74 04 20.93	
<ol> <li>New Jersey State Plane Coordinates NAD 83 d North 752154</li> </ol>	atum, US surve	ey feet units, to nearest foot: East <u>610305</u>	
.5. Elevation of Top of Inner Casing (cap off) at refe	erence mark (n	earest 0.01'): <u>54.15</u>	
Elevation Top of Outer casing: <u>54.33</u>	Elevat	ion of ground: 52.02	· · · · · · · · · · · · · · · · · · ·
Check one: 🛛 NAVD 88 🗌 NVGD29	📋 On Site Dat	um 🔲 Other	
<ol> <li>Source of elevation datum (benchmark, number here, assume datum of 100', and give approxim</li> </ol>	description and ated actual elev	d elevation/datum). If an on-site c vation (referencing NAVD 88).	latum is used, identify
NAVD88 ESTABLISHED BY GPS MET	HODS.	. <b>.</b> .	
7. Significant observations and notes:			
· · · · · ·	н 		
SECTION D. LAND SURVEYOR'S CERTIFICATIO	<b>N</b>	SEAL	
I certify under penalty of law that I have personally exa	mined and am fa	amiliar with the	·
those individuals immediately responsible for obtaining	the information	I believe the	en e
submitted information is true, accurate and complete. penalties for submitting false information including the	l am áware that possibility of fine	there are significant	
Professional Land Surveyor's Signature:	Alt		Date 1/20/17
Surveyor's Name: PAUL EMILIUS, Jr.		License Numbe	r: 37186
Firm Name: LAYOUT, INC.	<del>7</del>	Certificate of Authorization #	t: 24GA28114600
Mailing Address 24 KANOUSE ROAD			
City/Town: NEWFOUNDLAND	State	NJ Zip	Code: 07435
Phone Number (973) 249-0900	Ext.:	Fax: (973	) 838-6433

	New Jersey Department of Environment Site Remediation Program	mental Prote	Contification	
	Wonitoring well Certification Form	5 - Location	Certification	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION			
Sit	e Name: FUSRAP Maywood Superfund Site			
Lis	t all AKAs:		-	
Str	eet Address: 100 West Hunter Avenue			
Mu	nicipality: Maywood	(Tow	nship, Borough or City)	
Co	unty: Bergen	Zip C	ode: 0/60/	
Pro	ogram Interest (PI) Number(s): 005821	Ca	ise Tracking Number(s)	:
SE	CTION B. WELL OWNER AND LOCATION			
1.	Name of Well Owner USACE	nua Bashalla B	ork NJ	
2.	Well Location (Street Address) 100 West Hunter Ave		ark, inj	
3.	vveil Location (Municipal Block and Lot) Block#	19.01		
SE	CTION C. WELL LOCATION SPECIFICS			
1.	Well Permit Number (This number must be permanently	affixed to the we	ell casing): <u>E20160470</u>	8
2.	Site Well Number (As shown on application or plans):	BRPZ9		
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a se Latitude: North 40 53 52.25	cond: Longituc	e: West 74 04 20.89	
4.	New Jersey State Plane Coordinates NAD 83 datum, US	survey feet uni	s, to nearest foot:	
	North 752270	East 6	0308	
5.	Elevation of Top of Inner Casing (cap off) at reference m	ark (nearest 0.0	)1'): 53.21	
	Elevation Top of Outer casing: 53.53	Elevation of gro	und: <u>51.47</u>	
	Check one: X NAVD 88 NVGD29 On Si	te Datum	Other	
6.	Source of elevation datum (benchmark, number/descript here, assume datum of 100', and give approximated actu	ion and elevation al elevation (ref	n/datum). If an on-site erencing NAVD 88).	datum is used, identify
	NAVD88 ESTABLISHED BY GPS METHODS.			
7.	Significant observations and notes:			
ľ				
SE	CTION D. LAND SURVEYOR'S CERTIFICATION		SEAL	an sa
l I ce info	ertify under penalty of law that I have personally examined an prmation submitted in this document and all attachments and	d am familiar with that, based on m	n the y inquiry of	
tho	se individuals immediately responsible for obtaining the information of the information o	mation I believe	the	• •• • •
per	nalties for submitting false information including the ossibility	fine and impr	isonment.	
Pro	ofessional Land Surveyor's Signature:			Date 1/20/0
Su	rveyor's Name: PAUL EMILIUS, Jr.		License Numbe	er: 37186
Fin	m Name: LAYOUT, INC.	Cert	ficate of Authorization	#: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD			
Cit	y/Town: NEWFOUNDLAND St	ate <u>NJ</u>	Zip	Code: 07435
Ph	one Number (973) 249-0900 Ex	d.:	Fax: <u>(</u> 973	3) 838-6433

New Jersey Department Site Remediation Program	of Environmental Protection	
Monitoring Well Certifica	ition Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION		
Site Name: FUSRAP Maywood Superfund	Site	
List all AKAs:	· · · · ·	
Street Address: 100 West Hunter Avenue		
Municipality: Maywood	(Township, Borough or (	City)
County: Bergen	Zip Code: 07607	
Program Interest (PI) Number(s):	Case Tracking Numb	per(s):
SECTION B. WELL OWNER AND LOCATIO	)N	
1. Name of Well Owner USACE	· · · · · · · · · · · · · · · · · · ·	
2. Well Location (Street Address) 100 W.	Hunter Avenue, Maywood Borough, NJ	
3. Well Location (Municipal Block and Lot)	Block# 124 Lot	# 46
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must b	e permanently affixed to the well casing): <u>E20160</u>	04710
2. Site Well Number (As shown on application	on or plans): <u>MW-34D</u>	
3. Geographic Coordinate NAD 83 to neares	t 1/100 of a second:	
Latitude: North 40 53 53.01	Longitude: West 74 04 17	7.38
4. New Jersey State Plane Coordinates NAD	83 datum, US survey feet units, to nearest foot:	
North 752348	East 610577	
5. Elevation of Top of Inner Casing (cap off)	at reference mark (nearest 0.01'): 59.13	
Elevation Top of Outer casing: 59.52	Elevation of ground: 57.25	· · ·
Check one: 🛛 NAVD 88 📋 NVGD29	On Site Datum U Other	
<ol> <li>Source of elevation datum (benchmark, nu here, assume datum of 100', and give app</li> </ol>	umber/description and elevation/datum). If an on- roximated actual elevation (referencing NAVD 88)	site datum is used, identify ).
NAVD88 ESTABLISHED BY GPS	METHODS.	
7. Significant observations and notes:		
	······	
SECTION D. LAND SURVEYOR'S CERTIFIC	SEA	L .
I certify under penalty of law that I have personal information submitted in this document and all at	ly examined and am-familiar with the	·.
those individuals immediately responsible for obt	aining the information a believe the	and the second s
submitted information is true, accurate and comp penalties for submitting false information includir	g the bossibility of the and imprisonment.	
Professional Land Surveyor's Signature:		Date 1120/17
Surveyor's Name: PAUL EMILIUS, Jr.	License Nu	umber: 37186
Firm Name: LAYOUT, INC.	Certificate of Authoriza	ation #: 24GA28114600
Mailing Address 24 KANOUSE ROAD		
City/Town: NEWFOUNDLAND	State NJ	Zip Code: 07435
Phone Number (973) 249-0900	Ext.: Fax:	(973) 838-6433

~

	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	(For I	Date Stamp Department us	e only)
SE	CTION A. SITE NAME AND LOCATION			
Site	e Name: FUSRAP Maywood Superfund Site			
.ist	all AKAs:			
Stro	eet Address: 100 vvest Hunter Avenue			
lu	nicipality: Maywood (Township, Borough or Cit	ty)		
Co	unty: Bergen Zip Code: 0/60/			
210	gram Interest (PI) Number(s): Case Tracking Number	(s):		
3E	CTION B. WELL OWNER AND LOCATION			
۱.	Name of Well Owner USACE			
2.	Well Location (Street Address) 90 Park Way, Rochelle Park, NJ			
3.	Well Location (Municipal Block and Lot)         Block# 41.01         Lot #	17.01		
SE	CTION C. WELL LOCATION SPECIFICS			
1.	Well Permit Number (This number must be permanently affixed to the well casing): 26-1404.	3-8		
2.	Site Well Number (As shown on application or plans): B38W-14S			
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:			
	Latitude: North 40 53 52.87 Longitude: West 74 04 30.	94		· · · ·
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:			
	North 752329 East 609536			<u></u>
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 44.17			
	Elevation Top of Outer casing: 44.72 Elevation of ground: 44.54			
	Check one: 🛛 NAVD 88 🔲 NVGD29 🗍 On Site Datum 🗍 Other			
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-s here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88). NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JEI	ite datum	is used, ide A SMARTNE	entify T GNSS
_	REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.			
1.	Significant observations and notes;			
		s tea		
a⊏ Lei	SEAL			
info	prmation submitted in this document and all attachments and that, based on my inquiry of			
thc sul	be individuals immediately responsible for obtaining the information, I believe the bonitted information is true, accurate and complete I am aware that there are significant paties for submitting false information including the analysis for submitting false information including the analysis for submitting false.	ĝ.		•
יםא סיי	ofessional Land Surveyors Signature:	,,	ato	12.11
с. С	prever's Name: PAULEMILIUS Jr	mhor: 3	ale <u>//</u> /186	CL/116
3U m:-		ion # 2/	GA281146	00
	Siling Address 24 KANOLISE ROAD	UII.#4*		
L'II Né				
Ma		Zin David	07/35	

The second second

τ.

ſ

-

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certifi	Cation Date Stamp (For Department use only)	<b>y</b> )
SECTION A. SITE NAME AND LOCATION		
Site Name: FUSRAP Maywood Superfund Site		
List all AKAs:		
Street Address: 100 West Hunter Avenue		
Municipality: Maywood (Township, E	Borough or City)	
County: Bergen Zip Code:	0/60/	
Program Interest (PI) Number(s): Case Tra	cking Number(s):	
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE		
2. Well Location (Street Address) 90 Park Way, Rochelle Park, NJ		
3. Well Location (Municipal Block and Lot) Block# 41.01	Lot # <u>17.01</u>	
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be permanently affixed to the well casir	ng): <u>26-14042-0</u>	
2. Site Well Number (As shown on application or plans): B38W-14D		
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:		
Latitude: North 40 53 52.83 Longitude: We	st 74 04 30.85	ļ
<ol> <li>New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to no North <u>752325</u> East <u>609543</u></li> </ol>	earest foot:	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 44	1.45	
Elevation Top of Outer casing: <u>44.77</u> Elevation of ground: <u>44</u>	l.53	
Check one: 🖾 NAVD 88 🔲 NVGD29 🗌 On Site Datum 🗌 Other		
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datur here, assume datum of 100', and give approximated actual elevation (referencing)</li> </ol>	n). If an on-site datum is used, identify ng NAVD 88).	
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	STHE NEW JERSEY LEICA SMARTNET GNS	SS
7. Significant observations and notes:		
		•
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL	
I certify under penalty of law that I have personally examined and am familiar with the		
those individuals immediately responsible for obtaining the information, believe the	y 01	
submitted information is true, accurate and complete. I am aware that there are significated penalties for submitting false information including the possibility of the and imprisonme	ant off	
Professional Land Surveyor's Signature:	Date 11/2/1/	11
Surveyor's Name: PAUL EMILIUS, Jr.	License Number: 37186	≏
Firm Name: LAYOUT, INC. Certificate	of Authorization # 24GA28114600	
Mailing Address 24 KANOUSE ROAD		
City/Town: NEWFOUNDLAND State NJ	Zip Code: 07435	
Phone Number (973) 249-0900 Ext.:	Fax: (973) 838-6433	

New Jersey Department of Environmental Protection	
Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
ist all AKAs:	
Street Address: 100 West Hunter Avenue	
Aunicipality: Maywood (Township, Borough or Cit	y) .
County: Bergen Zip Code: 07607	1-2-
Program Interest (PI) Number(s); Case Tracking Number	(S):
SECTION B. WELL OWNER AND LOCATION I. Name of Well Owner USACE	
2. Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ	
3. Well Location (Municipal Block and Lot) Block# 124 Lot #	46
SECTION C. WELL LOCATION SPECIFICS	
I. Well Permit Number (This number must be permanently affixed to the well casing): E201605	161
2. Site Well Number (As shown on application or plans): B38W18DR	· · · · · · · · · · · · · · · · · · ·
<ol><li>Geographic Coordinate NAD 83 to nearest 1/100 of a second:</li></ol>	· · · · · · · · · · · · · · · · · · ·
Latitude: North 40 53 51.87 Longitude: West 74 04 12.6	<u> </u>
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752234 East 610938	h
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 56.65	
Elevation Top of Outer casing: <u>57.13</u> Elevation of ground: <u>56.99</u>	
Check one; 🛛 NAVD 88 🛄 NVGD29 🛄 On Site Datum 🛄 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-si here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> <li>NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JEF</li> </ol>	te datum is used, identify RSEY LEICA SMARTNET GNSS
REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	
SECTION D. LAND SURVEYOR'S CERTIFICATION	
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant	
penalties for submitting false information including the possibility of the and imprisonment.	
Professional Land Surveyor's Signature:	Date
Surveyor's Name: PAUL EMILIUS, Jr. License Nur	mber: 3/185
Him Name: LAYOUT, INC. Certificate of Authorizati	on #: 24GA28114600
	7/25
City/Town: NEWFOUNDLAND State NJ	Zip Code: 07435
Phone Number (9/3) 249-0900 Ext.: Fax: (	910) 000-0400

÷

Page 1 of 1

	New Jersey Department of Environmental Protection	
4	Site Remediation Program	
V	Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SEC	CTION A. SITE NAME AND LOCATION	
Site	e Name: FUSRAP Maywood Superfund Site	
List	t all AKAs:	
Stre	eet Address: 100 West Hunter Avenue	
.Mui	nicipality: Maywood (Township, Borough or City)	^
Соι	unty: Bergen Zip Code: 07607	
Pro	ogram Interest (PI) Number(s): Case Tracking Number(s)	·
<b>SE</b> (	CTION B. WELL OWNER AND LOCATION Name of Well Owner USACE	
2.	Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ	
3.	Well Location (Municipal Block and Lot)     Block# 124     Lot # 45	
SE	CTION C. WELL LOCATION SPECIFICS	· .
1.	Well Permit Number (This number must be permanently affixed to the well casing): E20160508	9
2.	Site Well Number (As shown on application or plans): B38W25SR	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 51.97 Longitude: West 74 04 18.47	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 752243 East 610494	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 55.04	
	Elevation Top of Outer casing: 55.44 Elevation of ground: 53.16	
	Check one: 🖾 NAVD 88 📋 NVGD29 📋 On Site Datum 🗌 Other	
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site of here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	
7.	Significant observations and notes:	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION	
l ce info tho sub per	ertify under penalty of law that I have personally examined and am familiar with the ormation submitted in this document and all attachments and that, based on my inquiry of ose individuals immediately responsible for obtaining the information. I believe the bmitted information is true, accurate and complete. I am avere that there are significant nalties for submitting false information including the possibility of fine and imprisonment.	
Pro	ofessional Land Surveyor's Signature:	Date 11/2/116
Su	Irveyor's Name: PAUL EMILIUS, Jr. License Number	ar: 37186
Fin	m Name: LAYOUT, INC.	#: 24GA28114600
Ma	ailing Address 24 KANOUSE ROAD	
Cit	ty/Town: NEWFOUNDLAND State NJ Zip	Code: 07435
Ph	none Number (973) 249-0900 Ext.: Fax: (973)	3) 838-6433

04

Page 1 of 1

C	)5						
	Ø	New Jersey Depar Site Remediation P Monitoring Well C	rtment of Enviro rogram ertification Forr	onmenta n B - Lo	l Protection cation Certificat	tion	Date Stamp For Department use only)
SE	CTION A.	SITE NAME AND LOC	ATION				
Site	e Name:	FUSRAP Maywood Su	perfund Site				
List	t all AKAs:	·			· · · · · · · · · · · · · · · · · · ·		
Stre	eet Addres	s: 100 West Hunter	Avenue				
Mu	nicipality:	Maywood			(Township, Bord	ough or City)	
Co	unty: B	ergen			Zip Code: 076	07	
Pro	ogram Inter	est (PI) Number(s):			Case Trackin	ig Number(s):	
SE 1. 2. 3	CTION B. Name of V Well Loca	WELL OWNER AND L Nell Owner USACE ttion (Street Address)	OCATION 100 W. Hunter Av	enue, May	wood Borough, NJ	Lot # 45	
CE	CTION C						
1. 2. 3. 4.	Well Perr Site Well Geograph Latitude: New Jers North 75	nit Number (This number Number (As shown on nic Coordinate NAD 83 North <u>40 53 52.02</u> ey State Plane Coordin 2247	er must be permane application or plans) to nearest 1/100 of a ates NAD 83 datum	ntly affixed : <u>B38W2</u> a second: . US surve	to the well casing): 5BR Longitude: West ey feet units, to near East 610498	E201605090 74 04 18.42 est foot:	
5.	Elevation	of Top of Inner Casing	(cap off) at reference	 e mark (n	earest 0.01'): 55.55		
	Elevation	Top of Outer casing: 5	5.93	Elevat	tion of ground: 53.68		
	Check or	e: 🛛 NAVD 88	NVGD29 🗌 O	n Site Dat	um 🗌 Other		
6.	Source o here, ass	f elevation datum (benc ume datum of 100', and	hmark, number/des give approximated	cription an actual elev	d elevation/datum). vation (referencing N	lf an on-site da IAVD 88).	tum is used, identify
	NAVD88	ELEVATIONS WERE ESTANCE NETWORK. PERIODI	BLISHED BY RTK GNS C CHECKS WERE MA	SS METHOD DE TO NGS	DOLOGY UTILIZING TH MARKER KV3423.	IE NEW JERSEY	LEICA SMARTNET GNSS
7.	Significa	nt observations and not	es:				·
	• *: · ·	· .					
SE	CTION D.	LAND SURVEYOR'S	CERTIFICATION			SEAL	
l ce infe the sul per	ertify under ormation su ose individu bmitted info nalties for s	penalty of law that I have builted in this document als immediately responsion rmation is true, accurate submitting false information	e personally examine t and all attachments ble for obtaining the and complete. I am on including the pose	d and am f and that, b information aware that infitive that	amiliar with the ased on my inquiry o , Laskeve the there are significant e and imp <u>riso</u> nment.	f	
Pre	ofessional	Land Surveyor's Signat	ure:	11			Date 11/2/116
Su	rveyor's N	ame: PAUL EMILIUS,	Jr. //		Li	cense Number.	37186
Fir	m Name:	LAYOUT, INC.	V		Certificate of	Authorization #:	24GA28114600
Ma	ailing Addr	ess 24 KANOUSE	ROAD				
Cit	ty/Town:	NEWFOUNDLAND	1 - 1000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	State	NJ	Zip C	ode: 07435
Ph	one Numb	er (973) 249-0900	)	Ext.:		_ Fax: <u>(</u> 973)	838-6433
N V	onitoring We	Il Certification Form B - Locat 2/26/13	ion Certification				Page 1 of 1

00	)	
Ģ	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION	
Site	e Name: FUSRAP Maywood Superfund Site	
List	t all AKAs:	
Stre	eet Address: 100 West Hunter Avenue	
Mu	nicipality: Maywood (Township, Borough or City	y)
Co	unty: Bergen Zip Code: 07607	
Pro	gram Interest (PI) Number(s): Case Tracking Number	(s):
SE	CTION B. WELL OWNER AND LOCATION	
1.	Name of Well Owner USACE	
2.	Well Location (Street Address) 100 W. Hunter Avenue, Rochelle Park TWP	
3.	Well Location (Municipal Block and Lot) Block# 20.01 Lot #	.1
SE	CTION C. WELL LOCATION SPECIFICS	· · · · · · · · · · · · · · · · · · ·
1	Well Permit Number (This number must be permanently affixed to the well casing): E201605	165
2	Site Well Number (As shown on application or plans): MISS01AR	
3	Geographic Coordinate NAD 83 to pearest 1/100 of a second:	· · · · · · · · · · · · · · · · · · ·
0.	Latitude: North 40 53 56.17 Longitude: West 74 04 21.6	9
4	New Jersey State Plane Coordinates NAD 83 datum US survey feet units to nearest foot:	
	North         752666         East         610245	· · · · · · · · · · · · · · · · · · ·
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 57.37	
	Elevation Top of Outer casing: 58.06 Elevation of ground: 57.85	
	Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum 🗋 Other	
6,	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-sit here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	e datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JER REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	SEY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
l ce info tho sub per	ertify under penalty of law that I have personally examined and am familiar with the prmation submitted in this document and all attachments and that, based on my inquiry of use individuals immediately responsible for obtaining the information. Delieve the pritted information is true, accurate and complete. I am aware that there are significant nalties for submitting false information including the possibility of fine and imprisonment.	
Pro	ofessional Land Surveyor's Signature:	Date n/z/14
Su	rveyor's Name: PAUL EMILIUS, Jr. License Num	nber: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorization	on #: 24GA28114600
Ma	ailing Address 24 KANOUSE ROAD	
Cit	y/Town: NEWFOUNDLAND State NJ 2	Zip Code: 07435
Ph	one Number (973) 249-0900 Ext.: Fax:	973) 838-6433
······		

Page 1 of 1

1

ne

New Jersey Department of Environmental Protection         Site Remediation Program         Monitoring Well Certification Form B - Location Certification         SECTION A.         SITE NAME AND LOCATION         Site Name:         FUSRAP Maywood Superfund Site	Date Stamp (For Department use only)
Stroot Addrose 100 West Hunter Avenue	
Municipality Maywood (Township Porcurship City)	
County: Bergen: Zin Code: 07607	
Brogram Interest (PI) Number(s):	venner venner del hel opplete et mellen et del ser en
1 Name of Well Owner USACE	
2 Well Location (Street Address) 100 W Hunter Avenue, Bochelle Park TWP	······
3 Well Location (Municipal Block and Lot) Block# 20.01 Lot # 1	and the second
<ol> <li>Well Permit Number (This number must be permanently affixed to the well casing): E201605156</li> <li>Site Well Number (As shown on application or plans): MISS01BR</li> <li>Geographic Coordinate NAD 83 to nearest 1/100 of a second: Latitude: North 40 53 56.19</li> <li>Longitude: West 74 04 21.78</li> <li>New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 752668</li> <li>Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 52.79</li> <li>Elevation Top of Outer casing: 53.54</li> <li>Elevation of ground: 51.72</li> <li>Check one: NAVD 88&lt;</li> <li>NVGD29</li> <li>On Site Datum</li> <li>Other</li> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site of here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88). NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSE REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.</li> <li>Significant observations and notes:</li> </ol>	datum is used, identify
SECTION D. LAND SURVEYOR'S CERTIFICATION       SEAL         I certify under penalty of law that I have personally examined and am/tamiliar with the information submitted in this document and all attachments and that based on my inquiry of those individuals immediately responsible for obtaining the information / believe the submitted information is true, accurate and complete. I am away that there are significant penalties for submitting false information including the possibility of fine and imprisonment.       SEAL         Professional Land Surveyor's Signature:	Date <u>///2///6</u> ar: 37186 #: 24GA28114600 Code: 07435
Phone Number (973) 249-0900 Ext.: Fax: (973)	3) 838-6433

Page 1 of 1

New Jersey Department of Environmental Protection Site Remediation Program
Monitoring Well Certification Form B - Location Certification Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION
Site Name: FUSRAP Maywood Superfund Site
List all AKAs:
Street Address: 100 W. Hunter Avenue
Municipality: Maywood (Township, Borough or City)
County: Bergen Zip Code: 07607
Program Interest (PI) Number(s): Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE 2. Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ
3. Well Location (Municipal Block and Lot) Block# 124 Lot # 46
SECTION C. WELL LOCATION SPECIFICS
<ol> <li>Well Permit Number (This number must be permanently affixed to the well casing): E201605096</li> <li>Site Well Number (As shown on application or plans): MISS02AR</li> <li>Geographic Coordinate NAD 83 to nearest 1/100 of a second: Latitude: North 40 53 54.62</li> <li>Longitude: West 74 04 13.73</li> <li>New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 752512</li> <li>Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 53.60 Elevation Top of Outer casing: 54.29</li> <li>Elevation of ground: 51.79</li> <li>Check one: ⊠ NAVD 88</li> <li>NVGD29</li> <li>On Site Datum</li> <li>Other</li> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7. Significant observations and notes:
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL
I certify under penalty of law that I have personally examined and are familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. I believe the submitted information is true, accurate and complete. I are aware that there are significant penalties for submitting false information including the possibility of time and imprisonment.
Professional Land Surveyor's Signature: Date DateDate
Surveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD
City/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Phone Number (973) 249-0900 Evt Evt (973) 838-6433

New Jersey Department of Site Remediation Program Monitoring Well Certification	Environmental Protection on Form B - Location Certifica	tion	
		(For	Date Stamp Department use only)
SECTION A. SITE NAME AND LOCATION		A A A A A A A A A A A A A A A A A A A	- <u></u>
ite Name: FUSRAP Maywood Superfund Sit	e		
st all AKAs:			
reet Address: 100 West Hunter Avenue			
unicipality: Maywood	(Township, Bor	ough or City)	
ounty: Bergen	Zip Code: 076	07	
ogram Interest (PI) Number(s):	Case Tracki	ng Number(s):	
ECTION B. WELL OWNER AND LOCATION			
Name of Well Owner USACE			
Well Location (Street Address) 100 W. H	unter Avenue, Maywood Borough, NJ		
Well Location (Municipal Block and Lot)	Block# <u>124</u>	Lot # 46	
ECTION C. WELL LOCATION SPECIFICS			
Well Permit Number (This number must be r	permanently affixed to the well casing)	E201605097	
Site Well Number (As shown on application	or plans): MISS02BR		
Geographic Coordinate NAD 83 to nearest 1	/100 of a second:		
Latitude: North 40 53 54.58	Longitude: West	74 04 13.61	
New Jersey State Plane Coordinates NAD 8	3 datum, US survey feet units, to near	est foot:	
North 752509	East 610866		
Elevation of Top of Inner Casing (cap off) at	reference mark (nearest 0.01'): 57.68	3	
Elevation Top of Outer casing: 58.12	Elevation of ground: 58.12	2	· · · · · · · · · · · · · · · · · · ·
Check one: 🛛 NAVD 88 🗌 NVGD29	🗌 On Site Datum 🛛 Other		
Source of elevation datum (benchmark, num	ber/description and elevation/datum).	If an on-site datum	is used, identify
here, assume datum of 100', and give appro	ximated actual elevation (referencing)	NAVD 88). JE NEW JERSEM LEW	
REFERENCE NETWORK. PERIODIC CHECKS V	VERE MADE TO NGS MARKER KV3423.	TE NEW JERSET LEN	JA SIVIAR LINE I GINSS
Significant observations and notes:			
ECTION D. LAND SURVEYOR'S CERTIFICA	TION	SEAL	
ertify under penalty of law that I have personally formation submitted in this document and all atta	examined and am familiar with the chments and that based on my inquiry (	of I	
ose individuals immediately responsible for obtai	ning the information, Leelieve the		· · · · · · · · · · · · · · · · · · ·
Ibmitted information is true, accurate and comple enalties for submitting false information including	te. Lam avery that there are significant the passibility of fine and impresement.		
rofessional Land Surveyor's Signature	ALA	F	Date 1)12,771
urvevor's Name: PAUL EMILIUS, Jr.		icense Number: 3	7186
irm Name: LAYOUT, INC.	Certificate of	Authorization #: 2	4GA28114600
ailing Address 24 KANOUSE ROAD			,
ity/Town: NEWFOUNDLAND	State NJ	Zip Code	e: 07435
hone Number (973) 249-0900	Ext.:	Fax: (973) 838	3-6433
Phone Number (973) 249-0900 Monitoring Well Certification Form B - Location Certificatio	Ext.:	Fax: (973) 838	8-6433 Page 1 of 1

Version 1.3 02/26/13

	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
Site	Name: EUSRAP Maywood Superfund Site	
Site		<u></u>
Ctr	all ArAs.	
Mín	nicipality: Maywood (Township Borough of Cit	
Col	interparty: <u>Adjviced</u> (Township, Borough of Cit	y)
Pro	gram Interest (PI) Number(s);	(e) [.]
		(9).
3E4 1	Name of Well Owner USACE	
'.   2	Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, N.I.	
2. २	Well Location (Municipal Block and Lot) Block# 124	31 01
о, сг		
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E201610	593
2.	Site Well Number (As shown on application or plans): MISSU4AR	· · · · · · · · · · · · · · · · · · ·
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 47.89 Longitude: West 74.04 18.3	35
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
_	North /51830 East 610505	
5.	Elevation of 1 op of Inner Casing (cap off) at reference mark (nearest 0.01'): 55.39	
	Elevation 1 op of Outer casing: 55.73 Elevation of ground: 53.41	
	Check one: XI NAVD 88 NVGD29 On Site Datum	· · · · · · · · · · · · · · · · · · ·
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-sit here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	te datum is used, identify
	REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	SEY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
l ce	rtify under penalty of law that I have personally examined and am familiar with the	
tho	se individuals immediately responsible for obtaining the information. A believe the	
sub	mitted information is true, accurate and complete. I am aware that there are significant	
per	latties for submitting faise information including the possibility of the and imprisonment.	
		Date //////6
Su		nber: 37100
	n Name: Certificate of Authorization	on #: 24GA28T14600
	Mumber         (973) 2/0,0000         T	Zip Code: 0/400
Lhu	Ext.: Fax:	910) 030-0430

	Site Remediation Program Monitoring Well Certific	ation Form B - Location Ce	ertification	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION			
Site	Name: FUSRAP Maywood Superfund	1 Site		
Lis	all AKAs:			
Str	eet Address: 100 West Hunter Avenue	n an		· · · · · · · · · · · · · · · · · · ·
Mu	nicipality: Maywood	(Townsh	hip, Borough or City)	
Co	unty: Bergen	Zip Cod	e: 07607	
Pro	gram Interest (PI) Number(s):	Case	Tracking Number(s):	
SE	CTION B. WELL OWNER AND LOCATI	ON		
1.	Name of Well Owner USACE			ung
2.	Well Location (Street Address) 100 V	Vest Hunter Avenue, Rochelle Park	(TWP	
3.	Well Location (Municipal Block and Lot)	Block# 19.01	Lot # <u>1</u>	
SE	CTION C. WELL LOCATION SPECIFIC	S		
1.	Well Permit Number (This number must	be permanently affixed to the well	casing): <u>E201608024</u>	11
2.	Site Well Number (As shown on applicat	ion or plans): MISS07AR		
З.	Geographic Coordinate NAD 83 to near	est 1/100 of a second:		
	Latitude: North 40 53 53.05	Longitude:	West 74 04 22.29	
4.	New Jersey State Plane Coordinates NA	D 83 datum, US survey feet units,	to nearest foot:	an a
	North 752350	East 6102	200	
5.	Elevation of Top of Inner Casing (cap of	) at reference mark (nearest 0.01'	): <u>53.79</u>	
	Elevation Top of Outer casing: 54.10	Elevation of groun	d: 51.20	
	Check one: 🛛 NAVD 88 🗌 NVGD	29 🗌 On Site Datum 🔲 O	Other	
6.	Source of elevation datum (benchmark, here, assume datum of 100', and give as	number/description and elevation/opproximated actual elevation (reference)	datum). If an on-site da encing NAVD 88).	atum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED REFERENCE NETWORK. PERIODIC CHECK	D BY RTK GNSS METHODOLOGY UTIL KS WERE MADE TO NGS MARKER KV	IZING THE NEW JERSEY 3423.	LEICA SMARTNET GNSS
7.	Significant observations and notes:			
SE	CTION D. LAND SURVEYOR'S CERTIF	ICATION	> SEAL	
	entify under penalty of law that I have person	ally examined and any familiar with t	he	
the	se individuals immediately responsible for o	btaining the information 1 believe the	e inquiry of	
sul	omitted information is true, accurate and cor	nplete. I am aware that there are sig	Inificant	
Per		any the possibility of the and imprise	>	Data Ulatit
Su	n/evor's Name PAUL EMILIUS Ir	N/	License Number	
Fir	m Name: LAYOUT, INC.	Cartific	License Number	24GA28114600
Ma	alling Address 24 KANOUSE ROAD	Centilic		
1410		Diata Nil	7:- /	07435
Cit		State	/ in 1	10de. 01400

Version 1.3 02/26/13

•

 $\mathcal{T}_{i}$  , and  $\mathcal{T}_{i}$  , and  $\mathcal{T}_{i}$  , we are set of the set of the

Site Remediation Program Monitoring Well Certification	n Form B - Location Certificatio	Date Stamp (For Department use only)
ECTION A. SITE NAME AND LOCATION		
ite Name: FUSRAP Maywood Superfund Site	2	
ist all AKAs:		
treet Address: 100 West Hunter Avenue		
Iunicipality: Maywood	(Township, Boroug	h or City)
County: Bergen	Zip Code: 07607	
Program Interest (PI) Number(s):	Case Tracking N	lumber(s):
ECTION B. WELL OWNER AND LOCATION Name of Well Owner USACE	Hupter Avenue, Rochelle Park TMP	
Moll Location (Street Address) 100 West r		Lot # 1
	BIOCK#	
ECTION C. WELL LOCATION SPECIFICS		
. Well Permit Number (This number must be pe	ermanently affixed to the well casing): 26	5-61466
. Site Well Number (As shown on application o	r plans): BRPZ-2	
. Geographic Coordinate NAD 83 to nearest 1/	100 of a second:	
Latitude: North <u>40 53 50.71</u>	Longitude: West 74	04 20.71
New Jersey State Plane Coordinates NAD 83	datum, US survey feet units, to nearest	foot
North 752114	East <u>610323</u>	
Elevation of Top of Inner Casing (cap off) at r	eference mark (nearest 0.01'): 54.62	
Elevation Top of Outer casing: 53.28	Elevation of ground: 53.28	۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰
Check one: 🛛 NAVD 88 🗌 NVGD29	🗌 On Site Datum 🔄 Other	
<ol> <li>Source of elevation datum (benchmark, numb here, assume datum of 100', and give approx</li> </ol>	per/description and elevation/datum). If a imated actual elevation (referencing NAV	n on-site datum is used, identify /D 88).
NAVD88 ELEVATIONS WERE ESTABLISHED BY F REFERENCE NETWORK. PERIODIC CHECKS WE	RTK GNSS METHODOLOGY UTILIZING THE N ERE MADE TO NGS MARKER KV3423,	IEW JERSEY LEICA SMARTNET GNSS
. Significant observations and notes:		
		a da anti-arresta da anti-arresta da anti- Arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-arresta da anti-
SECTION D. LAND SURVEYOR'S CERTIFICAT		SEAL
nformation submitted in this document and all attack hose individuals immediately responsible for obtain submitted information is true, accurate and complete benalties for submitting false information including th	hments and that, based on my inquiry of ing the information. I believe the e. I am aware that there are significant he possibility of the and imprisonment.	
Professional Land Surveyor's Signature:		Date 11/2/11
Surveyor's Name: PAUL EMILIUS, Jr.	Licer	se Number: 37186
irm Name: LAYOUT, INC.	Certificate of Aut	horization #: 24GA28114600
Aailing Address 24 KANOUSE ROAD		
	State NJ	Zin Code: 07435

	······································	
New Jersey Department of Site Remediation Program	Environmental Protection	
Monitoring Well Certificatio	n Form B - Location Certificatio	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	·	
Site Name: FUSRAP Maywood Superfund Site	3	
List all AKAs:		
Street Address: 100 West Hunter Avenue		
Municipality: Maywood	(Township, Boroug	h or City)
County: Bergen	Zip Code: 07607	
Program Interest (PI) Number(s):	Case Tracking N	Number(s):
SECTION B. WELL OWNER AND LOCATION		······
1. Name of Weil Owner USACE	Hunter Avenue, Beehelie Derk TAR	
2. Well Location (Street Address)		
3. VVeli Location (Municipal Block and Lot)	Block# 19.01	Lot # _!
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be p	ermanently affixed to the well casing): 26	5-61467
2. Site Well Number (As shown on application c	or plans): BRPZ-3	· · · · · · · · · · · · · · · · · · ·
3. Geographic Coordinate NAD 83 to nearest 1/	100 of a second:	
Latitude: North 40 53 50.12	Longitude: West 74	04 21.04
4. New Jersey State Plane Coordinates NAD 83	3 datum, US survey feet units, to nearest	foot:
North 752055	East 610298	
5. Elevation of Top of Inner Casing (cap off) at r	reference mark (nearest 0.01'): 54.91	
Elevation Top of Outer casing: 55.25	Elevation of ground: 53.22	
Check one: 🖾 NAVD 88 🛛 NVGD29	On Site Datum Other	
<ol> <li>Source of elevation datum (benchmark, num here, assume datum of 100', and give approx</li> </ol>	ber/description and elevation/datum). If a cimated actual elevation (referencing NAV	n on-site datum is used, identify /D 88).
NAVD88 ELEVATIONS WERE ESTABLISHED BY REFERENCE NETWORK PERIODIC CHECKS W	RTK GNSS METHODOLOGY UTILIZING THE N ERE MADE TO NGS MARKER KV3423	IEW JERSEY LEICA SMARTNET GNSS
/ Significant observations and notes:		
SECTION D. LAND SURVEYOR'S CERTIFICA	TION	SEAL
I certify under penalty of law that I have personally e information submitted in this document and all attact those individuals immediately responsible for obtain submitted information is true, accurate and complete	examined and am familiar with the hments and that, based on no inquiry of ing the information, Usebeve the	
penalties for submitting false information including t	he possibility of fine and imprisonment.	
Professional Land Surveyor's Signature:	MIX)	Date 11/2,111
Surveyor's Name: PAUL EMILIUS, Jr.	Licer	se Number: 37186
Firm Name: LAYOUT, INC.	Certificate of Aut	horization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD		
		· · · · · · · · · · · · · · · · · · ·
City/Town: NEWFOUNDLAND	State NJ	Zip Code: 07435

13

6	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification			
49 8 19 19		I (F	Date or Departr	Stamp nent use only)
SE		<u>t</u>	or Depure	
Site	Name: FUSRAP Maywood Superfund Site			
List	t ali AKAs:			
Stre	eet Address: 100 West Hunter Avenue	<b>T &amp; 10⁻¹ Allin -</b> Almire - 11		
Мu	nicipality: Maywood (Township, Borough or Ci	ty)		
Co	unty: Bergen Zip Code: 07607			
Pro	bgram Interest (PI) Number(s): Case Tracking Numbe	r(s):		-
SE	CTION B. WELL OWNER AND LOCATION			
1.	Name of Well Owner USACE			
2.	Well Location (Street Address) 100 West Hunter Avenue, Rochelle Park TWP		· · · !	an 184
3.	Well Location (Municipal Block and Lot) Block# 19.01 Lot #	1		
SE				
4	Mell Dermit Number (This number must be normanently offixed to the well coning): F20160	5108		
1. 2	Site Mell Number (As shown on application or plans): OVPZ-17B	100		
2.	Geographic Coordinate NAD 83 to pearest 1/100 of a second:			·
э.	Latitude: North 40,53,51,04	76		
A	New Jersey State Plane Coordinates NAD 83 datum 11S survey feet units to nearest foot:			
4.	North 752147 East 610319			
5	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01): 54.49			
0.	Elevation Top of Outer casing: 54.84 Elevation of ground: 52.77			
	Check one: XI NAVD 88 VVGD29 On Site Datum Other			
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-s	ite dat	um is us	ed, identify
	here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88)	•		
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JE REFERENCE NETWORK PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423	RSEY	EICA SM	ARTNET GNSS
7.	Significant observations and notes:			
SE	CTION D. LAND SURVEYOR'S CERTIFICATION			
1 ce	ertify under penalty of law that I have personally examined and am familiar with the	-		
info tho	ormation submitted in this document and all attachments and that based on my inquiry of one individuals immediately responsible for obtaining the information 1 believe the			
sut	bmitted information is true, accurate and complete. I am aware that here are significant			
per	nalities for submitting raise information including the possibility of the and imprisonment.		Data	1.12.11
	Diessionar Land Surveyors Signature:		_ Date	MIGHE
50			246429	3114600
	alling Address 24 KANOUSE ROAD	uoti #:	2-10/120	
		Zin C	ode [,] 0	7435
	Number (973) 249-0900 Even	(973)	338-6433	}
		(010) (		

New Jersey Department of I Site Remediation Program Monitoring Well Certification	Environmental Protection n Form B - Location Certification	n (Fe	Date Stamp or Department use only)
SECTION A. SITE NAME AND LOCATION			
Site Name: FUSRAP Maywood Superfund Site			<u></u>
List all AKAs:			
Street Address: 100 West Hunter Avenue	·		
Municipality: Maywood	(Township, Boroug	n or City)	
County: Bergen	Zip Code: 07607		
Program Interest (PI) Number(s):	Case Tracking N	lumber(s):	
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE		•	
2. Well Location (Street Address) 100 West I	tunter Avenue, Rochelle Park TWP	4 & to a f a to a to	
3. Well Location (Municipal Block and Lot)	Block# 19.01	Lot # 1	
SECTION C. WELL LOCATION SPECIFICS			
<ol> <li>Well Permit Number (This number must be permited)</li> <li>Site Well Number (As shown on application of application)</li> </ol>	ermanently affixed to the well casing): <u>26</u> r plans): <u>BRPZ-4</u>	-60716	
3. Geographic Coordinate NAD 83 to nearest 1/	100 of a second:		
Latitude: North 40.53 51.03	Longitude: West 74	04 20.68	
4. New Jersey State Plane Coordinates NAD 83	datum, US survey feet units, to nearest	foot:	
North 752146	East 610325		
5. Elevation of Top of Inner Casing (cap off) at r	eference mark (nearest 0.01'): 55.11		
Elevation Top of Outer casing: 55.39	Elevation of ground: 53.00		
Check one: 🖾 NAVD 88 🗌 NVGD29	🔲 On Site Datum 🗌 Other		
<ol> <li>Source of elevation datum (benchmark, numb here, assume datum of 100', and give approx NAVD88 ELEVATIONS WERE ESTABLISHED BY F</li> </ol>	per/description and elevation/datum). If a imated actual elevation (referencing NAV RTK GNSS METHODOLOGY UTILIZING THE N	n on-site datı D 88). EW JERSEY L	um is used, identify EICA SMARTNET GNSS
REFERENCE NETWORK. PERIODIC CHECKS WI	ERE MADE TO NGS MARKER KV3423		
7. Significant observations and notes:			Nga sa Nga Sa Sa S
	101		
I certify under penalty of law that I have personally e information submitted in this document and all attact those individuals immediately responsible for obtain submitted information is true, accurate and complete	EXAMINED AND AND AND AND AND AND AND AND AND AN	SEAL	
penalties for submitting false information including t	e possibility of fine and imprisonment.		
Professional Land Surveyor's Signature:	M/X >		Date 11/21/18
Surveyor's Name: PAULEMILIUS, Jr.	Licen	se Number:	3/185
Firm Name: LAYOUT, INC.	Certificate of Aut	norization #:	246A28114600
Mailing Address 24 KANOUSE ROAD			07405
City/Town: NEWFOUNDLAND	State NJ	Zip Co	ode: 0/435
Phone Number (973) 249-0900	Ext.: F	ax: <u>(973)</u> 8	38-6433

Version 1.3 02/26/13

SECTION A. Site Name: List all AKAs: Street Addres Municipality:	New Jersey Department of Environmental Protection         Site Remediation Program         Monitoring Well Certification Form B - Location Cert         SITE NAME AND LOCATION         FUSRAP Maywood Superfund Site         is:       100 West Hunter Avenue         Maywood       (Township)	1 ification	Date Stamp (For Department use only)
Program Inter	rest (Pi) Number(s): Case T	racking Number(s)	· · · · · · · · · · · · · · · · · · ·
SECTION B. 1. Name of V 2. Well Loca 3. Well Loca	WELL OWNER AND LOCATION         Well Owner       USACE         ation (Street Address)       100 West Hunter Avenue, Rochelle Park T         ation (Municipal Block and Lot)       Block# 19.01	WP	
OF CTICNIC			
<ol> <li>Well Pern</li> <li>Site Well</li> <li>Geograph Latitude:</li> <li>New Jers North <u>752</u></li> <li>Elevation Elevation <i>Check on</i></li> <li>Source of here, assist REFEREN</li> </ol>	nit Number (This number must be permanently affixed to the well can Number (As shown on application or plans): BRPZ-5 nic Coordinate NAD 83 to nearest 1/100 of a second: North 40 53 51.10 Longitude: W ey State Plane Coordinates NAD 83 datum, US survey feet units, to 2154 East 610309 of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): Top of Outer casing: 54.33 Elevation of ground: re: ⊠ NAVD 88 □ NVGD29 □ On Site Datum □ Other f elevation datum (benchmark, number/description and elevation/dat ume datum of 100', and give approximated actual elevation (reference LEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZINCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV342	sing): <u>26-60717</u> Vest <u>74 04 20.93</u> nearest foot: 5 54.15 52.02 er turn). If an on-site cing NAVD 88). NG THE NEW JERSE 23.	datum is used, identify Y LEICA SMARTNET GNSS
7. Significan	LAND SURVEYOR'S CERTIFICATION	SEAL	
I certify under information su those individua submitted info penalties for s	penalty of law that I have personally examined and any familiar with the ibmitted in this document and all attachments and that, based on my inq als immediately responsible for obtaining the information, I believe the rmation is true, accurate and complete. I am awate that there are signif- ubmitting false information including the possibility of the and imprisonr	juiry of ficant ment.	
Professional I	Land Surveyor's Signature:	······································	Date <u>11/21//6</u>
Surveyor's Na	ame: PAUL EMILIUS, Jr. *	License Numbe	er: <u>37186</u>
Firm Name:	LAYOUT, INC. Certificat	e of Authorization	#: 24GA28114600
Mailing Addre			07425
Dhare Marine	(973) 249, 0900	Zip	0 Code: 0/430
Phone Numb	er <u>\879</u> /243-0300 EXI.:	<u>⊢ax: (97</u>	J 000-0400

Page 1 of 1

entranse e e e

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	······································
_ist all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or Cit	ty)
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number	r(s):
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE	-
2. Well Location (Street Address) 100 West Hunter Avenue, Rochelle Park TWP	
3. Well Location (Municipal Block and Lot) Block# 19.01 Lot #	1
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing): 26-60703	3
2. Site Well Number (As shown on application or plans): OVPW-1S	
<ol><li>Geographic Coordinate NAD 83 to nearest 1/100 of a second:</li></ol>	
Latitude: North 40 53 52.29 Longitude: West 74 04 20.6	68
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752274 East 610324	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 53.06	
Elevation Top of Outer casing: 53.43 Elevation of ground: 51.54	
Check one: 🛛 NAVD 88 🔲 NVGD29 🔛 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-si here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> <li>NAVD88 ELEVATIONS WERE ESTABLISHED BY BTK GNSS METHODOLOGY UTILIZING THE NEW JEI</li> </ol>	ite datum is used, identify
REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
I CERTITY UNDER DENAITY OF IAW THAT I have bersonally examined and am familiar with the	
information submitted in this document and all attachments and that, based op my inquiry of	
information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information of believe the	
information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information 1 before the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.	
information submitted in this document and all attachments and that, based op my inquiry of those individuals immediately responsible for obtaining the information is believe the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.	Date 11/2////
information submitted in this document and all attachments and that, based op my inquiry of those individuals immediately responsible for obtaining the information 1 believe the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment. Professional Land Surveyor's Signature: Surveyor's Name: PAUL EMILIUS, Jr.	Date <u>///2///6</u>
information submitted in this document and all attachments and that, based op my inquiry of those individuals immediately responsible for obtaining the information is believe the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.  Professional Land Surveyor's Signature: Surveyor's Name: PAUL EMILIUS, Jr.  Firm Name: LAYOUT, INC.  Certificate of Authorizati	Date <u>11/21/16</u> mber: <u>37186</u> ion #: 24GA28114600
information submitted in this document and all attachments and that, based op my inquiry of those individuals immediately responsible for obtaining the information 1 before the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.  Professional Land Surveyor's Signature: Surveyor's Name: PAUL EMILIUS, Jr.  Firm Name: LAYOUT, INC.  Certificate of Authorizati Mailing Address 24 KANOUSE ROAD	Date <u>11/21/16</u> mber: <u>37186</u> ion #: <u>24GA28114600</u>
information submitted in this document and all attachments and that, based op my inquiry of those individuals immediately responsible for obtaining the information is believe the submitted information is true, accurate and complete. Lam aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.  Professional Land Surveyor's Signature: Surveyor's Name: PAUL EMILIUS, Jr.  Firm Name: LAYOUT, INC.  Certificate of Authorization Mailing Address 24 KANOUSE ROAD  City/Town: NEWFOUNDLAND State NJ	Date <u>11/21/16</u> mber: <u>37186</u> ion #: <u>24GA28114600</u> Zip Code: 07435

Version 1.3 02/26/13

New Jersey Department of Site Remediation Program Monitoring Well Certification	Environmental Protection	Date Stamp (For Department use only)
SECTION A SITE NAME AND LOCATION	· · · · · · · · · · · · · · · · · · ·	(i or beparations abo entry)
Site Name FUSRAP Maywood Superfund Sit	e	
ist all AKAs:		
treet Address 100 West Hunter Avenue		
Aunicipality: Maywood	(Township, Borough	or City)
County: Bergen	Zip Code: 07607	
Program Interest (P!) Number(s):	Case Tracking Nu	imber(s):
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE		
2. Well Location (Street Address) 100 West	Hunter Avenue, Rochelle Park TWP	
3. Well Location (Municipal Block and Lot)	Block# 19.01	Lot # 1
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be r	permanently affixed to the well casing): 26-	61469
2. Site Well Number (As shown on application	or plans): BRPZ9	
3. Geographic Coordinate NAD 83 to nearest 1	/100 of a second:	
Latitude: North 40 53 52.25	Longitude: West 740	4 20.89
4. New Jersey State Plane Coordinates NAD 8	3 datum, US survey feet units, to nearest fo	ot:
North 752270	East 610308	
5. Elevation of Top of Inner Casing (cap off) at	reference mark (nearest 0.01'): 53.21	
Elevation Top of Outer casing: 53.53	Elevation of ground: 51.47	
Check one: 🔀 NAVD 88 🛛 NVGD29	🗌 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, num here, assume datum of 100', and give appro</li> </ol>	ber/description and elevation/datum). If an ximated actual elevation (referencing NAVE	on-site datum is used, identify 9 88)
REFERENCE NETWORK. PERIODIC CHECKS V	RTK GNSS METHODOLOGY UTILIZING THE NE VERE MADE TO NGS MARKER KV3423.	W JERSEY LEICA SMARTNET GNSS
7. Significant observations and notes:		
	· · · · · · · · · · · · · · · · · · ·	
SECTION D. LAND SURVEYOR'S CERTIFICA	ATION	SEAL
I certify under penalty of law that I have personally information submitted in this document and all atta- those individuals immediately responsible for obtai submitted information is true, accurate and comple penalties for submitting false information including	examined and am familiar with the chments and that, based on my inquiry of ning the information, believe the te. I am aware that there are significant the cossibility of the and importsonment	
Professional Land Surveyor's Signature		Date 11/21/11
Surveyor's Name: PAUL EMILIUS, Jr.		e Number: 37186
Firm Name: LAYOUT, INC.	Certificate of Author	prization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD		
City/Town: NEWFOUNDLAND	State NJ	Zip Code: 07435
Phone Number (973) 249-0900	Ext : Fa	x (973) 838-6433
City/Town: NEWFOUNDLAND Phone Number (973) 249-0900 Monitoring Well Certification Form B - Location Certification	State <u>NJ</u> Ext.: Fa	Zip Code: 07435 x: (973) 838-6433

Monitoring Well Certifi Version 1.3 02/26/13

New Jersey Department of Site Remediation Program Monitoring Well Certification	Environmental Protection on Form B - Location Certification	Date Stamp partment use only)
SECTION A. SITE NAME AND LOCATION		
Site Name: FUSRAP Maywood Superfund Sit	le	
List all AKAs:		
Street Address: 100 West Hunter Avenue		
Municipality: Maywood	(Township, Borough or City)	
County: Bergen	Zip Code: 07607	
Program Interest (PI) Number(s):	Case Tracking Number(s):	
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE 2. Well Location (Street Address) 100 W. He	unter Avenue, Maywood Borough, NJ	
3. Well Location (Municipal Block and Lot)	Block# 124 Lot # 46	
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be p	permanently affixed to the well casing): E201605094	
2. Site Well Number (As shown on application of	or plans): <u>MW-3SR</u>	
3. Geographic Coordinate NAD 83 to nearest 1	/100 of a second:	
Latitude: North 40 53 55.75	Longitude: West 74 04 17.19	
4. New Jersey State Plane Coordinates NAD 8	3 datum, US survey feet units, to nearest foot:	
North 752626	East 610590	
5. Elevation of Top of Inner Casing (cap off) at	reference mark (nearest 0.01'): 57.18	
Elevation Top of Outer casing: 57.68	Elevation of ground: 57.68	
Check one: 🛛 NAVD 88 🗌 NVGD29	On Site Datum Other	
<ol> <li>Source of elevation datum (benchmark, num here, assume datum of 100', and give approx</li> </ol>	nber/description and elevation/datum). If an on-site datum is ximated actual elevation (referencing NAVD 88).	used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY REFERENCE NETWORK, PERIODIC CHECKS W	RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA VERE MADE TO NGS MARKER KV3423.	SMARTNET GNSS
7. Significant observations and notes:		
.*.		
SECTION D. LAND SURVEYOR'S CERTIFICA		
I certify under penalty of law that I have personally information submitted in this document and all attact those individuals immediately responsible for obtain submitted information is true, accurate and complet penalties for submitting false information including	examined and am familiar with the chments and that, based or my inquiry of ning the information, I believe the te. I am aware that there are significant the possibility of the and imprisonment.	
Professional Land Surveyor's Signature:	Dat	e 11/2/116
Surveyor's Name: PAUL EMILIUS, Jr.	License Number: 3718	36
Firm Name: LAYOUT, INC.	Certificate of Authorization #: 24G	A28114600
Mailing Address 24 KANOUSE ROAD		
City/Town: NEWFOUNDLAND	State NJ Zip Code:	07435
Phone Number (973) 249-0900	Ext.: Fax: (973) 838-6	433

un un exultate e el la unea la

Ş	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
OF.		(ror beparenetic use only)
SEC	CHON A. SITE NAME AND LOCATION	
Site	Name: FUSRAP Maywood Superrund Site	
List	ali AKAs:	
Stre	et Address: 100 West Hunter Avenue	
. Mur	icipality: Maywood (Township, Borough or City)	
Cou	nty: Bergen Zip Code: 07607	
Prog	gram Interest (PI) Number(s): Case Tracking Number(s)	:
SEC		
	Name of Well Owner USACE	
1.	Marile of Weil Gwiler Concel	
2.	Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ	2
3.	Well Location (Municipal Block and Lot) Block# 124 Lot # 4	0
SEC	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E20160509	5
2.	Site Well Number (As shown on application or plans); MW-3DR	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 55.72 Longitude: West 74 04 17.08	
4	New Jersey State Plane Coordinates NAD 83 datum 1/S survey feat units to noarest fact	
4,	North 752623 East 610599	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 57.14	
	Elevation Top of Outer casing: <u>57.62</u> Elevation of ground: <u>57.62</u>	
	Check one: 🛛 NAVD 88 🔲 NVGD29 🔛 On Site Datum 🔛 Other	,
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSI REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423,	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION	,
I ce	rtify under penalty of law that I have personally examined and an familiar with the	
info	rmation submitted in this document and all attachments and that, based on my inquiry of	
sub	mitted information is true, accurate and complete. I am aware tratemere are significant	
pen	alties for submitting false information including the possibility of the and imprisonment.	
Pro	fessional Land Surveyor's Signature:	Date7/1/
Sur	veyor's Name: PAUL EMILIUS, Jr. License Numb	er: 37186
Firr	n Name: LAYOUT, INC. Certificate of Authorization	#: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD	
City	//Town: NEWFOUNDLAND State NJ Zir	Code: 07435
Pho	one Number (973) 249-0900 Ext.: Fax: (97	3) 838-6433
L		

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	·····
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or Ci	ty)
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number	r(s):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) Madison Avenue, Rochelle Park TWP, NJ	
3. Well Location (Municipal Block and Lot) Block# ROW Lot #	ROW
SECTION C. WELL LOCATION SPECIFICS	
1 Well Permit Number (This number must be permanently affived to the well casing): E201608	3290
<ol> <li>Weit Permit Number (Anis number must be permanently annea to the weit casing). <u></u></li></ol>	
Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40:53:50:43	33
A New Jersey State Plane Coordinates NAD 83 datum US survey feet units to pearest foot:	
North 752078 East 608739	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 41.62	- -
Elevation Top of Outer casing: <u>42.01</u> Elevation of ground: <u>42.01</u>	
Check one: 🖾 NAVD 88 🔲 NVGD29 🔄 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-s here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	ite datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JE REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	RSEY LEICA SMARTNET GNSS
7. Significant observations and notes:	-
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
I certify under penalty of law that I have personally examined and am-familiar with the information submitted in this document and all attachments and that based on my frouiny of	
those individuals immediately responsible for obtaining the information. Libelieve the	
submitted information is true, accurate and complete. I am aware that there are significant	
Professional Land Surveyor's Signature	Date 11/2/1/2
Surveyor's Name: PAUL EMILIUS, Jr.	mber: 37186
Firm Name: LAYOUT, INC.	tion #: 24GA28114600
Mailing Address 24 KANOUSE ROAD	μ
City/Town NEWFOUNDLAND State NJ	Zip Code: 07435
Phone Number (973) 249-0900 Ext : Fax:	(973) 838-6433

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
	(i or population and only)
Site Name: EUSRAP Maywood Superfund Site	
Street Address 100 West Hunter Avenue	
Municipality: Maywood (Township Borough or City)	·····
County: Bergen Zin Code: 07607	
Brogram Interest (BI) Number(s):	<b>)</b> .
	J.
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borougn, NJ	6
3. Well Location (Municipal Block and Lot) Block# 124 Lot # 4	0
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing): E20110955	52
2. Site Well Number (As shown on application or plans): MW-28S	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 53.74 Longitude: West 74 04 16.19	
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752423 East 610669	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 61.85	
Elevation Top of Outer casing: <u>62.17</u> Elevation of ground: <u>60.45</u>	
Check one: 🛛 NAVD 88 🔲 NVGD29 🗌 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION	
information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. Updiate the submitted information is true, accurate and complete. Tam awars that there are significant	
penalties for submitting false information including the pessibility of fine and imprisonment.	
Protessional Land Surveyor's Signature:	Date
Surveyor's Name: PAUL EMILIUS, Jr. License Numb	er: 3/100
Firm Name: LAYOU 1, INC. Certificate of Authorization	1#: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
City/Town: NEWFOUNDLAND State NJ Zi	p Code: <u>U/435</u>
Phone Number (973) 249-0900 Ext.: Fax: (97	(3) 838-6433

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Cert	on rtification
SECTION A. SHE NAME AND LOCATION	
Site Name: POSICAP Maywood Superining Site	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Towns)	nip, Borough or City)
County: Bergen Zip Cod	e: 0/60/
Program Interest (PI) Number(s): Case	Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION 1. Name of Well Owner USACE	
2. Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borou	igh, NJ
3. Well Location (Municipal Block and Lot) Block# 124	Lot # <u>46</u>
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well	casing): 26-65218
2. Site Well Number (As shown on application or plans): MW-34D	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 53.01 Longitude:	West 74 04 17.38
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units,	to nearest foot:
North 752348 East 610	577
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01	): 59.13
Elevation Top of Outer casing: 59.52 Elevation of groun	d: 57.25
Check one: X NAVD 88 NVGD29 On Site Datum	ther
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/ here, assume datum of 100', and give approximated actual elevation (refer</li> </ol>	datum). If an on-site datum is used, identify encing NAVD 88).
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTIL REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV	IZING THE NEW JERSEY LEICA SMARTNET GNSS 3423.
7. Significant observations and notes:	
	·····
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL
information submitted in this document and all attachments and that, based on my those individuals immediately responsible for obtaining the information, the light the submitted information is true, accurate and complete. I am aware that there are sign penalties for submitting false information including the possibility of fiberand imprise	pre inquiry of e miticant
Professional Land Surveyor's Signature	Date 11/2/1/1
Surveyor's Name PAUL EMILIUS, Jr.	License Number: 37186
Firm Name: LAYOUT, INC.	cate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
City/Town: NEWFOUNDLAND State NU	Zin Code: 07435
Phone Number (973) 249-0900	Eav. (973) 838-6433

Page 1 of 1

	New Jersey Department of Environmental Protection Site Remediation Program	
	Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SE	CTION A. SITE NAME AND LOCATION	
Site	e Name: FUSRAP Maywood Superfund Site	
Lis	t all AKAs:	
Str	eet Address: 100 West Hunter Avenue	
Mu	nicipality: Maywood (Township, Borough or City)	
Co	unty: Bergen Zip Code: 07607	
Pro	gram Interest (PI) Number(s): Case Tracking Number(s)	
<b>SE</b> 1.	CTION B. WELL OWNER AND LOCATION Name of Well Owner USACE	
2.	Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ	······
3.	Well Location (Municipal Block and Lot)     Block# 124     Lot # 4	6
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E20111005	iO ⁻
2.	Site Well Number (As shown on application or plans): MW-42D	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 52.72 Longitude: West 74 04 10.83	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 752321 East 611080	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 61.33	
	Elevation Top of Outer casing: 62.77 Elevation of ground: 60.72	
	Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum 🗌 Other	
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSI REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
L	· · · · · · · · · · · · · · · · · · ·	·····
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
l c infi tho sul pe	ertify under penalty of law that I have personally examined and am familiar with the ormation submitted in this document and all attachments and that, based on my inquiry of ose individuals immediately responsible for obtaining the information. Upplieve the bmitted information is true, accurate and complete. I am aware that there are significant nalties for submitting false information including the possibility of the and imprisonment.	
Pr	ofessional Land Surveyor's Signature:	Date 11/2/11
Su	rveyor's Name: PAUL EMILIUS, Jr. License Numb	er: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorization	#: 24GA28114600
Ma	ailing Address 24 KANOUSE ROAD	
Ci	ty/Town: NEWFOUNDLAND State NJ Zij	o Code: 07435
PH	none Number (973) 249-0900 Ext.: Fax: (97	3) 838-6433
L		
		······
------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------
	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SEC	CTION A. SITE NAME AND LOCATION	
Site	Name FUSRAP Maywood Superfund Site	
Liet	all AKAs:	
Stre	all Aross. 100 West Hunter Avenue	ι.
Mu	noinelity Mawwood	
Cou	(Township, Border, 07607	
Dro	arom laterest (Pl) Number(e):	
PIO	gram interest (P1) Number(s).	
SE	CTION B. WELL OWNER AND LOCATION	
1.	Name of Well Owner USACE	
2.	Well Location (Street Address) 100 West Hunter Avenue, Rochelle Park TWP	
3.	Well Location (Municipal Block and Lot)     Block# 20.01     Lot # 1	
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E20160511	1
2.	Site Well Number (As shown on application or plans): MW-43SR	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 54.68 Longitude: West 74 04 21.54	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 752515 East 610257	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.99	
	Elevation Top of Outer casing: 52.45 Elevation of ground: 50.59	
	Check one: INAVD 88 INVGD29 IOn Site Datum IOther	
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site	datum is used, identify
	here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	
ļ	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSE REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION	
l ce	ntify under penalty of law that I have personally examined and am familiar with the	
info	rmation submitted in this document and all attachments and that, based on my inquiry of se individuals immediately responsible for obtaining the information Viorteve the	
sub	mitted information is true, accurate and complete. I are aware that there are significant	
per	nalties for submitting false information including the possibility of ine and imprisonment.	<i>I</i>
Pro	fessional Land Surveyor's Signature:	Date2/21/16
Su	veyor's Name: PAUL EMILIUS, Jr. License Numb	er: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorization	#: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD	5-1-1
Cit	y/Town: NEWFOUNDLAND State NJ Zip	Code: 07435
Ph	one Number (973) 249-0900 Ext.: Fax: (97	3) 838-6433

.

Monitoring Well Certification Form B - Location Certification Version 1.3 02/26/13

Page 1 of 1

New Jersey Department of Environmental Protection Site Remediation Program	
Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	·
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or City)	)
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number(s	s):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) 100 West Hunter Avenue, Rochelle Park TWP	
3. Well Location (Municipal Block and Lot) Block# 20.01 Lot #	) 
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing): E2011100	54
2. Site Well Number (As shown on application or plans); MW-43D	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 54.62 Longitude: West 74 04 21.55	5
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752510 East 610256	·
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 52.70	
Elevation Top of Outer casing: <u>52.97</u> Elevation of ground: <u>50.67</u>	
Check one: 🖾 NAVD 88 🔲 NVGD29 🔄 On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	e datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	SEY LEICA SMARTNET GNSS
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION / SEAL	
I certify under penalty of law that I have personally examined and am familiar with the	
those individuals immediately responsible for obtaining the information. However the	
submitted information is true, accurate and complete. X am aware that there are significant	
Destances for submitting raise information including the possibility of the and imprisonment.	D-1- 1110.143
Professional Land Surveyor's Signature:	Date ////////////////////////////////////
	# 24GA28114600
Molling Address 24 KANOLISE ROAD	11#, <u>240720114000</u>
	in Codo: 07435
City/Town,         ALWI CONDEAND         State         Number         (973) 249,0000         City/Town,         City/Town	10 Lode: 01400
EXt.: Fax: (9	101000-0400

Page 1 of 1

27
New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification
SECTION A. SITE NAME AND LOCATION
Site Name: FUSRAP Maywood Superfund Site
List all AKAs:
Street Address: 100 West Hunter Avenue
Municipality: Maywood (Township, Borough or City)
County: Bergen Zip Code: 07607
Program Interest (PI) Number(s): Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION
1. Name of Well Owner USACE
2. Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borough, NJ
3. Well Location (Municipal Block and Lot) Block# 124 Lot # 46
SECTION C. WELL LOCATION SPECIFICS
1 Well Permit Number (This number must be permanently affixed to the well casing) E201605095
<ol> <li>Site Well Number (As shown on application or plans); MW-44S</li> </ol>
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:
Latitude: North 40 53 55.19 Longitude: West 74 04 15.48
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:
North 752570 East 610722
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 57.07
Elevation Top of Outer casing: 57.62 Elevation of ground: 57.62
Check one: 🔀 NAVD 88 🔲 NVGD29 🔛 On Site Datum 🔲 Other
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7. Significant observations and notes:
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. Lively we the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of the and imprisonment.
Professional Land Surveyor's Signature: Date 11821/16
Surveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firm Name: LAYOUT, INC.
Mailing Address 24 KANOUSE ROAD
City/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Phone Number         (973) 249-0900         Ext.:         Fax:         (973) 838-6433

New Jersey Department of Envir Site Remediation Program	onmental Protection	- - -
Monitoring Well Certification For	m B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION		
Site Name: FUSRAP Maywood Superfund Site		a a se a
List all AKAs:		
Street Address: 100 West Hunter Avenue		······································
Municipality: Maywood	(Township, Borough or City)	)
County: Bergen	Zip Code: 07607	
Program Interest (PI) Number(s):	Case Tracking Number(s	):
SECTION B. WELL OWNER AND LOCATION		·
1. Name of Well Owner USACE		
2 Well Location (Street Address) 100 W. Hunter A	venue, Rochelle Park TWP	
3 Well Location (Municipal Block and Lot) Bio	ock# 20.01	
		An and a second seco
SECTION C. WELL LOCATION SPECIFICS	() (C) (C) (C) (C) (C) (C) (C) (C) (C) (	50
1. Well Permit Number (This number must be permane	ently affixed to the well casing): E2010051	<b>JO</b>
2. Site Well Number (As shown on application or plans	5): <u>IVIVV-45D</u>	
3. Geographic Coordinate NAD 83 to nearest 1/100 of	a second:	
Latitude: North 40 53 53.42	Longitude: West 74.04.19.76	)
4. New Jersey State Plane Coordinates NAD 83 datum	n, US survey feet units, to nearest foot:	
North 752389	East 610395	
5. Elevation of Top of Inner Casing (cap off) at referen	ce mark (nearest 0.01'): 57.55	el franchiska felden her for de service and a general and an
Elevation Top of Outer casing; <u>57.86</u>	Elevation of ground: 55.89	
Check one: 🖾 NAVD 88 🗌 NVGD29 🔲 🤇	On Site Datum 🗌 Other	
<ol> <li>Source of elevation datum (benchmark, number/des here, assume datum of 100', and give approximated</li> </ol>	scription and elevation/datum). If an on-site datual elevation (referencing NAVD 88).	e datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GN REFERENCE NETWORK. PERIODIC CHECKS WERE MA	ISS METHODOLOGY UTILIZING THE NEW JERS ADE TO NGS MARKER KV3423.	SEY LEICA SMARTNET GNSS
7. Significant observations and notes:		
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL	
I certify under penalty of law that I have personally examin information submitted in this document and all attachments those individuals immediately responsible for obtaining the submitted information is true, accurate and complete. Lan penalties for submitting false information including the pos	ed and am familiar with the s and that, based on my inquiry of information, I believe the n aware that there are significant sible of fine and imprisonment.	
Professional Land Surveyor's Signature:		Date 11/21/14
Surveyor's Name: PAUL EMILIUS, Jr.	License Num	ber: <u>37186</u>
Firm Name: LAYOUT, INC.	Certificate of Authorizatio	n #: 24GA28114600
Mailing Address 24 KANOUSE ROAD	×	
City/Town: NEWFOUNDLAND	State NJ Z	ip Code: 07435
Phone Number (973) 249-0900	Ext.: Fax: (9	73) 838-6433

Page 1 of 1

Ģ	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification
	(For Department use only)
SEC	CTION A. SITE NAME AND LOCATION
Site	Name: FUSRAP Waywood Superrund Site
List	
Stre	eet Address: 100 West Hunter Avenue
Mu	(Township, Borough or City)
Cou	Inty: Bergen Zip Code: 07007
Pro	gram Interest (PI) Number(s):
SE	CTION B. WELL OWNER AND LOCATION
1.	Name of Well Owner USACE
2.	Well Location (Street Address) 100 W. Hunter Avenue, Maywood Borougn, NJ
3.	Well Location (Municipal Block and Lot) Block# 124 Lot # 40
SE	CTION C. WELL LOCATION SPECIFICS
1.	Well Permit Number (This number must be permanently affixed to the well casing): E201605091
2.	Site Well Number (As shown on application or plans): MW-46S
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:
	Latitude: North 40 53 53.50 Longitude: West 74 04 14.91
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:
	North 752398 East 610767
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 62.01
	Elevation Top of Outer casing: <u>62.10</u> Elevation of ground: <u>60.26</u>
	Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum 🗌 Other
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).
	REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7.	Significant observations and notes:
SE	CTION D. LAND SURVEYOR'S CERTIFICATION
l ce info tho sub per	ertify under penalty of law that I have personally examined and am familiar with the ormation submitted in this document and all attachments and that, based on my inquiry of se individuals immediately responsible for obtaining the information, believe the omitted information is true, accurate and complete. I am aware that there are significant nalties for submitting false information including the possibility of fire and imprisonment.
Pro	Dessional Land Surveyor's Signature:
Su	rveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD
Cit	y/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Ph	one Number (973) 249-0900 Ext.: Fax: (973) 838-6433

Monitoring Well Certific Version 1.3 02/26/13

· · · · · · · · · · · · · · · · · · ·		
New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)	
SECTION A. SITE NAME AND LOCATION	•	
Site Name: FUSRAP Maywood Superfund Site		
List all AKAs:		
Street Address: 100 West Hunter Avenue		
Municipality: Maywood (Township, Borough or City)	,,,,,,	
County Bergen Zin Code: 07607		
Program Interest (PI) Number(s):		
	کر ہوتی ہوتی ہوتی ہوتی ہوتی ہوتی ہوتی ہوتی	
SECTION B. WELLOWNER AND LOCATION		
2. Weil Location (Street Address) 100 W. Humer Avenue, Rochene Paix TVP		
3. Well Location (Municipal Block and Lot) Block# 124 Lot # 46		
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be permanently affixed to the well casing): E20160509	2	
2. Site Well Number (As shown on application or plans): MW-46D		
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:		
Latitude: North 40 53 53.42 Longitude: West 74 04 14.97		
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:		
North 752390 East 610762		
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 62.10		
Elevation Top of Outer casing: 62.89 Elevation of ground: 60.22		
Check one: 🖾 NAVD 88 🔲 NVGD29 🗌 On Site Datum 📋 Other	······································	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site of here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	datum is used, identify	
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSE REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	Y LEICA SMARTNET GNSS	
7. Significant observations and notes:		
SECTION D. LAND SURVEYOR'S CERTIFICATION		
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that based on my inquiry of those individuals immediately responsible for obtaining the information tobelieve the submitted information is true, accurate and complete 1 am aware that there are significant penalties for submitting false information including the possibility of time and imprisorment.		
Professional Land Surveyor's Signature:	Date U/ZI/IA	
Surveyor's Name: PAUL EMILIUS, Jr. License Number	er: 37186	
Firm Name: LAYOUT, INC. Certificate of Authorization	#: 24GA28114600	
Mailing Address 24 KANOUSE ROAD	· · · · · · · · · · · · · · · · · · ·	
City/Town: NEWFOUNDLAND State NJ Zin	Code: 07435	
Phone Number (973) 249-0900 Ext Fax: (973)	3) 838-6433	

New Jersey Department of Environmental Protect Site Remediation Program Monitoring Well Certification Form B - Location C	ertification Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Towns	ship, Borough or City)
County: Bergen Zip Co	de: 0/60/
Program Interest (PI) Number(s): Cas	e Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION         1. Name of Well Owner       USACE         2. Well Location (Street Address)       100 W. Hunter Avenue, Rochelle Park	TWP
3. Well Location (Municipal Block and Lot) Block# 20.01	Lot # <u>1</u>
SECTION C. WELL LOCATION SPECIFICS	
<ol> <li>Well Permit Number (This number must be permanently affixed to the well</li> <li>Site Well Number (As shown on application or plans): <u>MW-47S</u></li> <li>Geographic Coordinate NAD 83 to nearest 1/100 of a second:</li> </ol>	I casing): E201605110
Latitude: North 40 53 55.19 Longitude	e: West <u>74 04 19.61</u>
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units	s, to nearest foot:
North 752568 East 610	0405
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.0	1'): <u>53.56</u>
Elevation Top of Outer casing: 53.89 Elevation of grou	nd: 51.94
Check one: 🖾 NAVD 88 🔲 NVGD29 🗌 On Site Datum 🔲	Other
6. Source of elevation datum (benchmark, number/description and elevation here, assume datum of 100', and give approximated actual elevation (refe	/datum). If an on-site datum is used, identify rencing NAVD 88).
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UT REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER K	ILIZING THE NEW JERSEY LEICA SMARTNET GNSS V3423.
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL
I certify under penalty of law that I have personally examined and an familiar with information submitted in this document and all attachments and that based on my those individuals immediately responsible for obtaining the promation I believe the submitted information is true, accurate and complete. Yam aware that there are spenalties for submitting false information including the possibility of time and implied to the possibility of time and implied the possibility of time and implied to the possibility of time and implied to the possibility of time and implied to the possibility of time and the possibility of time and the possibility of time and time the possibility of time and titer the possibility of titer the possibility of time and time the p	the / inquiry of he ignificant sonment.
Suprevor's Name PAUL EMILIUS Jr.	License Number: 37186
Firm Name: LAYOUT INC	ficate of Authorization # 24GA28114600
Mailing Address 24 KANOUSE ROAD	incate of Authonization #
	Zin Code: 07435
Only Town         Herritoria         State         No           Phone Number         (973) 249-0900         Event         Event	Epy: (973) 838-6433
Maninging Mell Certification Form R -1 certification	

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or City)	
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number(s)	:
1 Name of Well Owner USACE	
2 Well'Location (Street Address) 100 W Hunter Avenue Rochelle Park TWP	·
2. Well Location (Street Address) 100 VV. Hander Address, Receiver and Provide Address	
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing): E20160515	9
2. Site Well Number (As shown on application or plans): <u>MW-47D</u>	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 55.11 Longitude: West 74 04 19.65	· .
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752560 East 610402	······································
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 53.17	
Elevation Top of Outer casing: <u>53.73</u> Elevation of ground: <u>51.70</u>	
Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum 🔲 Other	
6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSI REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7. Significant observations and notes:	
<u> </u>	
SECTION D. LAND SURVEYOR'S CERTIFICATION	
I certify under penalty of law that I have personally examined and am familiar with the	
those individuals immediately responsible for obtaining the information, I believe the	
submitted information is true, accurate and complete 1 am average that there are significant	
penances for submitting raise information including the possibility of the and implisonment.	Data Jula Ju
Professional Land Surveyor's Signature:	Date
	er. 3/100
Firm Name: LATOUT, INC. Certificate of Authorization	#: <u>240A20[[14000</u>
	07425
City/Town: INEVPFOUNDLAND State NJ Zi	0 U0de: 01430
Phone Number (973) 249-0900 Ext.: Fax: (97	3) 630-6433

		1
Ģ	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
00		
SEL	CHON A. SITE NAME AND LOCATION	
Site	Name: FOSRAP Maywood Superiorid Site	
List	all AKAs:	
Stre	eet Address: 100 West Hunter Avenue	
Mur	nicipality: Maywood (Township, Borough or City)	
Cou	unty: Bergen Zip Code: 07607	
Pro	gram Interest (PI) Number(s): Case Tracking Number(s	):
<b>SE(</b> 1. 2	CTION B. WELL OWNER AND LOCATION Name of Well Owner USACE Well Location (Street Address) 100 W. Hunter Avenue, Rochelle Park TWP	
3	Well Location (Municipal Block and Lot) Block# 20.01 Lot # 1	
0.		
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E2016051	
2.	Site Well Number (As shown on application or plans): <u>MW-48S</u>	· · · · · · · · · · · · · · · · · · ·
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 56.55 Longitude: West 74 04 20.51	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 752705 East 610335	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 58.45	
	Elevation Top of Outer casing: 59.72 Elevation of ground: 57.37	
	Check one: 🖾 NAVD 88 🔲 NVGD29 🗌 On Site Datum 🗌 Other	
6,	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERS REFERENCE NETWORK, PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
	4	
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
l ce	ertify under penalty of law that I have personally examined and any familiar with the	
tho	ormation submitted in this document and all attachments and that, based on my inquiry of ose individuals immediately responsible for obtaining the information abelieve the	
sut	bmitted information is true, accurate and complete. I apr aware that there are significant	
per	naities for submitting faise information including the possibility of the and imprisonment.	1.1.1
Pro	ofessional Land Surveyor's Signature:	Date <u>M / 2///6</u>
Su	Irveyor's Name: PAUL EMILIUS, Jr. License Num	Der: 3/180
Fir	m Name: LAYOUT, INC. Certificate of Authorizatio	n #: 24GA28114600
Ma	ailing Address 24 KANOUSE ROAD	
Cit	ty/Town: NEWFOUNDLAND State NJ Z	ip Code: 07435
Ph	none Number (973) 249-0900 Ext.: Fax: (9	73) 838-6433
M	fonitoring Well Certification Form B - Location Certification	Page 1 of 1

in the activity and set of the

Monitoring Well Certification Form B - Location Certification Version 1.3 02/26/13

33

New Jersey Department of Environmental Protection Site Remediation Program
Monitoring Well Certification Form B - Location Certification Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION
Site Name: FUSRAP Maywood Superfund Site
List all AKAs:
Street Address: 100 West Hunter Avenue
Municipality: Maywood (Township, Borough or City)
County: Bergen Zip Code: 07607
Program Interest (PI) Number(s): Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION
1. Name of Well Owner USACE
2. Well Location (Street Address) 100 W. Hunter Avenue, Rochelle Park TWP
3. Well Location (Municipal Block and Lot)         Block# 20.01         Lot # 1
SECTION C. WELL LOCATION SPECIFICS
1. Well Permit Number (This number must be permanently affixed to the well casing); E201605154
2. Site Well Number (As shown on application or plans); MW-48D
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:
Latitude: North 40 53 56.53 Longitude: West 74 04 20.38
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:
North 752703 East 610345
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 59.39
Elevation Top of Outer casing: 60.83 Elevation of ground: 57.75
Check one: 🛛 NAVD 88 📋 NVGD29 📋 On Site Datum 📋 Other
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNS REFERENCE NETWORK: PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7. Significant observations and notes:
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information believe the submitted information is true, accurate and complete, a maware that there are significant
penalties for submitting false information including the possibility of fine and imprisonment.
Professional Land Surveyor's Signature:
Surveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD
City/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Phone Number         (973) 249-0900         Ext.:         Fax:         (973) 838-6433

34

Page 1 of 1

in the early costs.

35	
New Jersey Department of Environmental Prote Site Remediation Program Monitoring Well Certification Form B - Location	Certification
SECTION A. SITE NAME AND LOCATION	· · · · · · · · · · · · · · · · · · ·
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Tow	nship, Borough or City)
County: Bergen Zip C	ode: 07607
Program Interest (PI) Number(s):	ase Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) 61 Madison Avenue, Rochelle Park T	WP
3. Well Location (Municipal Block and Lot) Block# 5	Lot # 26
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the w	ell casing): E201607079
2. Site Well Number (As shown on application or plans): MW-51S	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 45.50 Longitur	de: West 74 04 36.18
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet un	its, to nearest foot:
North 751581 East 6	09137
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.	01'): 54.41
Elevation Top of Outer casing: 54.81 Elevation of gro	bund: 54.77
Check one: 🛛 NAVD 88 🗌 NVGD29 🗌 On Site Datum	] Other
<ol> <li>Source of elevation datum (benchmark, number/description and elevation here, assume datum of 100', and give approximated actual elevation (re</li> </ol>	on/datum). If an on-site datum is used, identify ferencing NAVD 88).
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY U REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER	ITILIZING THE NEW JERSEY LEICA SMARTNET GNSS KV3423.
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CENTIFICATION	SEAL
information submitted in this document and all attachments and that based on r	ny inquiry of
those individuals immediately responsible for obtaining the information if believe submitted information is true, accurate and complete than aware that there are	the significant
penalties for submitting false information including the possibility of the and imp	risonment.
Professional Land Surveyor's Signature:	) Date///////
Surveyor's Name: PAUL EMILIUS, Jr.	License Number: <u>37186</u>
Firm Name: LAYOUT, INC. Cer	tificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
City/Town: NEWFOUNDLAND State NJ	Zip Code: 07435
Phone Number (973) 249-0900 Ext.:	Fax: (973) 838-6433
Monitoring Well Certification Form B - Location Certification	Page 1 of 1

Version 1.3 02/26/13

Q	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification
SEC	CTION A. SITE NAME AND LOCATION
Site	Name: FUSRAP Maywood Superfund Site
List	ali AKAs:
Stre	eet Address: 100 West Hunter Avenue
Mur	nicipality: Maywood (Township, Borough or City)
Соц	Inty: Bergen Zip Code: 07607
Pro	gram Interest (PI) Number(s): Case Tracking Number(s):
SEC	CTION B. WELL OWNER AND LOCATION
1. n	Maille on Weil Owner Owner Of Madison Avenue, Rochelle Park TWP
2.	Well Location (Street Address)
.3.	
SEC	CTION C. WELL LOCATION SPECIFICS
1.	Well Permit Number (This number must be permanently affixed to the well casing): E201607077
2.	Site Well Number (As shown on application or plans): <u>MW-51D</u>
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:
	Latitude: North 40 53 45.48 Longitude: West 74 04 36.14
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 751579 East 609140
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 54.27
	Elevation Top of Outer casing: 54.66 Elevation of ground: 54.66
	Check one: X NAVD 88 VVGD29 On Site Datum Other
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7.	Significant observations and notes:
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL
l ce info thos sub pen	rtify under penalty of law that I have personally examined and am familiar with the irmation submitted in this document and all attachments and that, based on my inquiry of se individuals immediately responsible for obtaining the information, I believe the imitted information is true, accurate and complete. I am aware that there are significant nalties for submitting false information including the possibility of the are information ment.
Pro	ofessional Land Surveyor's Signature: Date DateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDate
Sur	veyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firr	n Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD
City	y/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Pho	one Number (973) 249-0900 Ext.: Fax: (973) 838-6433

36

6	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SEC	TION A. SITE NAME AND LOCATION	
Site	Name: FUSRAP Maywood Superfund Site	
List	ali AKAs:	
Stre	et Address: 100 West Hunter Avenue	
Mur	nicipality: Maywood (Township, Borough or City)	
Cou	inty: Bergen Zip Code: 07607	
Pro	gram Interest (PI) Number(s): Case Tracking Number(s	):
<b>SEC</b> 1.	CTION B. WELL OWNER AND LOCATION Name of Well Owner USACE North And Annual Backer Avenue, Bochelle Park, Bochelle Park, TWP	
2. 2	Well Location (Street Address)	20W
3.		
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E2016099	
2.	Site Well Number (As shown on application or plans): MW-525	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 49.68 Longitude: West 74 04 34.28	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 752005 East 609281	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 43.96	· .
	Elevation Top of Outer casing: <u>44.34</u> Elevation of ground: <u>44.34</u>	
	Check one: 🖾 NAVD 88 🔲 NVGD29 📋 On Site Datum 🗌 Other	
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GINSS METHODOLOGY UTILIZING THE NEW JERS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
<u> </u>		and the second
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
infc	erting under penalty of law that I have personally examined and am familiar with the prmation submitted in this document and all attachments and that based on phy inquiry of	
tho	se individuals immediately responsible for obtaining the information, believe the	
per	nalties for submitting false information including the possibility of fine and imprisonment.	
Pro	ofessional Land Surveyor's Signature:	Date 11/2/14
Su	rveyor's Name: PAUL EMILIUS, Jr. License Num	ber: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorizatio	n #: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD	
Cit	y/Town: NEWFOUNDLAND State NJ Z	ip Code: 07435
Ph	one Number (973) 249-0900 Ext.: Fax: (9	73) 838-6433
 M	onitoring Well Certification Form B - Location Certification	Page 1 of 1

.

Monitoring Well Certification Form B - Location Certification Version 1.3 02/26/13

37

38
New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification
Site Name: FUSRAP Maywood Superfund Site
List all AKAs:
Street Address: 100 West Hunter Avenue
Municipality: Maywood (Township, Borough or City)
County: Bergen Zip Code: 07607
Program Interest (PI) Number(s): Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION
1. Name of Well Owner USACE
2. Well Location (Street Address) Becker Avenue, Rochelle Park, Rochelle Park TWP
3. Well Location (Municipal Block and Lot) Block# ROW Lot # ROW
SECTION C. WELL LOCATION SPECIFICS
1. Well Permit Number (This number must be permanently affixed to the well casing): E201609991
2. Site Well Number (As shown on application or plans); MW-52D
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:
Latitude: North 40 53 49.72 Longitude: West 74 04 34.34
<ol> <li>New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 752009</li> <li>East 609276</li> </ol>
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 43.70
Elevation Top of Outer casing: 44.19 Elevation of ground: 44.19
Check one: 🛛 NAVD 88 🔲 NVGD29 🔄 On Site Datum 🔲 Other
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.
7. Significant observations and notes:
SECTION D. LAND SURVEYOR'S CERTIFICATION
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, believe the submitted information is true, accurate and complete. I am aware that mere are significant penalties for submitting false information including the possibility of the and imprisonment.
Professional Land Surveyor's Signature:DateDateDateDate
Surveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD
City/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Phone Number (973) 249-0900 Ext.: Fax: (973) 838-6433

Page 1 of 1

39		
	New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SEC	CTION A. SITE NAME AND LOCATION	
Site	Name: FUSRAP Maywood Superfund Site	
List	all AKAs:	
Stre	et Address: 100 West Hunter Avenue	
Mur	nicipality: Maywood (Township, Borough or City)	
Cou	Inty: Bergen Zip Code: 07607	
Pro	gram Interest (PI) Number(s): Case Tracking Number(s	):
SEC	CTION B. WELL OWNER AND LOCATION	
1.	Name of Well Owner USACE	
2.	Well Location (Street Address) Eccleston Place, Maywood, Maywood Boro	
3.	Well Location (Municipal Block and Lot)         Block#         ROW         Lot #         R	0W
SE	CTION C. WELL LOCATION SPECIFICS	
1.	Well Permit Number (This number must be permanently affixed to the well casing): E20169845	52
2.	Site Well Number (As shown on application or plans): MW-53S	
3.	Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
	Latitude: North 40 53 59.86 Longitude: West 74 04 15.76	
4.	New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
	North 753042 East 610699	
5.	Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 51.86	,
	Elevation Top of Outer casing: 52.18 Elevation of ground: 52.18	
	Check one: 🛛 NAVD 88 📋 NVGD29 📄 On Site Datum 📄 Other	
6.	Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).	datum is used, identify
	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSI REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7.	Significant observations and notes:	
ļ		
SE	CTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
l ce	rtify under penalty of law that I have personally examined and am fapfiliar with the sympton submitted in this document and all attachments and that based any my inquine of	
tho	se individuals immediately responsible for obtaining the information, the live the	
per	mitted information is true, accurate and complete. A am aware that there are significant nalties for submitting false information including the possibility of the and imprisonment.	·
Pro	ofessional Land Surveyor's Signature:	Date 11/2//11
Su	rvevor's Name: PAUL EMILIUS, Jr. License Numb	er: 37186
Fin	m Name: LAYOUT, INC. Certificate of Authorization	#: 24GA28114600
Ma	iling Address 24 KANOUSE ROAD	,
Cit	y/Town: NEWFOUNDLAND State NJ Zi	p Code: 07435
Ph	one Number (973) 249-0900 Ext.: Fax: (97	3) 838-6433
<u>ь</u>	abilitation Mall Catification Factor B. Leastion Catification	Page 1 of 1

Version 1.3 02/26/13

New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification       Date Stamp (Por Department use only)         SECTION A. SITE NAME AND LOCATION Site Name:       FUSRAP Maywood Superfund Site Lat all AXAs;       Environmental Protection         Street Address:       100 West Hunter Avenue       (Township, Borough or City)         Municipality:       Maywood       (Township, Borough or City)         County:       Bergen       Zp Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):       Sector One:       Sector One:         SECTION B. WELL OWNER AND LOCATION       Name of Well Owner       USACE       Vell Location (Minicipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C. WELL LOCATION SPECIFICS       1. Well Permit Number (This number must be permanently affixed to the well casing):       E201608461       Sector One:       Site Well Number (As Stow on a splicitation or prins);       MV-S3D         3: Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Laft fude: North 40 53 50.81       Longitude: West 74 D4 15.81         4: New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037       East 610696         5: Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 5:192       Elevation of Top of Custre casing; 5:223       Elevation of an on-site datum is us				
SECTION A. SITE NAME AND LOCATION         Site Name:       FUSRAP Maywood Superfund Site         List all AKAs:         Street Address:       100 West Hunter Avenue         Municipality:       Maywood         County:       Bergen         Zip Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):         SECTION B. WELL OWNER AND LOCATION       I. Name of Well Owner         1. Name of Well Owner       USACE         2. Well Location (Municipal Block and Lot)       Block# ROW         Location (Municipal Block and Lot)       Block# ROW         Lotterion K. WELL LOCATION SPECIFICS       I. Congitude: West 74 04 15.81         2. Well Location (Municipal Block and Lot)       Block# ROW         Ste Well Number (As shown on application or plans):       MV-63D         3. Geographic Coordinate NAD 83 totum. US survey feet units, to nearest foot:       North 753037         4. New Jersey State Plane Coordinates NAD 83 datum. US survey feet units, to nearest foot:       North 753037         5. Elevation of Top of Outer Casing (cap off) at reference mark (nearest 0.01'): 51.92       Elevation of a outour 52.23         Check one:       NAVD 88       NVGD29       On Site Datum       Other         6. Sociuce of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is	New Jersey Department of Environ Site Remediation Program Monitoring Well Certification Form	nmenta 1 B - Lo	l Protection	Date Stamp
SECTION A. SITE NAME AND LOCATION         Site Name:       FUSRAP Maywood Superfund Site         List all AKAs:         Street Address:       100 West Hunter Avenue         Municipality:       Maywood         County:       Bergen         Program Interest (PI) Number(s):       Case Tracking Number(s):         SECTION B. WELL OWNER AND LOCATION				(For Department use only)
Site Name:       FUSRAP Maywood Superfund Site         List all AKAs:       Street Address:       100 West Hunter Avenue         Municipality:       Maywood       (Township, Borough or City)         County:       Dergen       Zip Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):       SECTION B: WELL OWNER AND LOCATION         1.       Name of Well Covert USACE       Eccleston Place, Maywood, Maywood Boro         3.       Well Location (Street Address)       Eccleston Place, Maywood, Ecot         3.       Well Covert (This number must be permanently affixed to the well casing):       E201608451         2.       Well Pormit Number (This number must be permanently affixed to the well casing):       E201608451         3.       Well Cocation S PECIFICS       Italitude: North 40 53 59.81       Longitude: West 74 04 15.81         4.       New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5.       Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.011); 51.92       Elevation of top of Outer casing: 52.23       Elevation of top of any approximated actual elevation (referencing NAVD 83).       NAVD88       NAVD88       NAVD 88       NAVD 88       NAVD 88       NAVD 88.       NAVD 88.       NAVD 88.       NAVD 88.       NAVD 88.       NAVD 88.       N	SECTION A. SITE NAME AND LOCATION			
List all AKAs:         Street Address:       100 West Hunter Avenue         Municipality:       Maywood         County:       Bergen         Zip Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):         SECTION B.       WEIL LOCATION         1. Name of Well Owner       USACE         2. Weil Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3. Weil Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3. Weil Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C.       WEIL LOCATION SPECIFICS	Site Name: FUSRAP Maywood Superfund Site			
Street Address:       100 West Hunter Avenue         Municipality:       Maywood         County:       Bergen         Program Interest (PI) Number(s):       Case Tracking Number(s):         SECTION B. WELL OWNER AND LOCATION       1.         1.       Name of Well Owner       USACE         2.       Well Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3.       Well Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C. WELL LOCATION SPECIFICS       1.       Well Permit Number (This number must be permanently affixed to the well casing):       E201608451         2.       Site Well Number (As shown on application or plans):       MW-63D         3.       Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81         2.       Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4.       New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5.       Elevation of Top of Outer Casing (cap off) at reference mark (nearest 0.01'): 51.92       Elevation of pond Siz 2.3         Check one:       MNCD22       On Site Datum       Other         6.       Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume da	List all AKAs:			
Municipality:       Maywood       (Township, Borough or City)         County:       Bergen       Zip Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):	Street Address: 100 West Hunter Avenue			
County:       Bergen       Zip Code:       07607         Program Interest (PI) Number(s):       Case Tracking Number(s):       SECTION B. WELL OWNER AND LOCATION         1. Name of Well Owner       USACE       Section Place, Maywood, Maywood Boro         2. Well Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3. Well Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C. WELL LOCATION SPECIFICS         1. Well Permit Number (This number must be permanently affived to the well casing):       E201608451         2. Site Well Number (As shown on application or plans):       MW-63D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81         1. Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.92       Elevation of top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.92         Elevation of Op of Uner casing: 52.23       Elevation of Referencing NAVD 88).       NAVD 88         NAVD8 8E LEVATIONS WERE ESTABLISHED BY RTK ONSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NSS MARKER MX3423.       Significant observations and notes:         <td colspan="</td> <td>Municipality: Maywood</td> <td></td> <td>(Township, Borough or Cit</td> <td>y)</td>	Municipality: Maywood		(Township, Borough or Cit	y)
Program Interest (PI) Number(s):       Case Tracking Number(s):         SECTION B. WELL OWNER AND LOCATION         1. Name of Well Owner       USACE         2. Well Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3. Well Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C. WELL LOCATION SPECIFICS         1. Well Permit Number (This number must be permanently affixed to the well casing):       E201608451         2. Site Well Number (As shown on application or plans):       MW-63D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037       East 610695         5. Elevation of top of Inner Casing (cap off) at reference mark (nearest 0.01); 51.92       Elevation of ground; 52.23       Check one:         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify, here, assume datum of 100, and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS METHODOLOGY	County: Bergen		Zip Code: 07607	-
SECTION B. WELL OWNER AND LOCATION         1. Name of Well Owner       USACE         2. Well Location (Street Address)       Eccleston Place, Maywood, Maywood Boro         3. Well Location (Municipal Block and Lot)       Block# ROW         Lot # ROW       SECTION C. WELL LOCATION SPECIFICS         1. Well Permit Number (This number must be permanently affixed to the well casing):       E201608451         2. Site Well Number (As shown on application or plans):       MW-53D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01): §1.92       Elevation of por of Outer casing: \$2.23         Check one:       NAVD 88       INVGD29       On Site Datum         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100°, and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NEWTOKK. PERIODIC CHECKS WERE MADE TO NAS MARKER KV3423.         7. Significant observations and notes:       SEAL         Date // [2//// Significant periodicity responsible for obtaining the information including the flopsating of the many personaly examined and an fapiliar with the submittid	Program Interest (PI) Number(s):		Case Tracking Number	(s):
2. Well Location (Street Address) Eccleston Place, Maywood, Maywood Boro 3. Well Location (Municipal Block and Lot) Block# ROW Lot # ROW  SECTION C. WELL LOCATION SPECIFICS 1. Well Permit Number (As shown on application or plans): MV-53D 3. Geographic Coordinate NAD 83 to nearest 1/100 of a second: Latitude: North 40 53 59.81 2. Site Well Number (As shown on application or plans): MV-53D 3. Geographic Coordinate NAD 83 to nearest 1/100 of a second: Latitude: North 40 53 59.81 2. Site Well Pane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 753037 2. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.011): 51.92 2. Elevation Top of Outer casing: 52.23 2. Check one: ⊠ NAVD 88 □ NVGD29 □ On Site Datum □ Other 3. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100°, and give approximated actual elevation (datum). If an on-site datum is used, identify here, assume datum of 100°, and give approximated actual elevation (datum). If an on-site datum is used, identify here, assume other ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423. 3. Significant observations and notes:  SECTION D. LAND SURVEYOR'S CERTIFICATION 1. Certificate of Authorization and onoplete, Amagements and that, besegon yn inquiry of those individuals immediately responsible for obtaining the information structure significant penalties for submitting fills information including the possible of actual and fargiliar with the information struce yor's Signature: 2. Date ///2///// Surveyor's Name: PAUL EMILLUS, Jr. 2. License Number; 37186 2. Firm Name: LAYOUT, INC. 2. Certificate of Authorization # 24GA28114600 3. Malling Address 24 KANOUSE ROAD 3. City/Town: NEWFOUNDLAND 3. Ext: Fax: (973) 838-6433 3. Monitoring Well Certification from 8-1. Location Certification 3. Page 1 of 1 3. State NJ 3. Signification From 8-Location C	SECTION B. WELL OWNER AND LOCATION			
2. Well Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         3. Well Location (Municipal Block and Lot)       Block# ROW       Lot # ROW         SECTION C. WELL LOCATION SPECIFICS       1       Well Permit Number (This number must be permanently affixed to the well casing): E201608451         2. Site Well Number (As shown on application or plans):       MW-53D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01): 51.92       Elevation of good for portice casing: 52.23         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100, and give approximated actual elevation (referencing NAVD 88).         NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7. Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION         Lorense Number: 37166         SECTION D. LAND SURVEYOR'S CERTIFICATION         Lorense Number: 37166         SECTION D. LAND SURVEYOR'S CERTIFICATION         Lorensenalive actind and complete an awayer final di	2 Well Location (Street Address) Eccleston Place. M	laywood.	Maywood Boro	
SECTION C. WELL LOCATION SPECIFICS         1. Well Permit Number (This number must be permanently affixed to the well casing):       E201608451         2. Site Well Number (As shown on application or plans):       MW-53D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.92       Elevation Top of Outer casing; 52.23       Elevation of ground; 52.23         Check one:       NAVD 88       INVGD29       On Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100; and give approximated actual elevation (referencing NAVD 88).       NAVD 88         NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.       SEAL         Tossi inficant observations and notes:       SEAL       Date       ///2/////////////////////////////////	3 Well Location (Municipal Block and Lot) Block	# ROW	Lot#	ROW
1. Well Permit Number (This number must be permanently affixed to the well casing):       E201608451         2. Site Well Number (As shown on application or plans):       MW-53D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.92       Elevation of grount 52.23       Check one:         Check one:       MAVD 88       NVGD29       O n Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).       NAVD88         NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC HECKS WERE MADE TO NGS MARKER KV3423.       Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION       Elevation of individuals immediately responsible for obtaining the information bit document and all attachments and that, based on yminquity of these individuals immediately responsible for obtaining the information bit duding the poset milly of the and improvement.       Date       µ/2///M         Professional Land Surveyor's Signature:       Userveyor's Name: PAUL EMILUS Jr.       License Number: 37185       Eicen	SECTION C. WELL LOCATION SPECIFICS			
1. Weit Perint Number (Ats shown on application or plans):       MW-63D         2. Site Weit Number (As shown on application or plans):       MW-63D         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:       Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'):       51.92       Elevation of ground: 52.23         Check one:       NAVD 88       INVGD29       On Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100°, and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NSS MARKER KV3423.       Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION         Level to add an tagiliar with the information is true, accurate and complete. Tam wayer that that base ground that the section of the other assignation.         Date // 2/////         SEAL         Output:         Section D. LAND SURVEYOR'S CERTIFICATION         Leve the assort of the add athatadoments and that the section of youngo of	1 Moll Bormit Number (This number must be permanen	the official	to the well casing) E201608	451
2. Site Weil Number (As shown on appication of plans). INVESD         3. Geographic Coordinate NAD 83 to nearest 1/100 of a second: Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 51.92       Elevation of ground: 52.23         Check one:       NAVD 88       NVGD29         Gource of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7. Significant observations and notes:       SECTION D. LAND SURVEYOR'S CERTIFICATION         Professional Land Surveyor's Signature;       SEAL         Professional Land Surveyor's Signature;       Date         Surveyor's Name:       PAUL EMILIUS, Jr.         Professional Land Surveyor's Signature;       Certificate of Authorization #: 24GA28114600         Mailing Address       24 KANOUSE ROAD         City/Town:       NEWFOUNDLAND       State         Name:       24 CA28114600         Mailing Address       24 KANOUSE ROAD         City/Town:       (973) 249-0900	Weit Permit Number (This number must be permanen	MNAL53	D	
3. Geographic Coordinate NAD 33 to hearest 1/100 of a second:         Latitude: North 40 53 59.81       Longitude: West 74 04 15.81         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:       North 753037         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): <u>51.92</u> Elevation Top of Outer casing; <u>52.23</u> Check one:       NAVD 88       NVGD29       On Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).       NAVD88       NAVD88       NAVD88       NAVD 88         7. Significant observations and notes:       Section of row penaltic structure and complete A an awayer final twayer are significant penalties for submitting false information including the possibility of attend impresement.       SEAL         Professional Land Surveyor's Signature:       Date       µ/ 2///H         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number:       37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Malling Address       24 KANOUSE ROAD       State       NJ       zip Code:       07435         Phone Number       (973) 249-0900       Ext:       Fax:       (973) 838-6433       Page 1 of 1	2. Site Weil Number (As shown on application of plans).	14144-00		
Latitude: North 40 53 59:81       Longitude: West 74 04 15.61         4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01): 61.92       Elevation of ground: 52.23         Check one:       NAVD 88       NVGD29       On Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100°, and give approximated actual elevation (referencing NAVD 88).       NAVD 88       NAVD 88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHOODLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7. Significant observations and notes:       SECTION D. LAND SURVEYOR'S CERTIFICATION       SEAL         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, beschor my inquiry of those individuals immediately responsible for obtaining the information Full Park are significant penalties for submitting false information including the gossitify of the gate find improvement.       Date // /2/////         Professional Land Surveyor's Signature:       Date       // /2/////         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number: 37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Mailing Address       <	3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second;		
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot: North 753037	Latitude: North 40 53 59.81		Longitude: West 74 04 15.0	51
North 753037       East 610695         5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'); 51.92       Elevation Top of Outer casing; 52.23         Elevation of ground; 52.23       Elevation of ground; 52.23         Check one:       NAVD 88       NVGD29       On Site Datum       Other         6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100, and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7. Significant observations and notes:       SEAL         SECTION D. LAND SURVEYOR'S CERTIFICATION         I certify under penalty of law that I have personally examined and am fapiliar with the information submitted in this document and all attachments and that, beselven my inquiry of those individuals immediately responsible for obtaining the information. Tokieve the submitted information is true, accurate and complete fam awaye final there are significant.         Professional Land Surveyor's Signature:       Date // /2////         Surveyor's Name:       PAUL EMILIUS, Jr.         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Malling Address       24 KANOUSE ROAD       Ext:       Fax: (973) 838-6433         Monitoring Weli Certification Form B - Location Certification	4. New Jersey State Plane Coordinates NAD 83 datum,	US surve	ey feet units, to nearest foot:	
<ul> <li>5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): <u>51.92</u> Elevation Top of Outer casing: <u>52.23</u> Elevation of ground: <u>52.23</u> <i>Check one</i>: ⊠ NAVD 88 □ NVGD29 □ On Site Datum □ Other</li> <li>6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88). NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.</li> <li>7. Significant observations and notes:</li> </ul> SECTION D. LAND SURVEYOR'S CERTIFICATION I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based, on my inquiry of those individuals immediately responsible for obtaining the information. Torrive the submitted information is true, accurate and complete. <i>Y</i> and ways final theorement. Professional Land Surveyor's Signature:	North <u>753037</u>	_	East 610695	· · · · · · · · · · · · · · · · · · ·
Elevation Top of Outer casing:       52.23       Elevation of ground:       52.23         Check one:       NAVD 88       NVGD29       On Site Datum       Other         6.       Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7.       Significant observations and notes:       SEAL         SECTION D. LAND SURVEYOR'S CERTIFICATION         I certify under penalty of law that I have personally examined and am fapriliar with the information submitted in this document and all attachments and that, besed on my inquiry of those individuals immediately responsible for obtaining the information. TopHyte the submitted information including the possibility of attend improvement.       Date // / 2///4         Professional Land Surveyor's Signature:       Date       Date // / 2///4         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number: 37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Mailing Address       24 KANOUSE ROAD       NJ       Zip Code: 07435         Phone Number       (973) 249-0900       Ext:       Fax: (973) 838-6433         Monitoring Well Certification Form B - Location C	5. Elevation of Top of Inner Casing (cap off) at reference	e mark (n	earest 0.01'): 51.92	
Check one:       NAVD 88       NVGD29       On Site Datum       Other         6.       Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify, here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).       NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7.       Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, besed on any inquiry of those individuals immediately responsible for obtaining the information activate are equificant penalties for submitting false information including the possibility of faw and imprisement.       Date // /2///k         Professional Land Surveyor's Signature:       Date       Date // /2//k         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number: 37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Mailing Address       24 KANOUSE ROAD       Ext:       Fax: (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1	Elevation Top of Outer casing: 52.23	Elevat	ion of ground: <u>52.23</u>	· · · · · · · · · · · · · · · · · · ·
	Check one: 🖾 NAVD 88 🔲 NVGD29 📋 On	Site Dat	um 📋 Other	
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.         7. Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information of the submitted information including the possibility of the submitted information including the possibility of the analytic are significant penalties for submitting false information including the possibility of the analytic are and complete. I am aware that the are significant penalties for submitting false information including the possibility of the and improvement.       Date // /2////         Professional Land Surveyor's Signature:       Date       Date // /2////         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number: 37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Mailing Address       24 KANOUSE ROAD       Ext:       Fax: (973) 838-6433         City/Town:       NEWFOUNDLAND       Ext:       Fax: (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1	<ol> <li>Source of elevation datum (benchmark, number/describere, assume datum of 100', and give approximated a</li> </ol>	ription an actual elev	d elevation/datum). If an on-si vation (referencing NAVD 88).	te datum is used, identify
7. Significant observations and notes:         SECTION D. LAND SURVEYOR'S CERTIFICATION         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, bescion my inquiry of those individuals immediately responsible for obtaining the information. The first the submitted information is true, accurate and complete. I am aways that the penalties for submitting false information including the possibility of the and improvement.         Professional Land Surveyor's Signature:       Date       // 2/////         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number:       37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433       Page 1 of 1	NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNS8 REFERENCE NETWORK. PERIODIC CHECKS WERE MAD	S METHOD E TO NGS	OOLOGY UTILIZING THE NEW JEF MARKER KV3423.	RSEY LEICA SMARTNET GNSS
SECTION D. LAND SURVEYOR'S CERTIFICATION       SEAL         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on any inquiry of those individuals immediately responsible for obtaining the information. There are significant penalties for submitting false information including the possibility of the am aways that there are significant penalties for submitting false information including the possibility of the am aways that there are significant penalties for submitting false information including the possibility of the and improvement.       Date ///2///4         Professional Land Surveyor's Signature:       Date       ///2///4         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number: 37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #: 24GA28114600         Mailing Address       24 KANOUSE ROAD       Ext.:       Fax: (973) 838-6433         Monitoring Well Certification Form B - Location Certification Version 1.3 02/26/13       Page 1 of 1	7. Significant observations and notes:			
SECTION D. LAND SURVEYOR'S CERTIFICATION       I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. Toelfeve the submitted information is true, accurate and complete 1 am aware that there are significant penalties for submitting false information including the possibility of the and improvement.       SEAL         Professional Land Surveyor's Signature:       Date ///2//lk         Surveyor's Name:       PAUL EMILIUS, Jr.         Firm Name:       LAYOUT, INC.         Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD         City/Town:       NEWFOUNDLAND         State       NJ         Phone Number       (973) 249-0900         Ext:       Fax:         Page 1 of 1				· · · · · · · · · · · · · · · · · · ·
SECTION D. LAND SURVEYOR'S CERTIFICATION       SEAL         I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on phy inquiry of those individuals immediately responsible for obtaining the information. There are significant penalties for submitting false information including the possibility of the and improvement.       SEAL         Professional Land Surveyor's Signature:       Date       // / ////////////////////////////////			$\Delta$	
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. T believe the submitted information is true, accurate and complete. Am away that there are significant penalties for submitting false information including the possibility of the and improvement.         Professional Land Surveyor's Signature:       Date       // /2///4         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number:       37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD       2ip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1	SECTION D. LAND SURVEYOR'S CERTIFICATION		SEAL	
Professional Land Surveyor's Signature:       Date       // 2///4         Surveyor's Name:       PAUL EMILIUS, Jr.       License Number:       37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD       Certificate of Authorization #:       24GA28114600         City/Town:       NEWFOUNDLAND       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433       Page 1 of 1         Wonitoring Well Certification Form B - Location Certification       Version 1.3 02/26/13       Page 1 of 1       Page 1 of 1	I certify under penalty of law that I have personally examined information submitted in this document and all attachments a those individuals immediately responsible for obtaining the in submitted information is true, accurate and complete. If am a penalties for submitting false information including the possiti	I and am f ind that, b formation ware that with of first	aniliar with the ased on my inquiry of 1 believe the there are significant and impresement.	
Surveyor's Name:       PAUL EMILIUS, Jr.       License Number:       37186         Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD       Certificate of Authorization #:       24GA28114600         City/Town:       NEWFOUNDLAND       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1	Professional Land Surveyor's Signature:			Date // 2///
Firm Name:       LAYOUT, INC.       Certificate of Authorization #:       24GA28114600         Mailing Address       24 KANOUSE ROAD       Certificate of Authorization #:       24GA28114600         City/Town:       NEWFOUNDLAND       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1         Version 1.3       02/26/13       Page 1 of 1	Surveyor's Name: PAUL EMILIUS, Jr.	2 ⁰	License Nur	nber: <u>37186</u>
Mailing Address       24 KANOUSE ROAD         City/Town:       NEWFOUNDLAND       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1         Version 1.3 02/26/13       Page 1 of 1	Firm Name: LAYOUT, INC.		Certificate of Authorizati	on #: 24GA28114600
City/Town:       NEWFOUNDLAND       State       NJ       Zip Code:       07435         Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Version 1.3 02/26/13       Page 1 of 1	Mailing Address 24 KANOUSE ROAD			
Phone Number       (973) 249-0900       Ext.:       Fax:       (973) 838-6433         Monitoring Well Certification Form B - Location Certification       Page 1 of 1       Page 1 of 1         Version 1.3 02/26/13       Page 1 of 1       Page 1 of 1	City/Town: NEWFOUNDLAND	State	NJ	Zip Code: 07435
Monitoring Well Certification Form B - Location Certification Page 1 of 1 Version 1.3 02/26/13	Phone Number (973) 249-0900	Ext.:	Fax: (	973) 838-6433
	Monitoring Well Certification Form B - Location Certification Version 1.3 02/26/13			Page 1 of 1

and the second second

41
New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification
SECTION A. SITE NAME AND LOCATION
Site Name: FUSRAP Maywood Superfund Site
List all AKAs:
Street Address: 100 West Hunter Avenue
Municipality: Maywood (Township, Borough or City)
County: Bergen Zip Code: 07607
Program Interest (PI) Number(s): Case Tracking Number(s):
SECTION B. WELL OWNER AND LOCATION         1. Name of Well Owner       USACE         2. Well Location (Street Address)       Hergesell Avenue, Maywood, Maywood Boro         3. Well Location (Municipal Block and Lot)       Block# ROW
Well Permit Number (This number must be permanently affixed to the well casing): E201608454     Site Well Number (As shown on application or plans): MW-54S     Geographic Coordinate NAD 83 to nearest 1/100 of a second:     Latitude: North 40 53 57.19     Longitude: West 74 04 09.54     New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:     North 752774     East 611177     East 611177     East 611177     Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 54.25     Elevation Top of Outer casing: 54.57     Elevation of ground: 54.57     Check one: ⊠ NAVD 88 □ NVGD29 □ On Site Datum □ Other     Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).     NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERSEY LEICA SMARTNET GNSS
7. Significant observations and notes:
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL
I certify under penalty of law that I have personally examined and an tabiliar with the information submitted in this document and all attachments and that based on my inquiry of those individuals immediately responsible for obtaining the information believe the submitted information is true, accurate and complete. I am away that there are eignificant penalties for submitting false information including the possibility of fine and imprisonment.
Professional Land Surveyor's Signature Date DateDate
Surveyor's Name: PAUL EMILIUS, Jr. License Number: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization #: 24GA28114600
Mailing Address 24 KANOUSE ROAD
City/Town: NEWFOUNDLAND State NJ Zip Code: 07435
Phone Number         (973) 249-0900         Ext.:         Fax:         (973) 838-6433

Page 1 of 1

a saarii a kuk

.

42	
New Jersey Department of Environmental Protection Site Remediation Program Monitoring Well Certification Form B - Location Certification	Date Stamp (For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name: FUSRAP Maywood Superfund Site	
List all AKAs:	
Street Address: 100 West Hunter Avenue	
Municipality: Maywood (Township, Borough or City)	
County: Bergen Zip Code: 07607	
Program Interest (PI) Number(s): Case Tracking Number(s	):
SECTION B. WELL OWNER AND LOCATION	
1. Name of Well Owner USACE	
2. Well Location (Street Address) Hergesell Avenue, Maywood, Maywood Boro	
3. Well Location (Municipal Block and Lot) Block# ROW Lot # F	ROW
SECTION C. WELL LOCATION SPECIFICS	
1. Well Permit Number (This number must be permanently affixed to the well casing); E2016084	53
2. Site Well Number (As shown on application or plans); MW-54D	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:	
Latitude: North 40 53 57.15 Longitude: West 74 04 09.58	
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:	
North 752770 East 611174	
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 54.17	
Elevation Top of Outer casing: <u>54.42</u> Elevation of ground: <u>54.42</u>	
Check one: 🔀 NAVD 88 🗌 NVGD29 🔲 On Site Datum 📋 Other	
<ol> <li>Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88).</li> </ol>	datum is used, identify
NAVD88 ELEVATIONS WERE ESTABLISHED BY RTK GNSS METHODOLOGY UTILIZING THE NEW JERS REFERENCE NETWORK. PERIODIC CHECKS WERE MADE TO NGS MARKER KV3423.	EY LEICA SMARTNET GNSS
7. Significant observations and notes:	
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL	
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information. Uselieve the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and improvement.	
Professional Land Surveyor's Signature:	Date 11/21/14
Surveyor's Name: PAUL EMILIUS, Jr. License Number	ber: 37186
Firm Name: LAYOUT, INC. Certificate of Authorization	n#: 24GA28114600
Mailing Address 24 KANOUSE ROAD	
City/Town: NEWFOUNDLAND State NJ Z	p Code: 07435
Phone Number (973) 249-0900 Ext.: Fax: (97	73) 838-6433

Page 1 of 1

APPENDIX B Boring and Construction Logs for LTM Wells

### **APPENDIX B**

#### BORING LOGS FOR NEW LTM WELLS

## CONSTRUCTION DIAGRAMS FOR MODIFIED AND NEW LTM WELLS

# APPENDIX B

## BORING LOGS FOR NEW LTM WELLS

			D.	PROJE	CT: Mavwo	od FUSRAP Superfund Site	JOB NUM	1BER:	500102
СВА	&I FEDI	ERAL	SERVICES		maywe	Manuard Mr.			LIGACE
				LOCAT		Maywood, NJ	CLIENT:		USAUE
				CONTE	RACTOR:	SGS	DRILLER	R: La	rry Lynch
				WELL	PERMIT NUMBER:	E201605161	ימ ת. ויקוק	EP: 7.	eff Cook
				<u> </u>	1	· ·	FIELD RI		
	TYPE		SAMPLER	CASING	CORE BARREL	DATE: 6/20	PTH OF GROUND	WATER	
8	IZE (ID)		NA	6"	NA	0/20			·····
HAMN HAM	MER WEIGHT	I	NA NA	NA NA	NA NA	Groundwater Depth (Feet):	L	~8	·
рерти Г	alu	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING
(Feet)	(ppm)	(cpm)	<u> </u>					DIAM (in)	DIAM (in)
0			-						
1	·		-						
2			1		Hand-cleared 0 to 5	feet		1	
3									
4		·	-						
4	······		1					4	
3			-					1	
6							,		
7			-					1	
8			SANDSTONE, exten	sively weathered	d, red-brown, soft. Top of be	drock ~8'			
9			4						]
10			-						
		9.4 ··· /4 ······ ··· ······							
			-						
12									
13			-						
]4			- -						
<u></u> 15			-					9-7/8	6
16			-						
17			-						
			1						
18			-						
19			-			Drive 10 ⁿ cor	nductor casing to 19'.		
20			-						
21			4						_
22			1						e
			-			,			
2.3			-			1 1 / 20 /		]	
24			SANDSTONE, extens	avely weathered	i, rea-brown, soft. High wate	r yield (24-30').			
25									
26									
27									
28			-						
			1.				1		
29					(continued on Page	2)			<u> </u>
DRILLING R	IG TYPE:		Schramm T-450			SURFACE ELEVATIO	ON: 56.99		
	DIAM	0.70	57/0=/1			CTART DATE	che loos	16	
BUKEHOLE	ылам:	9-7/8",	J-116" (open borehole)			STAKT DATE:	6/15/201	1.0	
WELL INSTA	LLED:		Yes			END DATE:	. 6/20/201	6	
OTES:		L				<u> </u>			
Depths me	asured from g	round surfac	e gpm = gallon	s per minute				Page 1 of 3	
MA	nnlicable		-				1		

				DDINGL	00		В	ORING NUM	BER:
			D	PROJE	CT: Maywoo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR	SGS			,
				Colum			DRILLER	: Lar	ry Lynch
				WELL	PERMIT NUMBER:	E201605161	FIELD RE	P: Je	ff Cook
		1		CASING	CODE DADDEL	DEPTU		WATED	
	TYPE		NA	steel	NA	DATE: 6/20/2016	JF GROUND		
нам	SIZE (ID) IMER WEIGH	r	NA NA	6" NA	NA NA	Groundwater Depth (Feet):		~8	
HA	MMER FALL		NA	NA	NA				
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
30		(cpm)	Harder (30-33').					DIAM	DIAM
31			-						
20			- ·						
32			_						
33	<u> </u>		SANDSTONE, fractu	red, reddish bro	wn (5YR4/3), soft. Yield ~20	) gpm (33-38').			
34									
35			1						
36									
37			-						
			-					9-7/8	6
38			-						
39			-				,		
40			MUDSTONE, reddish	brown (5¥R4/	3), competent rock.				
41			-						
42	0.0								
	0.0		-1						
43			Harder.						
44									
45			-			Air bamme	r 9-7/8" to 46'.		
46			-			Install 6" stee	I casing to 40'.		
47									
			-						
48			-						
49	0.0		MUDSTONE, reddish	brown.					
. 50			-						
51		· · <b>-</b> ··· · · ·	Fracture.						
52			Yield ~0.0 gpm.						
52			-					5-7/8	Open Borehole
			Fracture.						
54	0.0		MUDSTONE, clayey/s	sandy, reddish b	nowa.				
55									
56			Yield ~ 0.0 gpm.						
57			-						
58									
59	0.0		MUDSIONE, reddish	orown.	(continued on Page	3)			
DRILLING	RIG TYPE-		Schramm T-450			SURFACE ELEVATION	56.99		
bobbio		0 = 10"	5 2/01 ( L - L - L - L - L			OTABT DATE.	christ	6 ·	
BOREHOLI	E DIAM:	9-7/8*,	, 5-7/8" (open borehole)			START DATE:	6/15/201	0	-
WELL INST	ALLED:		Yes		-	END DATE:	6/20/201	ь 	
Depths m	neasured from g	round surfac	ce gpm = gallon	s per minute				Page 2 of 3	
$p_{NA} = not$ cpm = co	applicable unts per minute	2			B38W18DR-2				
ppm = pa	arts per million								

			BC	RING L	OG			B38W18DR	<u>-</u>
				PROJE	CT: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
CBa	&I FEDI	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
						FORSZAFIZI	DRILLER	: Lan	ry Lynch
				WELLI	PERMIT NUMBER:	E201605161	FIELD RE	P: Jei	Ť Cook
		ŀ			000000				
	TYPE		SAMPLER NA	CASING steel	CORE BARREL NA	DATE: 6/20	2016	WAIEK	
HAM	SIZE (ID)	r	NA	6" NA	NA NA	Groundwater Deuth (Feet):		~8	k h
HAN	IMER FALL	·	NA NA	NA	NA	Groundwater Deptil (reet).			
DEPTH	PID	RAD			DESCRIPTION OF M	ATERIALS		BOREHOLE	CASING
(Feet)	(ppm)	(cpm)	· · · · · · · · · · · · · · · · · · ·		<u>.</u>		· ·	DIAM (in)	DIAM (ir
		·							
61			Fracture (61-62'). Yield ~0.0 gpm.						
62									
63			Softer (63-66').						
64	0.0		SANDSTONE, reddish	ı brown.					
65									Oren
								5-7/8	Borehole
66			Yield ~0.5 gpm.						
67			••• •						
68			-						
69	0.0		MUDSTONE reddiet	brown					
	0.0			otown.					-
			Softer (70-71'). Total vield ~0.5 gpm.			Air h	ammer 5-7/8" to 71'.		
71					(End of Boring at 7	'l feet)			
72									
73									
			-				:		
74			-		1 P	·			
75			-						
76								-	
77									
79			1						
/0			-						
79			1						
80			1						
81									
82			1						
83			1						
84			-						
85			-						
86		·	1						
97							н. 1917 - С.		
01			ľ						
88									
89									
I			· ·			·····			
KILLING R	IG TYPE:		Schramm T-450			SURFACE ELEVATIO	IN: 56.99		
OREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	6/15/201	6	
ELL INSTA	LLED:		Yes			END DATE:	6/20/201	6	
ES:									
Depths me	asured from g	round surfac	e gpm = gallons	per minute,				Page 3 of 3	
	ephcable								

ı.

•

			BO	RING LO	 G		BORING NUMBER: B38W25SR
				PROJECT	': Maywo	od FUSRAP Superfund Site	JOB NUMBER: 500102
CB	&I FEDI	ERAL SE	RVICES	LOCATIC	N:	Maywood, NJ	CLIENT: USACE
				CONTRA	CTOR	SGS	
				CONTRA		565	DRILLER: Tom Lynch
				WELL PE	RMIT NUMBER:	E201605089	FIELD REP: Jeff Cook
	TYDE		SAMPLER	CASING	CORE BARREL	DEPTH DATE: 5/0/201	I OF GROUNDWATER
	SIZE (ID)		2"	NA	NA	DATE: 5/9/201	D
HAM	IMER WEIGHT MMER FALL	, 	140 lbs. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~6
DEPTH	BLOW	PID	RAD	RECOVER	v [	DESCRIPTION O	FMATERIALS
(Feet)	COUNTS	(ppm)	(cpm)	(Feet)			· · · · · · · · · · · · · · · · · · ·
	-						
1	NA					Hand-cleared	0 to 5 feet
2		NA	NA	NA			
3					· ·		
4	11				Collect split-spoon sa	nple through hand-cleared material	that was backfilled into open hole.
5	33	0.0	NA	0.8	0.0 - 0.8' GRAVEL, f	ne to coarse, some fine to coarse s	and, trace silt, dark gray (7.5YR4/1), moist,
6	25 27				dense (GW). 0.0 - 0.6' GRAVEL (s	ame as above), wet (GW).	
7	23 20	0.0	NA	1.3	0.6 - 1.3' SAND, fine,	some silt, wet, medium dense (SP)	<b>b.</b>
	21				10.0 0.7 SAND mod	ium troop fine/oparce sand trace ci	It very dark (yray (7.5VP2/1) unit medium
o	30	0.0	. NA	1.3	dense (SP).	ium, nace nneveoarse sand, nace si	n, very uaik gray (7.5 11(5/1), wei, medium
	77 100/4"				0.7 - 1.3' SANDSTON	E, weathered, dark reddish brown	(5YR3/3), moist.
10	<u>34</u> 100/5"				0.0 - 0.9' SANDSTON	IE (same as above), more weathere	d, wet.
11		0.0	NA	0.9			
12					Advance augers throu	gh weathered rock to 13 feet.	
13						(End of Boring	g at 13 feet)
14			:				
15							
16	·····						
							·
							·
18							
19							
20							
21							_
22				·			
23							
24							
							·
دم 							
27	]						
28							
29							
				t			50.3r
DRILLING	KIG TYPE:	Mobile B-80	J Hollow-stem Auger			SURFACE ELEVATION:	53.16
BOREHOLI	DIAM:		8 1/4"			START DATE:	5/9/2016
WELL INST	ALLED:		Yes			END DATE:	5/9/2016
NOTES:	<u></u>					<u> </u>	
Depths m NA = not cpm = co ppm = pa	easured from gr applicable unts per minute rts per million	ound surface	۰.		B38W25S		Page 1 of 1

			B	ORINGLO	)C		B	ORING NUM B38W25BR	IBER:
				PROJEC	T: Maywoo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCATI	ON:	Maywood NJ	CLIENT:		USACE
				CONTRA	ACTOP.	909	, in the second s		
				CONTR	ACTOR:	303	DRILLER	: То	m Lynch
				WELL P	ERMIT NUMBER:	E201605090	FIELD RE	P; Je	ff Cook
						r			-
	TYPE		SAMPLER NA	CASING steel	CORE BARREL NA	DEPTH DATE: 5/24/201	OF GROUND	WATER	
	SIZE (ID)		NA	6 ⁴	NA NA	Groundwater Dopth (Feet)	-1	10.9	·
HA	MMER FALL	·	NA	NA	NA	ordinawator Depin (r edy.			
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING
(Feet)	(ppm)	(cpm)						DIAM (in)	DIAM (in)
······································									
1									
2					Hand-cleared 0 to 5	feet.			
3			-						
4			-						
5									
6									
7									
8			-		Design I are for a state				
9				See	Boring Log for overburden v	well B38W25SR.			
10									
11								15	
								15	
14									
14			-						,
15									0
16			1						
17									
19									
10									
19									
20									
21									
22									-
23	0.0		MUDSTONE, reddish	brown (5YR4/3)	).	Auger 10 Air hammer	)-1/4" ID to 23'. 9-7/8 bit to 33'		
24									
25								-	
26								9-7/8	
27									
28									
29					· · · · ·				
					(continued on Page	2)			
DRILLING	RIG TYPE:		Mobile B-80			SURFACE ELEVATION:	53.68		
BOREHOLI	E DIAM:	9-7/8⁼,	5-7/8" (open borehole)			START DATE:	5/18/201	6	
WELL DUCT			Ver			END DATE:	504001	6	
WOTES-	ALLEU;		108			END DATE.	J/24/201		
NOTES:									
Depths m NA = not	easured from g applicable	round surfac	e gpm = gallon	s per minute				Page 1 of 2	
cpm = co	unts per minut	e			B38W25DR-1				
рьти – ра	are per minion								

			B	ORING LA	00	-	E	BORING NUM B38W25BR	IBER:
			D.	PROJEC	CT: Maywa	ood FUSRAP Superfund Si	te JOB NUM	IBER:	500102
CB	&I FEDI	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
-	-			WELL	EDMIT NUMBED.	E201405000	DRILLE	R: To	m Lynch
				WEELF	ERMIT NUMBER:	E201003090	FIELD R	EP: Je	ff Cook
		·	SAMPLER	CASING	CORE BARREL	1	DEPTH OF CROUND	WATER	
	TYPE		NA	steel	<u>NA</u>	DATE:	5/24/2016		
HAM	MER WEIGH	T	NA	NA	NA NA	Groundwater Depth (Fee	t):	10.9	
HAN	MMEK FALL	<u>I</u>		NA	NA		·		
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
30			-						
31		· ·	-1					9-7/8	6
32							Air hammer 9-7/8" to 33		
33			~			Ins	tall 6" steel casing to 33	·	
34									
25			Emotore Contacto	iald minin-1					
			- Fracture, first water, y	nelo minimal.					
36			-						
37			Fracture. MUDSTONE. reddist	ı brown.					
38			-		•				
39			-						
40			1						
41			-			-			
42			MUDSTONE reddist	brown					
				i oromi.				· ·	
43			Fracture.						
44			-						
45								5-7/8	Open Borehole
46		·	-					1	
47			MUDSTONE, reddish	brown.					
48									
49									
50									
51									
52			Fracture, water bearing MUDSTONE, reddish	Brown.		-			
53						-			
. 54									
55									
56				•					
57									
			Total yield ~2 gpm.		(End of D	(Feet)	ir hammer 5-7/8" to 58'.		
			1		C IB grirrot to usual	, hely			-
59									
DRILLING R	IG TYPE:		Mobile B-80			SURFACE ELEVA	TION: 53.68		
BOBELIOIS	DIAM	0 7/05	5.7/8" (even b			STADT DATE.	5/10/20	16	
DOREHULE	DIAM	9-1/8",	2-110 (open porehole)			JIAKI DATE:	5/18/20	10	
WELL INSTA	ALLED:		Yes			END DATE:	5/24/20	16	
OTES:									
Depths me	easured from g	round surfac	e gpm = gallon	s per minute				Page 2 of 2	
NA = not cpm = cou	applicable ints per minute	•			B38W25DR-2				
ppm = par	ts per million								

			BO	RING LOG			BORING NUMBER: MISSIAR
				PROJECT:	Мауwo	od FUSRAP Superfund Site	JOB NUMBER: 500102
CB	&I FEDH	CRAL SE	RVICES	LOCATION	:	Maywood, NJ	CLIENT: USACE
				CONTRACT	FOR:	SGS	
				WELL PER	MIT NUMBER:	E201605165	DRILLER: Tom Lynch
							FIELD REP: Jeff Cook
		8	AMPLER	CASING	CORE BARREL	DEPTI	H OF GROUNDWATER
	SIZE (ID)		Split-spoon	NA NA	NA NA	DATE: 6/7/201	
HAM	MER WEIGHT MMER FALL		140 lb. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~10
DEPTH	BLOW	PID	RAD	RECOVERY	T	DESCRIPTION C	DF MATERIALS
(Feet)	COUNTS	(ppm)	(cpm)	(Feet)	· ·		
· · · · · · · · · · · · · · · · · · ·							
	NA					Hand-cleared	0 to 5 feet.
2		NA	NA	NA			
3							
4	12				Collect split-spoon san	nple through hand-cleared materia	I that was backfilled into open hole.
- 5	39 NA	0.0	NA	1.2	0.0 - 1.2' GRAVEL, fi:	ne to coarse, some fine to coarse s	and, trace silt, dark gray (5Y4/1), wet, dense
6	49				0.0 - 1.1' GRAVEL (st	ime as above) (SW) (FILL).	(SM)
7	34	0.0	NA	1.6	1.4 - 1.6' SANDSTON	E cobble, reddish brown (5YR4/4	). ).
	5				0.0 - 1.2' SAND, fine,	some rock fragments, trace silt, bl	ack (5YR2.5/1), wet, dense (SP).
9	9 27	0.0	NA	1.2			
10	38 20				0.0 - 0.6' SAND (same	as above) (SP).	
	44	0.0	NA	1.0	0.6 - 1.0' MUDSTONE	, weathered, clayey, reddish brow	n (5YR4/4), wet.
12	64				0.0 - 1.0' MUDSTONE	(same as above) some dark grav	staining
	37	0.0	NA	1.0		, (cane as assere), asine cant gray	cianting.
13	43					· · · · · · · · · · · · · · · · · · ·	where the state of the second se
14	44	0.0	NA	0.9	staining, wet.	, weathered/harder, fittle clayey fr	ne sanu, reudisi biowi (5 r k4/4), some dark gray
	100/4"					(End of Boring	g at 15 feet)
16							
17							
18							
19							
20							
21			1				
22							
23							
24							
25	]	ľ					
26							
2.7							
78	 						
29						· · · · · · · · · · · · · · · ·	
DRILLING F	UG TYPE:	Mobile B-80	Hollow-stem Auger			SURFACE ELEVATION:	51.72
BOREHOLE	DIAM:		8 1/4"			START DATE:	6/7/2016
WELL INST.	ALLED:		Yes			END DATE:	6/7/2016
NOTES:	·		<u>.</u>		······································		
Depths me NA = not cpm = cou	easured from gr applicable unts per minute rts per million	ound surface			MISS01AR		Page 1 of 1

· .			B	DRING LO	ng		B	ORING NUM	IBER:
				PROJEC	CT: Maywo	od FUSRAP Superfund Site	JOB NUMI	BER:	500102
CB	&I FEDI	ERAL S	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
				WELL P	PERMIT NUMBER:	E201605156	DRILLER:	La	ry Lynch
							FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH (	F GROUNDY	VATER	
	TYPE SIZE (ID)		NA NA	steel 6"	NA NA	DATE: 6/2/2016			
HAM HAI	MER WEIGH MMER FALL	<u>r                                    </u>	NA NA	NA NA	NA NA	Groundwater Depth (Feet):		~10	
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING
(Feet) 0	(ppm)	(cpm)	· · · · · · · · · · · · · · · · · · ·					DIAM (i <u>n)</u>	DIAM (in)
			-						
					Hand-cleared 0 to 5	feet.			
3			_						
4·									
5			-						
6	;		-						
7									
8			-						
9									
10				See	Boring Log for overburden	well MISS1AR.			
11									
12									
12									
	· · · · · · · · · · · · · · · · · · ·	·							
14								9-7/8	6
15					· · ·	Drive 10° conductor of	asing to 15.5'.	2 110	-
16							-		
17									
18									
19			SANDSTONE, reddisł	h brown (5YR4/	3), wet.				
20									
21									
			Softer rock.						
23									
			MUDSTONE	brown suct					
	0.0		INDETONE, readish	orown, wet.					
25									
26			Softer rock (26-27').						
27			Competent rock at ~27						
28									
29					(continued on D	2)			
DBUIDE					Continued on Page		l		· · · · · · ·
DRILLING	GG I YPE:	1	Sonramm 1-450			SURFACE ELEVATION:	51.79		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/31/2016	i	
WELL INST.	ALLED:		Yes			END DATE:	6/2/2016		
NOTES:									
Depths m NA = not	easured from g	round surface	e gpm = gallons	s per minute				Page 1 of 3	
cpm = coi	ints per minute				MISS01BR-1				
ppm = pai	is per million								

	<u> </u>		· B(	ORING L	0G		В	ORING NUM	IBER:
			D.	PROJEC	CT: Mayw	vood FUSRAP Superfund S	Site JOB NUM	BER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCAT	10N:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
				WELL F	PERMIT NUMBER:	E201605156	DRILLER	: Lar	ту Lynch
•				· [ · · ·	· · · · · · · · · · · · · · · · · · ·		FIELD RE	EP: Jeff Cook	
	· · · · · · · · · · · · · · · · · · ·		SAMPLER	CASING	CORE BARREL	· · · · · ·	DEPTH OF GROUND	WATER	······
	TYPE SIZE (ID)		NA NA	steel 6"	NA NA	DATE:	6/2/2016		
HAM HA	MER WEIGH MMER FALL	T	NA NA	NA NA	NA NA	Groundwater Depth (Fe	et):	~10	
DEPTH	PID	RAD			DESCRIPTION OF M	ATERIALS		BOREHOLE	CASING
(Feet)	(ppm)	(cpm)	<u> </u>					DIAM (in)	DIAM (in)
31			-						
20			-						
			-						
			• . •					9-7/8	6
34								· · ·	
35									
36			-						
37						In	Air hammer 9-7/8" to 38', stall 6" steel casing to 38'		
38			-				and a see chang to be.		
39			MUDSTONE, reddist	ı brown, dry.					
40									
4]									
42									
43			Fracture (42.5-43.5'),	water bearing, 0.	.5 GPM (total).				
44	0.0		MUDSTONE sandy	reddish brown					
45			mebbione, and,						
	· · · · · · · · · · · · · · · · · · ·								
40		·							
47			, , , , , , , , , , , , , , , , , , ,						
48			MUDSTONE, reddish	brown.				5-7/8	Open
49	0.0	·	Fracture.			· .		5-110	Borehole
50			Fracture,						
51						·			
52									
53									
54	0,0		MUDSTONE, clayey,	reddish brown, v	wet.				
55									
56			Fracture, water bearing	, 3 GPM (total).					-
57									
58			Soft Seam, water beari	ng, ~15 gpm.					
59			MUDSTONE reddieb	browp					
					(continued on Pag	ge 3)			
DRILLING F	UG TYPE:	:	Schramm T-450			SURFACE ELEV	ATION: 51.79		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/31/201	6	
WELL INST	ALLED		Yes			END DATE	6/2/2016		-
OTES:							0,2,2011		
Depths m NA = not	easured from g applicable	round surface	e gpm = gallone	s per minute				Page 2 of 3	
cpm = col ppm = pa	unts per minute	:			MISS01BR-2				
Phu bu									

					BORING NUMBER: MISS1BR						
					PROJE	CT: Mayw	ood FUSRAP Superfund Site	JOB NUM	JOB NUMBER: 500102		
	CB.	&I FEDI	ERAL S	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT: USACE		USACE	
					CONTRACTOR: SGS						
					WELL	PERMIT NUMBER	E201605156	DRILLER	: Lar	ry Lynch	
								FIELD RE	P: Je	T Cook	
				SAMPLER	CASING	CORE BARREL	DEPTH	I OF GROUND	WATER		
		TYPE SIZE (ID)		NA NA	steel 6"	NA	DATE: 6/2/201	6			
	HAM	MER WEIGH	Т	NA	NA NA	NA NA	Groundwater Depth (Feet):		~10		
		MMER FALL			INA						
	DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)	
	60			-					5-7/8	Орел	
	61	·····		Total yield ~15 gpm.		(End of Doving at 6	Air hamme	er 5-7/8" to 61.5'.		Borehole	
	62					(End of Boring at o	1.5 1001)				
	63 ·										
	64			-							
			· · · · · · · · · · · · · · · · · · ·	-							
	00	·	<u> </u>								
	66			-							
	67			-							
	68	··									
	69										
	70		<u> </u>								
	71										
			·								
	73			,							
	74										
	75										
	76										
	77			-							
	78										
				1							
	79										
	80										
	81										
	82			¢							
	83										
	84										
	 85										
							•				
	86										
	87										
	88						-				
	89										
	DRILLING F	NG TYPE:	:	Schramm T-450			SURFACE ELEVATION:	51.79			
	BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/31/201	6		
	WELL INST.	ALLED:		Yes			END DATE:	6/2/2016	5		
ļ	NOTES:										
				. 41	· · · ·				B 0 . 00		
	Depths m NA = not	easured from g applicable	ground surface	e gpm = gallons	s per minute	••·····			rage 3 of 3		
4	cpm = cou	unts per minute	B			MISS01BR-3					

		·	R	DRING LO	)G		BORING NUMBER: MISS2AR		
				PROJEC	T: Maywo	od FUSRAP Superfund Site	JOB NUMBER: 500102		
СВ СВ	&I FEDE	RAL SE	RVICES	LOCATI	ON:	Maywood, NJ	CLIENT: USACE		
				CONTRA	CTOR:	SGS			
				WELL P	ERMIT NUMBER:	E201605096	DRILLER: Larry Lynch		
							FIELD REP: Jeff Cook		
	T1/DE		SAMPLER	CASING	CORE BARREL	DEPTI	I OF GROUNDWATER		
	SIZE (ID)		2"	NA NA	NA NA	DATE: //5/201	0		
HAM HA	MMER FALL		30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~10		
DEPTH	BLOW	PID	RAD	RECOVEI	RY	DESCRIPTION O	FMATERIALS		
(Feet) 0		(ppm)	(cpm)	(Feet)					
1									
2	NIA I	NA	N/4	214		Line d alorend	0 to 5 front		
3		NA	INA .	INA I		Hand-cleared	u to 3 reet.		
A									
5									
5				1					
	NA	NA	NA	NA		Auger through	fill to 8 feet.		
/				-			4		
8	20 9	00	NA		0.0 - 0.9' SAND, fine t medium dense (GW	o coarse, and GRAVEL, fine to co ') (FILL).	parse, little silt, very dark gray (5Y3/1), moist,		
	7 14								
10	34 27	0.0	NA	0.0	0.0 - 0.9' SAND and G	RAVEL (same as above), wet, der	nse (GW) (FILL).		
11	17	0,0	ND.	0.9					
12	31				0.0 - 0.7' SAND and G	RAVEL (same as above), wet, der and CLAY dark reddish gray (5Y	nse, (GW) (FILL). R4/2), trace black, laminated, wet, medium		
13	26	0,0	NA	1.5	dense (SC).	veru dark gravish brown (10Y83/2	) wet medium dense (SP)		
14	<u>16</u>		· · ·		0.0 - 1.5' SAND, fine,	black (10YR2/1), few layers of (cl	ay and fine sand, very dark gray (10YR3/1)), wet,		
15	12	0.0	NA	1.5	meaning dense (3F/	SC).			
16	10				0.0 - 1.7' (SAND, fine)	and (CLAY and SAND, fine) lay	ers, black (10YR2/1) to very dark gray (10YR3/1)		
17 .	12	0.0	NA	1.7	to dark grayish brov	m (10 Y K4/2), wet, medium dense	(ðu).		
18	5				0.0 - 1.2' SAND, fine, a	and SILT, little clay, dark grayish t	prown (10YR4/2), little black, wet, medium		
19	12	0.0	NA	1.3	dense (SC). 1.2 - 1.3' MUDSTONE	, weathered, reddish brown (SYR4	4/3).		
20						(End of Boring	; at 20 feet)		
21									
22									
23									
24									
25									
26			-						
27									
28									
20									
<u> </u>									
DRILLING F	RIG TYPE:	Schr	amm T-450			SURFACE ELEVATION:	57,85		
BOREHOLE	DIAM:		8 1/4"			START DATE:	7/5/2016		
WELL INST	ALLED:		Yes			END DATE	7/5/2016		
NOTES:	,								
Depths m	easured from ero	und surface					Page 1 of 1		
NA = not	applicable				MISS024R				
ppm = par	rts per million				-				

			B(	DRING LA	OG		I	BORING NUM MISS2BR	IBER:
СВе	&I FEDI	ERAL S	SERVICES	PROJEG LOCAT CONTR WELL 1	CT: Mayw ION: ACTOR: PERMIT NUMBER:	ood FUSRAP Superfund Site Maywood, NJ SGS E201605097	SRAP Superfund Site JOB NUM Maywood, NJ CLIENT: SGS DRILLEI E201605097 FIELD R		500102 USACE Try Lynch
	·.	<u> </u>	SAMPI FR	CASING	CORE BARDEL	DE	PTH OF CROUNT	WATER	
	TYPE	· · · · ·	NA	steel	NA	DATE: 6/23	3/2016		
HAMM	IER WEIGHT		NA NA	NA NA	<u>NA</u>	Groundwater Depth (Feet):		~10	
	NICK FALL			NA				DODDWOLL	CHAING
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		DIAM (in)	DIAM (in)
0									
1									
2					Hand-cleared 0 to	5 feet.			
3									
4									
5			1						
6									
7									
8									
9							÷		
10									
11									
				See	e Boring Log for overburde	n well MISS2AR.			
<u>I4</u>	···							9-7/8	6
15								2 170	-
16									
17			1						
18									
19									
20									
21									
22									
23			MUDSTONE, reddish	brown (SYR4/3	i), weathered, soft, wei				
24					-			· · ·	
25						Drive 10" con	iductor easing to 25		
26						2010-10-000			
21									
28			Competent rock at ~28 MUDSTONE, reddish	brown (5YR4/3	), parts fractured (28-38').				
29					(continued on Pag	e 2)			
DRILLING RI	G TYPE:	s	Schramm T-450			SURFACE ELEVATIO	DN: 58.12		
BOREHOLF	DIAM.	9-7/8" 4	5-7/8" (open horehole)			START DATE	6/21/201	16	
			(-poir contentione)						
WELL INSTA	LLED;		· Yes			END DATE:	6/23/201		
Depths mea NA = not aj cpm = coun	isured from gro oplicable its per minute	ound surface	gpm = gallons	per minute	MISS02BR-1			Page 1 of 3	

`

			R	ORING L	0G ·		B	ORING NUM	IBER:
				PROJEC	CT: Maywoo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	Maywood, NJ CLIENT: US		USACE
				CONTR	ACTOR:	SGS			
				WELLI	PERMIT NUMBER:	E201605097	DRILLER	: La	rry Lynch
							FIELD RE	IP: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUND	WATER	
<u>.                                    </u>	TYPE SIZE (ID)		NA NA	steel 6"	NA NA	DATE: 6/23/201	6		
HAM HAI	MER WEIGH MMER FALL	T	NA NA	NA NA	NA NA	Groundwater Depth (Feet):		~10	
DEPTH	PID	RAD	· · · · · · · · · · · · · · · · · · ·		DESCRIPTION OF MA	TERIALS		BOREHOLE	CASIN
(Feet) 30	(ppm)	(cpm)	<u>)</u>			· · · · · · · · · · · · · · · · · · ·		DIAM (in)	DIAM (i
31									
30		<u> </u>							
				t. L					
33			IMODSTONE, reddis	n Drown.				9-7/8	6
34	·		· ··· ·						
35									
36		· ·	_						
37						Air hamm Install 6" ste	er 9-7/8" to 38'. el casing to 38'.		
38							b		
39	0.0		MUDSTONE, reddis	h brown.					
40	····						:		
41									
42			Softer (42-44').						
43									
44	0.0		Fracture.						
45				a brown.					
46									
47			Fracture.						
40								5-7/8	Open Borehole
50			Softer, water-bearing	(49.5-53').					Derenon
						~			
52								1	
53			Yield ~5 gpm.						
54	0.0		MUDSTONE, reddish	ı brown.					
55			]						
56			· ·						
57									
58			_						
59	0.0		MUDSTONE, reddish	brown.	(continued on Page )	3)			
ORILLING	UG TYPE		Schramm T-450		Continuou on 1 dBe.		I 52 1 1	<b></b>	
SOREHOI D	DIAM-	0.7/0	STR" (open horehele)			START DATE	6/01/2011	6	
		2-110	y v				0/21/201	c	
TES:			16\$			END DATE:	0/23/201	······	
IEG:								<b>_</b>	
NA = not	easured from g applicable	round surf	ace gpm = gallon	s per minute				Page 2 of 3	
cpm = cou	unts per minute	9			MISS02BR-2				

x.

			BC		OG		B	ORING NUN MISS2BR	IBER:	
				PROJE	CT: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102	
CB&	&I FEDI	ERAL S	SERVICES	LOCAT	ION:	Maywood. NJ	CLIENT.		USACE	
				CONTR	ACTOR:	909				
						010	DRILLER	: La	ry Lynch	
				WELL 1	PERMIT NUMBER;	E201605097	FIELD RE	P: Je	fT Cook	
						T				
	TYPE		SAMPLER NA	CASING steel	CORE BARREL	DATE: 6/23/2	H OF GROUND	WATER		
Нами	IZE (ID)		NA NA	6" NA	NA NA	Groundwater Denth (Feet)		~10		
HAM	IMER FALL		NA	NA	NA	- cumurrater Loppin (FCEL).	<u>_</u>			
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS	· ·	BOREHOLE	CASING	
(Feet) 60	(ppm)	(cpm)						DIAM (in)	DIAM (ir	
61							i	5-7/8	Open Borebolo	
01			Total yield ~5 gpm.			Air har	nmer 5-7/8" to 62'.		BIODEIGE	
62			-		(End of Boring at 6	2 feet)				
63										
- 64										
65								i .		
66										
67										
68										
69										
70										
71										
72										
73										
74			· · ·							
75			:							
78							ж.			
79										
80		·								
81										
82										
83						-				
84							-			
85										
86										
0/										
88										
89					-					
1							1	<u>_</u>		
RILLING R	IG TYPE:	ç	Schramm T-450			SURFACE ELEVATION	58.12			
OREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	6/21/2010	5		
ELL INSTA	LLED:		Yes			END DATE:	6/23/201	5		
ES:			<del></del>						<u>.</u>	
Depths me	asured from gr	ound surface	e gpm = galions	s per minute		-		Page 3 of 3		
NA = not a	pplicable				MISS02BR-3					
- con - con	ms per minute									

			BC	DRING LO		· · · · · · · · · · · · · · · · · · ·		NUMBER: SS4AR
				PROJECT	Мауwo	ood FUSRAP Superfund Site	JOB NUMBER:	500102
СВ	&I FEDE	RAL SE	RVICES	LOCATIO	N:	Maywood, NJ	CLIENT:	USACE
				CONTRAC	TOR:	SGS	DDU L DD	
				WELL PE	RMIT NUMBER:	E201610593	DRILLER:	Tom Lynch
							FIELD REP:	Jeff Cook
	TYPE		SAMPLER Split-spoon	CASING	CORE BARREL	DEPTH DATE: 9/6/201	OF GROUNDWATER	
LIAM	SIZE (ID)		2"	NA	NA	Groundwater Depth (Feet):		
HAN	MER FALL		30 in.	NA	NA	Citolini wates Depin (1 cct).		
DEPTH	BLOW	PID	RAD	RECOVERY	(	DESCRIPTION O	FMATERIALS	
(Feet) 0	COUNTS	(ppm)	(cpm)	(Feet)			·	
1						·		
2	NIA	214	NA			Hand alcorad	0 to 5 feat	
3	NA	NA	NA	NA		- riano-cieareu	0 10 5 1881.	
<u>.</u>								
	10				00-06'SAND #	and SUT trace fine crewel were d	ark gravish brown (10VP2)	2) fabric at bottom
3	37	0.0	NA	1.8	moist, (SM) (FILL)	and order, date the gravel, very a ).	are grayion prown (101 K3/	
	35				moist, dense (SP).	dark yellowish brown (10 Y K4/4),	some redaish brown and lig	nt gray rock tragments,
7	15 40	0.0	NA	13	0.0 - 0.7 SAND, fine, dense (SM).	and SILT, little medium to coarse	sand, little fine gravel, brow	n (7.5YR4/3), moist,
8	33 60	0.0	741	1.5	0.7 - 1.3' SAND, fine, brown sandstone, f	and SILT, dark reddish brown (5Y ew rounded pebbles, dry, dense (SI	R3/2) to black (5YR2.5/1), 4) (TILL).	some pieces of reddish
9	40 30		214		0.0 - 0.7' SAND and S	ILT (same as above) (SM).		
10	27	0.0	, NA	0.7				
11	31				0.0 - 0.4' SANDSTON	E, weathered, reddish brown (5YF	.4/3), dry.	-
12		0.0	NA	0.4				
13	100/4"				0.0 - 0.4' SANDSTON	E (same as above), wet.		
14		0.0	NA	. 0.4	Auger to 15'. Softer d	rilling 14-15'.		
15						(End of Boring	at 15 feet)	
16								
17								
18								
19								
21								
22								
23								
24						,		
25								
26					,			
27								
28								
29								
	· · · · ·				1	· .		
DRILLING F	UG TYPE:	Sch	amm T-450			SURFACE ELEVATION:	53.41	
BOREHOLE	DIAM:		8 1/4"			START DATE:	9/6/2016	
WELL INST.	ALLED:		Yes			END DATE:	9/6/2016	
OTES:			·			ţ		
Depths m	easured from gro	und surface					Page	lofi
NA = not cpm = cou	applicable ints per minute				MISS04AR			
ppm = par	ts per million					•		

.
			BO	RING LO	G		BORINO	S NUMBER:
			~~~	PROJECT	f: Mayw	ood FUSRAP Superfund Site	JOB NUMBER:	500102
CB	&I FEDE	RAL SE	RVICES	LOCATIO	DN:	Maywood, NJ	CLIENT:	USACE
			•	CONTRA	CTOR:	SGS		
				WELLPE	RMIT NUMBED.	E201608024	DRILLER;	Larry Lynch
					A STATISTICS	20100027	FIELD REP:	Jeff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUNDWATER	
	TYPE SIZE (ID)		Split-spcon	NA	NA	DATE: 7/7/2016	5	
HAM	MER WEIGHT		140 lbs.	NA	NA	Groundwater Depth (Feet):		-7
		I						
DEPTH (Feet)	BLOW COUNTS	PID (ppm)	RAD (cpm)	RECOVER (Feet)	Y	DESCRIPTION OF	F MATERIALS	
0								
1								
2	NA	NA	NA	NA		Hand-cleared	0 to 5 feet.	
3								
4								
5	2		•		0.0 - 0.8' SAND, fine	, trace medium to coarse sand, trace	clay, dark yellowish brown	1 (10YR4/4), moist,
6	8	0.0	NA	1.2	medium dense (S 0.8 - 1.2' SAND fine	P). and SILT, dark eray (10YR4/1) to	black (10YR2/1), some m	dstone fragments at base
7	26				dry, dense (SM).	and SII T little fine small and star	trace medium to come	and few rock piegos
/	11	0.0	NA	1.7	reddish brown (5)	(R4/3) and black (10YR2/1), moist,	medium dense (SM) (TILI	.).
8	10							
9	<u>55</u> 50		214	0.7	0.0 - 0.7 MUDSTON	IE, weathered, reddish brown (5YR4	/3), wet.	
10	100/2"	0.0	NA	0.7	Auger refusal at 10.5	<u>.</u>		
11					Air Hammer to 12.5	and addict because (SVB4/2) such		
12					MUDSTONE, weath	ered, reddish brown (5 ¥ K4/3), wel.		
13						(End of Boring	at 12.5 feet)	
14								
15								
10								
18								
19								
20								-
21	· · · · · · · · · · · · · · ·							
22								
23								
24								
25							-	
26								
28			-					
29								
DRILLING	RIG TYPE:	Sch	ramm T-450			SURFACE ELEVATION:	51,20	
BOREHOLE	DIAM:	8 1/4" (0-1	0'), 5 7/8" (10-12.5')			START DATE:	7/7/2016	
WELL INST	ALLED:		Yes			END DATE:	7/7/2016	
NOTES:							-	
Depths m NA = not cnm = cont	teasured from gro tapplicable outs per minute	und surface			MISS07AR		Pag	el of l
. ppm = pa	irls per million							

			BC	RING LOG BORING NUMBER: 0VPZ17R					
			DO	PROJECT:	Maywo	ood FUSRAP Superfund Site	JOB NUMBER: 500102		
CB	&I FEDE	RAL SE	RVICES	LOCATION	٧:	Maywood, NJ	CLIENT: USACE		
				CONTRAC	TOR:	SGS			
				WELL PER	MIT NUMBER:	E201605108	DRILLER: Tom Lynch		
							FIELD REP: Jeff Cook		
		1	SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUNDWATER		
	TYPE SIZE (ID)		Split-spoon 2"	NA NA	NA NA	DATE: 5/16/2016			
HAM	MER WEIGHT	-	140 lb. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~10		
DEPTH	BLOW	PID	RAD	RECOVERY	· · · · ·	DESCRIPTION OF	MATERIALS		
(Feet)	COUNTS	(ppm)	(cpm)	(Feet)					
I	NA					Hand-cleared 0	to 5 feet.		
2		NA	NA	. NA					
3									
4	27	-			Collect split-spoon sa	mple through hand-cleared material th	nat was backfilled into open hole.		
5	5	0.0	NA	0,1	0.0 - 0.1' SAND, med	ium to coarse, trace clay, olive brown	(2.5Y4/3), moist, loose (SW) (FILL).		
6	10				0.0 - 1.3' SAND, fine	to coarse, some fine to coarse gravel,	brown (10YR4/3), dry, dense (SW) (FILL).		
7	36	0,0	NA	1,3					
8	40				0.0 - 0.7' SAND (same	e as above), dry (SW) (FILL).			
9	57	0.0	NA	1.4	0.7 - 1.4' SAND, fine,	trace silt, black (7.5YR2.5/1), wet, d	ense (SP).		
10	35				0.0 - 1.4' SAND, fine	to medium, trace to little coarse sand,	very dark gray (7.5YR3/1), wet, dense (SW)	).	
. 11	26 34	0.0	NA	1.4					
12	35 23				0.0 - 0.4' SAND (same	e as above) (SW).			
13	30	0.0	NA	0.8	0.0 - 0.4 - SAND (same as above) (SW). 0.4 - 0.8' SILT, little fine sand, black (2.5YR2.5/1), moist, hard (ML).				
	39				0.0 1 SISAND Fra	trace medium could trace silt (for si	t lovera) dark grav (7 SVR4/1) to very dark a		
	15	0.0	NA	1.5	(7.5YR3/1), wet, m	aedium dense (SP).	( layers), dark gray (7.5 1 K4/1) to very dark g	μuy	
15	26								
16	43	0.0	NA	2.0	0.0 - 1.2' SAND (same 1.2 - 1.4' SAND, medi	as above), wet, some fine lamination um to coarse, very durk gray (7.5YR)	15 (SP). 3/1), wet, dense (SW).		
17	45 36				1.4 - 2.0' SILT, little fi (ML) (TILL).	ne to coarse gravel, trace line to coar	se sand, reddish brown (5YR4/3), moist, har	1	
18	28 16		Na	0.9	0.0 - 0.9' SANDSTON	IE, weathered, reddish brown (5YR4)	3), some dark gray (7.5YR4/1), wet.		
19		0.0	1471	0.2		(End of Boring a	t 19 feet)		
20									
. 21									
22									
23									
24									
25							· ·		
26									
27	·								
28		-							
29									
1		]			<u> </u>				
DRILLING F	UG TYPE:	Mobile B-80	Hollow-stem Auger			SURFACE ELEVATION:	52.77		
BOREHOLE DIAM: 8 1/4"						START DATE:	5/16/2016		
WELL INSTALLED: Yes						END DATE:	5/16/2016		
NOTES:							1		
Depths m	easured from gro	ound surface					Page 1 of 1		
NA = not cpm = con	applicable ints per minute			OVPZ17R					
ppm = pa	ts per million								

	BORING LOG BORING NUMBER:										
			DU	PROJEC	T: Maywo	od FUSRAP Superfund Site	JOB NUMBER:	500102			
СВ	&I FEDE	RAL SE	RVICES	LOCATI	ON:	Maywood, NJ	CLIENT:	USACE			
				CONTRA	CTOR.	SGS					
						505	DRILLER:	Tom Lynch			
				WELL P	ERMIT NUMBER:	E201605094	FIELD REP:	Jeff Cook			
·		·	SAMDI ED	CASING		DEPTU	OF CROUNDWATER	- 			
	ТҮРЕ		Split-spoon	NA	NA	DATE: 6/1/2016	OF GROUNDWATER				
HAM	SIZE (ID) MER WEIGHT		2" 140 lb.	NA NA	NA NA	Groundwater Depth (Feet):	-	12			
HA	MMER FALL		30 in.	NA	NA						
DEPTH (Feet)	BLOW COUNTS	PID .	(cpm)	RECOVER (Feet)	RY	DESCRIPTION OF	FMATERIALS				
0		(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0)10)								
]											
2	NA	NA	NA	24		Hand-cleared	0 to 5 feet.				
3		NA	INA	INA							
	61										
4	45				Collect split-speon sat	nple through hand-cleared material	that was backfilled into op	en hole.			
5	53 52	0.0	NA	2.0	0.0 - 2.0' GRAVEL, fi very dense (GW) (	ne to coarse, some fine to coarse sa FILL).	nd, trace silt, very dark bro	wn (2.5Y3/2), dry,			
6											
7		NA	NA	NA							
8						Auger to 1	0 feet.				
9		NA	NA	NA							
10	16				0.0.0.0(0.4))DCTO	······	SVD 4(4) come light group	7 SVP7/1) alougy fing			
10	15	0.0	NA	0.8	sand (0.2 - 0.5'), dr	He, very weathered, reddish brown ( y to moist.	5 Y K4/4), some light gray (	7.5 f K//1) clayey line			
11	22	0.0		0.0							
12	30				0.0 - 0.7' SANDSTON	E, very weathered, dark reddish bro	own (5YR3/3), some very o	ark gray (7.5YR3/1)			
13	39	0.0	NA	0.7	-						
14	<u>31</u> 40				0.0 - 1.2' SANDSTON	E, very weathered (rock chips/sand	), dark reddish brown (5YI	(3/3) becoming reddish			
15	33 36	0,0	NA	1.2	brown (5YR4/4), w	ret.					
16	33				0.0.02 SANDSTON	E (come as above) reddich brown (	(5VR4/4)				
	19	0.0	NA	1,4	0.2 - 1.1' SAND, fine,	and CLAY, little fine gravel, reddis	sh brown (5YR4/4), moist (	more like TILL).			
17	48				1.1 - 1.4 SANDSTON	E (same as 0.0 - 0.2').	-				
18	<u>18</u> 25				0.0 - 0.5' SANDSTON 0.5 - 1.2' SANDSTON	E, very weathered, mostly very dark E, very weathered, mostly reddish b	k_gray (7.5YR3/1) fine sand prown (5YR4/4) rock chips	l, little fine gravel, wet. , wet.			
19	34	0.0	NA	. 1.2		, , , , ,					
20						(End of Boring	at 20 feet)				
21											
22											
23											
24											
25											
26							-				
27											
28											
29											
DRILLING	RIG TYPE:	Mobile B-80	Hollow-stem Auger			SURFACE ELEVATION:	57.68				
BOREHOLE	E DIAM:		8 1/4"			START DATE:	6/1/2016				
WELL INST	ALLED:		Yes			END DATE:	6/1/2016				
NOTES:											
Depths m	easured from gro	ound surface					Pag	2 1 of 1			
NA = not cpm = co	applicable unts per minute				MW3SR			-			
ppm = pa	rts per million										

*			B	DRING LO	00		B	ORING NUM	BER:
				PROJEC	CT: Maywo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
CBa	&I FEDI	ERAL S	SERVICES	LOCAT	ION:	- Maywood, NJ	CLIENT:		USACE
		-		CONTR	ACTOR:	SGS			
				WELL F	FOMIT NUMBED.	F201605005	DRILLER	Lar	ry Lynch
				WELLS I	ENHIT NUMBER.	E201003095	FIELD RE	P: Je	ff Cook
		*	SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUND	WATER	
	TYPE		NA	steel	NA	DATE: 5/31/2016			
HAM	MER WEIGHT	r	NA	NA	NA NA	Groundwater Depth (Feet):		~12	
HAN	AMER FALL	I	NA	NA	NA	I	<u></u>		
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	TERIALS	-	BOREHOLE DIAM (in)	CASING DIAM (in)
0									
1									
2					Hand-cleared 0 to 5	feet.			
3			1						
4									
5									
6									
7									
8									
10									
11									
12				Se	e Boring Log for overburder	well MW3SR.			
13									
14									
15								9-7/8	6
16									
17							1		
18									
10						Drive 10° conducto	r casing to 19'.		
20	0,8								
20									
21	· ····· · ·								
22			MUDSTONE, weathe	red, reddish brov	wn (5YR4/3), soft, wet.				
23									
24	·····								
25								-	
26									
27			Competent rock at ~27	".					
28	0.0		MUDSTONE, reddish	brown, hard, lit	tle water (27-38').				
29									
-					(continued on Page	2)			
DRILLING R	IG TYPE:	5	Schramm T-450			SURFACE ELEVATION:	57.62		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/25/201	6	
WELL INST	ALLED:		Yes			END DATE:	5/31/201	6	
NOTES:						_l			
Depths m	easured from g	round surface	gpm = gallon	s per minute				Page 1 of 3	
NA = not cpm = cou	applicable ints per minute	•			MW3DR-1				
ppm = par	ts per million								

•				DRING I	00		BO	DRING NUM	IBER:
· · · · ·			D	PROJE	CT: Maywoo	d FUSRAP Superfund Site	JOB NUMI	BER:	500102
СВ	&I FED	ERAL	SERVICES	LOCAT		Maywood NJ	CLIENT:		USACE
				CONTR	ACTOR-	\$G\$			
		•		CONTR		505	DRILLER:	Lar	ry Lynch
				WELL	PERMIT NUMBER;	E201605095	FIELD REI	P: Je	ff Cook
			CAMPLED	CLENC	CODE DADDEL	DEDTILO	E CROUNDY	NATED.	
	TYPE		NA	steel	NA	DATE: 5/31/2016	FGROUNDY		
HAM	SIZE (ID) MER WEIGH	г	NA NA	6" NA	NA NA	Groundwater Depth (Feet):	· · · · ·	~12	
HA	MMER FALL			NA	NA				
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
30					· · · · · · · · · · · · · · · · · · ·			<u>, , , , , , , , , , , , , , , , , </u>	
31			_	·		~			
32	0.0		=						
33			-						
			-1 .					9-7/8	6
			- [						
35									
36			•						
37			• •			Air hammer	9-7/8" to 38'.		
38			~			Instail 6" steel	casing to 38'.		
39	0.0			brown, dry.					
40				-					
			-						
41		·····	-						
42									
43			- Fracture						
44	0.0		MUDSTONE, reddish	brown, dry.					
45			-						
46			-		·				
47			-						
			-						
48			-					5-7/8	Open
49	0.0		_MUDSTONE, reddish	brown, dry.					Borehole
50			-						
51			-			,			
52			-						
53			Fracture.						
54	0.0		MUDSTONE, reddish	brown, drv.		•			
				·-,, j.				1	
	· · · ·		-1						
56									
57			Fracture (first water). Yield ~1.5 gpm.				-		
58									
59	0.0		MUDSTONE, reddish	brown, dry to v	vet.	7)	1		
			I		(continued on Page	ی ۱	l.		
DRILLING	RIG TYPE:		Schramm T-450			SURFACE ELEVATION:	57,62		
BOREHOLE	E DIAM:	9-7 <b>/</b> 8",	5-7/8" (open borehole)			START DATE:	5/25/2016	5	
WELL INST	ALLED;		Yes		-	END DATE:	5/31/2016	i	
NOTES:						<u></u> .			
Depths m	easured from a	round surfac	e gpm = gallons	s per minute				Page 2 of 3	
NA = not	applicable		- Dhur Bruton		MW3DR-2			8 4- 5	
ppm = pa	rts per million	,							
							L		

			B	ORING LO	DG		B	ORING NUM MW3DR	BER:	
				PROJEC	T: Mayw	ood FUSRAP Superfund Sit	e JOB NUM	JOB NUMBER: 500102		
CB	&I FEDI	ERAL S	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE	
				CONTR	ACTOR	SGS				
				CONTR	ACTOR:	303	DRILLER	Lar	ry Lynch	
				WELL P	ERMIT NUMBER:	E201605095	FIELD RE	P: Je	ff Cook	
					2005 D ( DDD)			14 mm	<u> </u>	
	TYPE		NA	steel	NA	DATE: 5	/31/2016	WALER		
HAM	SIZE (ID) MER WEIGHT	· · · · ·	NA NA	6" NA	NA NA	Groundwater Depth (Feet	:	~12		
HAN	MER FALL		NA	NA	NA					
DEPTH (Feet)	PID (ppm)	RAD (com)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASIN DIAM (i	
60			-	-						
61			-					5-7/8	Open	
62			-						Borenoi	
63			Total yield ~1.5 gpm.		(End of Boring at (	A A A	ir hammer 5-7/8" to 63'.			
64					2					
65			-	-						
66										
67										
68										
69										
70										
71			ł .							
72										
73										
74										
/4										
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
07										
DRILLING R	IG TYPE:	. 5	Schramm T-450			SURFACE ELEVAT	TION: 57.62			
BOREHOLE	DIAM:	9-7/8". :	5-7/8" (open borehole)			START DATE:	5/25/201	6		
VELL INCL			Var				5/31/201	6		
TES:			163			LID DATE.	. 5/5//201	-		
Denths	acurad from	mund surface		per minuto				Page 1 of 2		
NA = not	applicable	ound sufface	s gpm = gauons	e her munite				1 886 2 01 3		
cpm = cou	ints per minute				MW3UR-3					

BORING LOG BORING																		
<u> </u>				PROJE	CT:	Maywo	od FUSRAP Superfund Site	JOB NUMBER:	500102									
СВ	&I FEDI	ERAL SE	RVICES	LOCAT	'ION-		Manwood NI	CLIENT	USACE									
				LUCAI			Maywood, NJ	CLIERI.	USINCE									
				CONTR	ACT	OR:	B&B Drilling	DRILLER:	Dave Myerchin									
				WELL	PERN	IIT NUMBER:		FIELD REP:	Robert DeMott									
	2		SAMPLER	CASING		CORE BARREL	DEPTHO	)F GROUNDWATER										
	TYPE		Split-spoon	NA		NA	DATE: 6/30/2011											
HAM	MER WEIGHT	г	140 lbs.	NA		NA	Groundwater Depth (Feet):		11.21									
HA	MMER FALL		30 in.	NA		NA												
DEPTH (Feet)	BLOW COUNTS	PID (ppm)	RAD (cpm)	RECOVE (Feet)	CRY		DESCRIPTION OF	MATERIALS										
0							· · · · · · · · · · · · · · · · · · ·											
1																		
2																		
	NA	NA	NA	NA		FILL												
3																		
4																		
5																		
6	1					0.0 - 0.7' SLUDGE, la	minated, interbedded white silt and ta	un clay, moist, soft.										
	2	NA	40	0.7		·····,												
/	4																	
8	5					0.0 - 0.8' SLUDGE, la	minated, interbedded white to light g	ray silt with clay, moist,	soft.									
9	5	NA	<40	0.8														
10 .	2			-	5	0.0 - 0.4' SLUDGE, w	hite silt with tan laminations, wet, so	ft.										
11	2	NA	<40	1.6	:	0.4 - 1.6' SLUDGE, w	hite silt interbedded with gray silt and	i sand, wet, soft.										
	2						· · · · · · · · · · · · · · · · · · ·											
12	W.O.H. W.O.H.	214				0.0 - 0.8' SLUDGE, in	terbedded white and dark gray silt, w	et, very soft.										
13	3	NA	~40	0.8														
14	2					0.0 - 0.6' SLUDGE, in	terbedded white and gray silt, wet, ve	ry soft.										
15	4 8	NA	160	1.7		0.6 - 0.9' SLUDGE, in 0.9 - 1.1' SAND, fine t	terbedded gray silt and sand, wet, firr o medium, organic, black, wet, firm.	n.										
16	9					1.1 - 1.6' SAND, fine t	o medium, red-brown, wet, dense.											
	12	NA	40 - 60	1.0		0.0 - 1.0' GRAVEL, fi	ne, and SAND, medium to coarse, wi	e. th little silt, wet, dense.										
17	11																	
18	10					0.0 - 0.7' GRAVEL, fu	ne, with some sand interbeds, red-bro	wn, wet, very dense, w	eathered rock/till at base.									
19	11	NA	NĂ	0.7														
20	50					SILTSTONE and SAN	DSTONE, weathered, wet, red-brow	n. Advance with auger	into weathered rock.									
	NA	NA	NA	NA				_										
							(End of Boring a	22 feet)										
23																		
24																		
25																		
26						<b></b>												
27																		
28																		
29																		
DRILLING	RIG TYPE:	B-57 Ho	bllow-stem Auger	-			SURFACE ELEVATION	NA										
BOREHOLE	DIAM:		6 7/8"				START DATE:	6/30/2011										
WELL INST	ALLED:		Yes				END DATE:	6/30/2011										
NOTES:								1										
Denths -	ensured from a	round surface	WOH =	ight of homeor				Pn	velof1									
NA = not	applicable	Jane Bandeo	71.0.11 WG			MMM3S												
cpm = com ppm = pa	unts per minute rts per million					m1400												
								ppm = parts per million										

			BO	RING LO	)G		BORING	NUMBER: w445
	-	-		PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUMBER:	500102
CB	&I FEDE	RAL SE	RVICES	LOCATI	ON:	Maywood, NJ	CLIENT:	USACE
				CONTR	ACTOR:	SGS	DBUIED.	Tom Lunch
				WELL P	ERMIT NUMBER:	E201605095	FIELD DED.	leff Cook
		1 -					FIELD REF:	Jen Cook .
	TYPE		SAMPLER Split-spoon	CASING NA	CORE BARREL NA	DATE: 6/6/201	OF GROUNDWATER	
HAN	SIZE (ID) MER WEIGHT		2" 140 lb.	NA NA	NA NA	Groundwater Depth (Feet):	~	10
HA	MMER FALL		30 in.	NA	NÁ			
DEPTH (Feet)	BLOW COUNTS	PID (ppm)	RAD (cpm)	RECOVE (Feet)	RY	DESCRIPTION O	F MATERIALS	
0	-							
1	_							
2	NA	NA	NA	NA		Hand-cleared	0 to 5 feet.	
3								
4	-							
5	-							
6								
7	NA	NA	NA	NA		Auger through f	till to 10 feet.	
8								
9	-							
10	100/5"	0.0	NA	0.4	- 0.0 - 0.4' SANDSTO	NE, weathered, dark reddish brown	(5YR3/3), wet.	
11	100/4"	0.0	NA	0,3	0.0 - 0.3' SANDSTO	NE (same as above).		
12	<u>11</u> 15	0.0	NA	1.2	0.0 - 0.9 SANDSTO	NE, extensively weathered, soft, dar	k reddish brown (5YR3/3),	moist.
13	14 100/1"	0.0	11/2		0.9 - 1.3' MUDSTON	E, weathered, hard, dark reddish br	own (5YR3/3), moist.	
]4						(End of Boring	g at 14 feet)	
15								
16								
17								
18								
19								·
20								
21			•					
22								
23								
24								
25								
26								
27								
28								
29								
DRILLING	RIG TYPE:	Mobile B-80	Hollow-stem Auger			SURFACE ELEVATION:	57.62	
BOREHOL	E DIAM:		8 1/4ª			START DATE:	6/2/2016	
WELL INS	TALLED:		Yes			END DATE:	6/6/2016	
NOTES:								
Depths of NA = no cpm = co	neasured from gr at applicable ounts per minute	ound surface			MW44S		Page	al of l
ppm = p	arts per million							

PROJECT:         Maywood PUBLAP Superior is 50         ODE NUMBER:         SOURCE:           CB&I FEDERAL SERVICES         PROJECT:         Maywood PUBLAP Superior is 50         ODE NUMBER:         CLIEPT:         USE NUMBER: <th co<="" th=""><th></th><th></th><th></th><th>B</th><th>ORING LO</th><th>)G</th><th><u> </u></th><th>BO</th><th>RING NUN MW45D</th><th><b>1BER:</b></th></th>	<th></th> <th></th> <th></th> <th>B</th> <th>ORING LO</th> <th>)G</th> <th><u> </u></th> <th>BO</th> <th>RING NUN MW45D</th> <th><b>1BER:</b></th>				B	ORING LO	)G	<u> </u>	BO	RING NUN MW45D	<b>1BER:</b>
CB&I FEDERAL SERVICES         LOCATION:         Maywood, NJ         CLINT:         US           WELL PERMIT NUMBER:         SS         SS         FILLER:         Lary UP           100         NA         OF         NA         DATE         FILLER:         Lary UP           110         NA         OF         NA         OF         MA         DATE         FILLER:         Lary UP           110         NA         OF         NA         OF         MA         DATE         OF					PROJEC	T: Maywo	od FUSRAP Superfund Site	JOB NUMB	ER:	500102	
CONTRACTOR:         SGS         DEFILE Sec.         Lary Ley           TYPE         SAMPLER         CASING         CORE BARRED:         2016/05158         PECID BED:         Address           TYPE         SAMPLER         CASING         CORE BARRED:         DATE:         6010000VATER           NAMORE WEIGHT         NA         NA         NA         NA         0010000           10         NA         NA         NA         NA         0010000           2         Interview         DESCRIPTION OF MATERIALS         PERIOD TO TO CONDUCT TERVIEW         11.3           2         Interview         NA         NA         NA         NA           2         Interview         DESCRIPTION OF MATERIALS         PERIOD TO	СВ	&I FED	ERAL	SERVICES	LOCATI	ON:	Maywood, NJ	CLIENT:		USACE	
VELL PERMIT NUMBER:         2021/05/19         RefLer.         Larry Log           71797         NA         osed         NA         DATE         \$712010           30222 (10)         NA         NA         DATE         \$712010         Image: State of the st				• •	CONTRA	ACTOR:	SGS				
Dire         Dire <th< td=""><td></td><td>•</td><td></td><td></td><td>WELL P</td><td>ERMIT NUMBER:</td><td>E201605158</td><td>DRILLER:</td><td>La</td><td>rry Lynch</td></th<>		•			WELL P	ERMIT NUMBER:	E201605158	DRILLER:	La	rry Lynch	
TYPE         DAMPLER         CASING         CORE PARKEL         DATE         DIFTIE OF DROINDWATER           SIZE (D)         NA         NA         NA         OTE								FIELD REP	: Je	eff Cook	
TYPE         NA         seed         MA         BATE         6132015           HUBLER WEICHT         NA         NA         MA				SAMPLER	CASING	CORE BARREL	DEPTH (	F GROUNDW	ATER		
HAMMER WEIGHT         NA         NA         NA         Outmohouse Daph.(Feat)         11.5           DEFTIN         PID         RAM         NA         NA         NA         Secondary Secon		TYPE SIZE (ID)		NA NA	stee! 6"	NA NA	DATE: 6/13/2016				
PID         RAD         DESCRIPTION OF MATERIALS         DORENULE         DORENULE           0         (gen)         (gen)         (gen)         DESCRIPTION OF MATERIALS         DORENULE         D           1	HAM HA	MER WEIGH	Т	NA NA	NA NA	NA NA	Groundwater Depth (Feet):		11.5		
Unset         (pso)         (pso)         (pso)         DEAM (p)         D           0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th>ПЕРТИ</th> <th>PID</th> <th>RAD</th> <th></th> <th></th> <th>DESCRIPTION OF MA</th> <th>TERIALS</th> <th></th> <th>BOREHOLE</th> <th>CASING</th>	ПЕРТИ	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING	
Image: Contract of the S feet.         Hand-cleared 0 to 5 feet.           3         4         4           4         4         4           4         4         4           5         4         4           6         4         4           7         4         4           6         4         4           7         4         5           6         4         4           7         4         5           8         4         4           10         4         4           11         4         4           12         5         5           13         5         5           14         7         7           15         7         7           16         4         4           17         4         4           18         4         4           19         4         4           12         4         4           13         4         5           14         7         5         7           16         4         4 <td< td=""><td>(Feet)</td><td>(ppm)</td><td>(cpm)</td><td></td><td></td><td></td><td></td><td></td><td>DIAM (in)</td><td>DIAM (in)</td></td<>	(Feet)	(ppm)	(cpm)						DIAM (in)	DIAM (in)	
2			·	-							
3       A       A         3       A       A         4       A       A         4       A       A         4       A       A         4       A       A         5       A       A         6       A       A         7       A       A         8       A       A         9       A       A         10       A       A         11       A       A         12       A       A         13       A       SAND and SILT, w' some fine gravel (FILL), moist         12       A       A         14       TILL, rei-brown, v. dens, moint       D. (Pa, egenic, black, wet         14       TILL, rei-brown, v. dens, moint       D. (Pa, egenic, black, wet         15       A       A         16       A       A         17       A       A         18       A       A         20       A       A         21       A       A         22       A       A         23       A       A         24       A <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-							
.3.				-		Hand-cleared 0 to 5	feet.				
4	3										
-5         -6         -6         -7         -6         -7         -6         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7         -7<	4	·									
6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	5			_							
7	6										
8	7			Sludge, black, lamina	ted with white silt	t (to 10.5 feet, bgs.), moist					
9	8		·			· • • • · · - ·					
10	. 9			-							
11	10			-							
12	11				~						
13       SAND, F.m., organic, black, wet       9.78         14       TILL, red-brown, v. dense, moist       9.78         15       Top of Weathered Bedrock       9.78         16       Top of Weathered Bedrock       9.78         18       MUDSTONE, extensively weathered, soft, reddish brown (5YR4/3), wet.       9.78         20       MUDSTONE, extensively weathered, soft, reddish brown (5YR4/3), wet.       9.78         21       MUDSTONE, extensively weathered, soft, reddish brown (5YR4/3), wet.       Drive 10° conductor casing to 25.5'.         24       MUDSTONE, reddish brown (5YR4/3), dry.       Drive 10° conductor casing to 25.5'.         25       MUDSTONE, reddish brown (5YR4/3), dry.       Drive 10° conductor casing to 25.5'.         28       MUDSTONE, reddish brown (5YR4/3), dry.       55.89	12			SAND and SILL, w/ s	some fine gravel (	(FILL), moist					
14       TILL, red-brown, v. dense, moist       9-78         15       Top of Weathered Bedrock       9-78         16	13			SAND, f-m, organic,	black, wet						
15       TLL, red-brown, v. dense, moist       9-78         15       Top of Weathered Bedrock       9-78         16	14			-							
16	15			TILL, red-brown, v. d Top of Weathered Bee	lense, moist drock				9-7/8	6	
17	16										
18	17										
19	18									,	
20	19										
20       MUDSTONE, extensively weathered, soft, reddish brown (SYR4/3), wet.         21	20			· ·							
21				MUDSTONE, extensi	vely weathered, s	oft, reddish brown (5YR4/3)	, wet.				
22											
23											
24	23										
25	24						·				
26	25						Drive 10" conductor c	asing to 25.5'.			
27       Competent rock at ~27'.         28       MUDSTONE, reddish brown (5YR4/3), dry.         29       (continued on Page 2)         DRILLING RIG TYPE: Schramm T-450	26							_			
28     MUDSTONE, reddish brown (5YR4/3), dry.       29     (continued on Page 2)       DRILLING RIG TYPE: Schramp T-450	27			Competent rock at ~27	P.						
29 (continued on Page 2) DRILLING RIG TYPE: Schramp T-450 SURFACE ELEVATION: 55.89	28			MUDSTONE, reddish	brown (5YR4/3)	, dry.					
DRILLING RIG TYPE: Schramm T-450 SURFACE ELEVATION: 55.89	29					(postinued on Br	2)				
DRILLING REGITTE: SCHRAMM 1-450 I SURFACE ELEVATION: 55.89				Columnar (T):450		Continued on Page					
	DORT	GOTTPE:		Souramm 1-450			SURFACE ELEVATION:	55.89			
BOREHOLE DIAM: 9-7/8", 5-7/8" (open borehole) START DATE: 6/1/2016	BOREHOLE	DIAM;	9-7/8",	5-7/8" (open borehole)			START DATE:	6/7/2016			
WELL INSTALLED: Yes END DATE: 6/13/2016	WELL INST.	ALLED:		Yes			END DATE:	6/13/2016			
DTES:	DTES:										
Depths measured from ground surface gpm = gallons per minute Page 1 of 3 NA = not applicable Page 1	Depths methods $NA = net$	easured from g applicable	round surfac	e gpm = gallon	s per minute				Page 1 of 3		
cpm = counts per minute MW45D-1	cpm = cou	unts per minute				MW45D-1					

			B	ORINGLO	)C		В	ORING NUN	BER:
				PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCATI	ON:	Maywood, NJ	CLIENT:		USACE
				CONTRA	CTOR	SGS	1		
							DRILLER	: La	ry Lynch
-				WELL PI	ERMIT NUMBER:	E201605158	FIELD RE	P: Je	ff Cook
			CAMPLED						
	TYPE		NA NA	steel	NA	DATE: 6/13/2016	OF GROUND	WATER	
НАМ	SIZE (ID) MER WEIGH	T .	NA NA	6" NA	NA NA	Groundwater Depth (Feet):		11.5	
НА	MMER FALL		NA	NA	NA				
DEPTH	PID	RAD			DESCRIPTION OF M	ATERIALS		BOREHOLE	CASING
(Feet) 30	(ppm)	{cpm}						DIAM (in)	DIAM (in)
31			-						
			MUDSTONE, reddis	h brown (5YR4/3	), dry.				
32			-						
33			-						
34	·····		-					9-7/8	6
35			SANDSTONE, reddis	sh brown, wet.				-	
36			-						
37			-			. Air hora-	r 9,7/2" +~ 201		
						Install 6" stee	l casing to 38'.		
38	0.0	·	IMUDSTONE, sandy,	reddish brown.			i		
39			Fracture.						
40			-						
41			-						
42			-						
43	0.0		MUDSTONE reddict	brown					
			MODUI ONE, IEUlia	r brown.					
44			-						
45									
46			Fracture.						
47									
48	0.0		MUDSTONE, sandy,	reddish brown.					
49	· · · · · ·		Yield ~0.0 gpm.					5-7/8	Open Borehole
									20101010
<u>&gt;</u> U			1						
51									-
52									
53	0.0		MUDSTONE, sandy,	reddish brown.			ļ		
54			Yield ~0,25 gpm.						
55									
00									
57							1		
58	0.0		MUDSTONE, reddish Yield ~1.5 com	brown.					
59			OF.		(nontinue 3 P	. 2)			
1		ł	L		(continued on Page	; , , , , , , , , , , , , , , , , , , ,	I		
DRILLING F	RIG TYPE:	5	Schramm T-450			SURFACE ELEVATION:	55.89		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	6/7/2016		
WELL INST	ALLED:	÷	Yes			END DATE:	6/13/2016	i	
OTES:									
Depths m	easured from m	round surface	e gom = sallon	s per minute				Page 2 of 3	
NA = not	applicable		opin galon		MW45D-2				
cpm = con ppm ≃ pa	nts per minute rts per million								
					· · ·				

			B	ORINGLO	C		B	ORING NUM	IBER:
				PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCATI	ON:	Maywood, NJ	CLIENT:		USACE
				CONTRA	CTOD.	ege	sos		
				CONTRA		300	DRILLER: Larry Lynch		
				WELL PI	ERMIT NUMBER:	E201605158	FIELD RE	P: Je	ff Cook
			0		6677 D . 7777				
	TYPE		NA NA	CASING steel	NA	DATE 6/13	2016/2016	WATER	
HAM	SIZE (ID) MER WEIGH	T	NA NA	6" NA	NA NA	Groundwater Depth (Feet):		11.5	
HA	MMER FALL		NA	NA	NA				
DEPTH	PID	RAD	ł		DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASING
60		(cpin)						DIAM (III)	
61			-					5.7/8	Open
62			-					0 110	Borehole
63			Total yield ~1.5 gpm.		(End of Paring at 4	Air h	ammer 5-7/8" to 63'.		
¥.,					(End of Boring at C				
65			-						
66									
67									
68									
69	-								
70									
	·								
/1									
72	<u> </u>								
73									
74				· ·					-
75				-					
76									
77									
79									
70									
79									
80									
81									
. 82									
83									
84			,						
85									
86									
07									
8/									
88									
89									
ישערואמי			Schromm T-450				N. 55.00	,ı	
OBELIOU 7		: م جرمیہ	5 7/911 (a 1 1 1 1 1			START DATE	11. JJ.69	6	
UKEHOLE		9-7/8",	o- י/ט" (open borehole)			SIART DATE:	6/7/2010	o ,	
VELL INST	ALLED:		Yes			END DATE:	6/13/201	6 `	
D								P 0 P-	
Depths m NA = not	easured from g applicable	round surface	e gpm ≕ gallon:	s per minute				Page 3 of 3	
cpm = cor	unts per minute	:			MW45D-3				

		<u> </u>	BO	RING LO	)G		BORING	G NUMBER:
	-		<u> </u>	PROJEC	CT: Maywo	od FUSRAP Superfund Site	JOB NUMBER:	500102
CB	&I FEDI	ERAL SE	RVICES	LOCAT	ION:	Maywood, NJ	CLIENT:	USACE
				CONTR	ACTOR:	SGS		
				WELL F	ERMIT NUMBER:	E201605091	DRILLER:	Tom Lynch
							FIELD REP:	Jeff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUNDWATER	
	SIZE (ID)		2"	NA NA	NA NA	DATE: 5/10/2016		
HAM HAN	MER WEIGHT	<u> </u>	140 lb. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):		-11
DEPTH	BLOW	PID	RAD	RECOVE	RY	DESCRIPTION OF	MATERIALS	
(Feet) 0	COUNTS	(ppm)	(cpm)	(Feet)	······································	· · ·		
1								
2	NA	N/4	214	NA		Hand-cleared 0	to 5 feet.	
3		NA	NA	NA				
4	24							
	21				Collect split-spoon sa	nple through hand-cleared material th	hat was backfilled into op	SVP4(1) dry medium
	21	0.0	NA	1.4	dense (GW) (FILL	).	u, trace sni, traik gray (7.	
6	26	0.0	NA	1.2	0.0 - 1.2' GRAVEL (s	ame as above), dry to moist (GW) (F)	LL).	
7	27 24							
8	<u>20</u> 17	0.0	214	1.0	0.0 - 0.7' GRAVEL (s 0.7 - 1.0' SAND, fine,	ame as above), moist (GW) (FILL). little silt and clay, little rounded grav	el, dark reddish gray (5Y	R4/2), moist, medium
9	14	0.0	NA	1.0	medium dense (SP	l. –		
10	9				0.0 - 1.0' SILT, clayey (ML) (TIL1.)	, little gravel, fine sand lens 0.1 - 0.2	, reddish brown (5YR4/3	), moist, stiff
11	11	0.0	NA	1.0	(			
12	10				0.0 - 0.8' SILT (same a	as above), moist (ML) (TILL).		
13	32	0.0	NA	1.1	0.8 - 1.1 SIL1 (same )	is above), more gravelly, wet (ML) (1	IILL).	
14	69 12				0.0 - 0.9' SILT (same a	as 0.0 - 0.8' above), moist (ML) (TIL)	L).	
15	35 53	0.0	NA	1.3	0.9 - 1.3' SANDSTON	E, weathered, dark reddish brown (5	YR3/2), wet.	
16	68 100/5"				0.0 - 0.3' SANDSTON	E, weathered, 5YR3/2, wet.		
17		0.0	NA	0,3	Advance augers throug	th weathered rock to 18 feet.		
18						(End of Boring a	t 18 feet)	
19								
20				<u> </u>				
21		ĺ						
22								
23								
24								
25								
26								
27								
28								
29		1			-			
DRILLING	UG TYPF	Mobile B-80	Hollow-stern Auger			SURFACE ELEVATION	60.26	
BOREHOLE	DIAM:		8 1/4"			START DATE:	5/10/2016	
WELL INST	ALLED:		Yes			END DATE:	5/10/2016	
NOTES:								
Depths me	easured from g	round surface					Pag	elof1
NA = not cpm = con	applicable ints per minute				MW46S			
ppm = par	ts per million							

			B	DRING L			B	ORING NUM	IBER:
			D	PROJEC	CT: Maywo	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FEDI	ERAL S	SERVICES	LOCATI	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
				WELLB	PEDMIT NUMBED.	E201605002	DRILLER:	To	m Lynch
				WELL F	ERMIT NUMBER:	E201000072	FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	I OF GROUNDY	WATER	
	TYPE		NA	steel	NA	DATE: 5/24/2010	5		
HAM	MER WEIGH	r	NA	NA	NA ,	Groundwater Depth (Feet):	I	7.0	
HAI	MMER FALL		NA	INA	NA	L			
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
0			-						
1									
2			-		Hand-cleared 0 to 5	feet.			
3									
4									
5									
6								16	
								15	
9									
10									
			1	Se	ee Boring Log for overburde	n well MW46S.			
12	·								
13						Auger 10 Air hamm	)-1/4" ID to 13'. ter 9-7/8" to 32'		
15									6
16									
10									•
17									
18									
19	·		MUDSTONE, extensi	vely weathered,	reddish brown (5YR4/3).				
20									
21								9-7/8	
22			Competent rock at ~22	2.					
23									
24									
25		<u> </u>	MUDSTONE, reddish	brown.					
26									-
27									
20									
29					(continued on Pag	e 2)			
DRILLING F	UG TYPE:		Mobile B-80			SURFACE ELEVATION:	60.22		
BOREHOLE	DIAM:	9-7/8".	5-7/8" (open borehole)			START DATE:	5/17/201	6	
WFLL INST	ALLED	,	Yes			END DATE:	5/24/201	6	
NOTES:									
Depths m	easured from a	round surface	epm = gallon	s per minute				Page 1 of 2	
NA = not	applicable	,	- Dhur Barrott		MW46D-1				
cpm = coi ppm = pa	nts per million								

		·	B	ORING LO	DG	, <b>, , , , , , , , , , , , , , , , , , </b>	B	ORING NUN	ABER:
			<u> </u>	PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FED	ERAL	SERVICES	LOCATI	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
			•	WELLB	FDMIT NUMBED.	E201605002	DRILLER	: To	m Lynch
				WELL F	ERMIT NUMBER;		FIELD RE	SP: Jo	eff Cook ′
			SAMPI FR		CORE BARREI	DEPT	HOF CROUND	WATER	
	TYPE		NA	steel	NA NA	DATE: 5/24/20	16	HALER	
HAM	SIZE (ID) MER WEIGH	т	NA NA	6" NA	NA NA	Groundwater Depth (Feet):	1	7.0	···
HAM	MER FALL		NA I	NA	. NA			1	
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
30									
31					*	Air ham	mer 9-7/8" to 32'.	9-7/8	6
32			-			install of s	teel casing to 32'.		
33			-						
24			]						l
35			MUDSTONE, reddis	h brown.					
36	·····		-						
37									
38									
39			Yield <i gom<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></i>						
	· · · · · · · · · · · · · · · · · · ·		-						
40	· · · · · · · · · · · · · · · · · · ·		- 						
41			-		· · ·				
42			Fracture (42-43').						
43		····	-						
44			-					5-7/8	Open
45			MUDSTONE, more s	and, reddish brov	vn. sofler.			5-776	Borehole
					,				
40			-						
47			-						
48	•		-						
49			Fracture - water-bearing	1g.					
50	0.0		Yield ~2.5 gpm.						
51			-						
60		 	-						
	. <u> </u>		-1						
53									
54			MUDSTONE reddich	brown softer					
55	0.0	<u> </u>							
56									
57			Total yield ~2.5 gpm.		(End of Boring at 5	Air hami 7 feet)	mer 5-7/8" to 57'.		
50			-					:	
59			-					*	
			1						
DRILLING R	IG TYPE:		Mobile B-80			SURFACE ELEVATION:	60.22		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/17/201	6	
WELL INST	ALLED:		Yes			END DATE:	5/24/201	6	
NOTES:									_
Depths mo NA = not cpm = cou	easured from g applicable nts per minute	ground surfac e	e gpm = gallon	s per minute	MW46D-2			Page 2 of 2	
ppm = par	ts per million								

			DC	DINCLO	C		BORING NUMBER:
			BC	PROJEC	T: Maywa	ood FUSRAP Superfund Site	JOB NUMBER: 500102
СВ	&I FEDI	ERAL SE	RVICES	LOCATI	ON:	Maywood NI	CLIENT: USACE
				CONTRA	ACTOR:	SGS	00.00
				WELLS	EDMIT MUMPER.	E001605110	DRILLER: Tom Lynch
				WELL P	ENNIT NUMBER:		FIELD REP: Jeff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH (	OF GROUNDWATER
	TYPE SIZE (ID)	-	Split-spoon 2"	NA NA	NA NA	DATE: 5/12/2016	
HAM HA	MER WEIGHT		140 lb. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~5
DEPTH	BLOW	PID	PAD	RECOVE	RV	DESCRIPTION OF	MATERIALS
(Feet)	COUNTS	(ppm)	(cpm)	(Feet)	×1.		
1	-						
	NA					Hand-cleared 0	to 5 feet.
	-	NA	NA	NA			
3							
4	10				Collect split-spoon sa 0.0 - 0.4' GRAVEL, f	mple through hand-cleared material th ine to coarse, some fine to coarse sand	hat was backfilled into open hole. d, trace silt, dark gray (7.5YR4/1), wet, medium
5	11 11	0.0	NA	0.8	dense (GW) (FILL 0.4 - 0.8' SAND, fine,	.). , and CLAY, silty, very dark gray (7.5	YR3/1), moist, stiff (SP/CL).
6	30	0.0	NA	1.0	0.0 - 1.0' SAND, fine, medium dense (SV	(becoming medium to coarse, little five).	ne), trace clay, dark gray (7.5YR4/1), wet,
7	21 27	0.0	NA	1.0			
8	16 16				0.0 - 0.4' SAND, fine, 0.4 - 1.0' SAND, med	gray (7.5YR5/1), wet, medium dense jum to coarse, trace silty clay at hottor	r (SP). n, black (7.5YR2.5/1), wet. medium dense (SW
9	13	0.0	NA	1.0	in the state, neu		
10	19				0.0 - 0.9' SAND, fine	to medium, trace coarse sand, black (	7.5YR2.5/1), wet, medium dense (SW).
11	20	0,0	NA	0,9			
12	31 10				0.0 - 0.3' SILT, clayey	, black (7.5YR2.5/1), wet, stiff. Few	broken rock fragments at bottom.
13	56 100/0"	. 0.0	NA	0.3	Advance augers to 13	teet. (End of Boring a	t 13 feet)
14							
15							
16							
17							
18							
19				1			
20	·						
21							
22							
22	i						
24							
25							
26							
27							
28							
29						-	
DRILLING	RIG TYPE:	Mobile B-80	) Hollow-stem Auger			SURFACE ELEVATION:	51,94
BOREHOU	E DIAM.		8 1/4"			START DATE	5/12/2016
WELLNIC	ALLED.		Nee				5/12/2014
WELL INST	ALLED:		Yes			END DATE:	5/1/2/2010
Deutle							Bread of 1
Depths $\pi$ NA = not cpm = co ppm = pa	t applicable t applicable ounts per minute onts per million	ound surface			MW47S		rage 1 of 1

	-		B	DRING LO	0C		B	ORING NUM	BER:
				PROJEC	CT: Maywoo	d FUSRAP Superfund Site	JOB NUM	IBER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCAT	ION:	Maywood, NJ	CLJENT:		USACE
-				CONTR	ACTOR:	SGS		-	
			-	WELL	PEDANT NUMBER.	E201606160	DRILLER	l: La	ry Lynch
				WELLI	PERMIT NUMBER:	E201003138	FIELD RE	IP: Je	ff Cook
			SAMDI FD	CASING	CORF RAPPEL	DEPTH	FCROUND	WATER	
	TYPE		NA	steel	NA	DATE: 6/7/2016			
HAM	SIZE (ID) MER WEIGH	т	NA NA	6" NA	NA NA	Groundwater Depth (Feet):		~6	
HAN	MMER FALL		NA	NA	NA			<u> </u>	
DEPTH (Feet)	P(D (ppp))	RAD (com)			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
0		(0)11)	-			· · · · · · · · · · · · · · · · · · ·			·····
1			-						
2			-			<b>6</b> -4			
3			-		Hand-cleared 0 to 5	icel.			
			-						
4			-						
5									
6									
7									
8			-						
			-	Se	ee Boring Log for overburden	well MW47S.			-
y			н н н						
10							~		
11									
12									
13									
14									
			1					9-7/8	6
15									
16			-						
17									
18			MUDSTONE, weathe	red, reddish brov	wn (5YR4/3)				
19									
20									
	· · · · · · · · ·								
21									
22									
23									
24									
25						Drive 10" conductor o	asing to 24,5'.		
26	0.0		MUDSTONE reddieb	htown (SVR4/2	3)				
			in our of the reculsti		,				
28		·							
29					(continued on Dese	2)			
1			L		Contanced on rage	<u> </u>			
DRILLING F	UG TYPE:		Schramm T-450			SURFACE ELEVATION:	51.70		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	6/2/2010	6	
WELL INST.	ALLED:		Yes			END DATE:	6/7/2010	6	
NOTES:				-		<u> </u>			
Depths m	easured from g	round surfac	e gpm = gallon	s per minute				Page 1 of 3	
NA = not cpm = cou	applicable ints per minute				MW47D-1				
ppm = pai	rts per million		-	-					

			B	ORING L	06		B	ORING NUN MW47D	IBER:
			D	PROJE	CT: Maywo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FEDI	ERAL	SERVICES	LOCAT	'ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
				WELL	PERMIT NUMBER:	E201605159	DRILLER	: La	rry Lynch
							FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUND	WATER	
•	TYPE SIZE (ID)		NA NA	steel 6"	NA NA	DATE: 6/7/2016	j		
HAM HA	MER WEIGHT	r	NA NA	NA NA	NA NA	Groundwater Depth (Feet):		~6	
DEDTU	PID	PAD			DESCRIPTION OF MA	TERIALS	· · · · · · · · · · · · · · · · · · ·	BOREHOLE	CASING
(Feet)	(ppm)	(cpm)			DESCRIPTION OF MA			DIAM (in)	DIAM (in)
	0.0		SANDSTONE, reduis	sn orown.					
31			-						
32			-						
33								0.75	
34			-					. 9-1/8	0
35	0.0		SANDSTONE, reddis	sh brown.					
36			-						
37			``			Air hamn	ter 9-7/8" to 38'.		
38			-			Install 6" ste	eel casing to 38'.		
30									
			-						
40			-						
41	0.0		SANDSTONE, reddis Yield ~0.25 gpm.	ih brown, dry.					
42			_						
43			-						
<b>4</b> 4			-1						
45			Fracture (45-46'), wate	er bearing, 0.5 (	GPM.				
46 -			-						
47			-						
48			-						
40				reddich brown				5-7/8	Open Borebole
47			-	reduisit brown.					20101010
50									
51			-						
52			-						
53			Fracture, water bearing	g, 1 GPM (total)	).				
54	0.0		MUDSTONE, reddish	brown.					
55			-						
56			-						
57			-						
58									
59									
					(continued on Page	3)			
DRILLING	RIG TYPE:		Schramm T-450			SURFACE ELEVATION:	51.70		
BOREHOLI	E DIAM:	9-7/8",	, 5-7/8" (open borehole)			START DATE:	6/2/201		
			Ven			END DATE	67/001	6	
WOTES-	ALLED:		105			GRU DATE.	0//201		
Depths n NA = no	neasured from g t applicable	round surfac	e gpm = gallon	s per minute				Page 2 of 3	
cpm = co ppm = pa	ounts per minute arts per million				MW4/D-2				

			B	ORING LO	)G	v	B	UKING NUN MW47D	ABEK:
				PROJEC	T: May	vood FUSRAP Superfund Site	Site JOB NUMBER: 500102		
CB&	I FED	ERAL	SERVICES	LOCATI	ON-	Manyood NI	CI IENT.		USACE
							CERENT		00.102
				CONTRACTOR: SGS			DRILLER:	La	rry Lynch
				WELL PERMIT NUMBER: E201605159			FIELD DE	D. le	ff Cook
				· · · · · · · · · · · · · · · · · · ·			FIELD RE	r; ,	al COOK
			SAMPLER	CASING	CORE BARREL	DE	PTH OF GROUND	VATER	
SI	ZE (ID)		NA NA	6"	NA NA	DATE: 6/7	/2016		
HAMM	ER WEIGH	Г	NA	NA NA	NA	Groundwater Depth (Feet):		~6	<u> </u>
11/1/11	WER PADE	I		ЛА	hA				
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	IATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
60	<u>**</u>		_						
61								5-7/8	Open
. 62	0.0		Fracture, water bearin MUDSTONE reddial	ig., 2.5 GPM (tot	al)				Borehole
			Total yield ~2.5 GPM			Air	hammer 5-7/8" to 63'.		
63			-		(End of Boring at	63 feet)			
64			- ·						
65			1						
65			-						
			-						
67		<u> </u>	-						
68			-						
69 ·			·						
70			-						
71			-						
			-						
72			_						
73			-						
74									
75			-						
	· · · · · ·							:	
/0	······								
77									
78									
79									
80									
ŏI	<u> </u>								
82									
83									
84									
85									
86									
87									
88	·		1						
89									
DRILLING RIG	G TYPE:		Schramm T-450			SURFACE ELEVATIO	DN: 51.70		
BOREHOLE D	IÁM:	9-7/8".	5-7/8" (open borehole)			START DATE:	6/2/2016	i	
	1 PP	,	N.				/ 15 in A • •		
WELL INSTAL	LED:		Yes			END DATE;	6///2016		<u></u>
DTES:						·			
Depths means $NA = -at$	sured from g	round surfac	e gpm = gallon	s per minute				Page 3 of 3	
INA = not ap	чпсаріе								

			BO	PING LO	)C		BORING NUMBER:
				PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUMBER: 500102
СВ	&I FEDE	ERAL SE	RVICES	LOCATI	ON:	Maywood, NJ	CLIENT: USACE
				CONTRA	ACTOR:	SGS	
				WELL P	ERMIT NUMBER:	E201605155	DRILLER: Tom Lynch
							FIELD REP: Jeff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUNDWATER
	TYPE SIZE (ID)		Split-spoon 2"	NA NA	NA NA	DATE: 5/31/201	6
HAM	MER WEIGHT		140 lb. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~12
DEPTH	BLOW	PID	RAD	RECOVE	RY	DESCRIPTION O	F MATERIALS
(Feet)	COUNTS	(ppm)	(cpm)	(Feet)		11-11-11-11-11-11-11-11-11-11-11-11-11-	
	NA					Hand-cleared	0 to 5 feet.
		NA	NA	NA			
3							
4	25				Collect split-spoon sa	mple through hand-cleared material	that was backfilled into open hole.
5	<u>32</u> 27	0.0	NA	1,7	0.0 - 1.7 GRAVEL, f dense (GW) (FILI	ine to coarse, some fine to coarse sa	nd, trace silt, dark gray (7.5YR4/1), dry, medium
6	30 51	0.0	NA	12	0.0 - 1.2' GRAVEL (s	ame as above), dry, dense (GW) (Fl	ILL).
7	39 40	0.0		1.2			
8	35				0.0 - 1.7' GRAVEL (s	ame as above), very dark grayish br	own (2.5Y3/2), dry, medium dense (GW) (FILL).
9	21	0.0	NA	1.7			
10	18				0.0 - 0.5' GRAVEL (s	ame as above), dry (moist at interfac	ce), medium dense (GW) (FILL). edium to coarse sand trace clay, reddish brown
11	24	0.0	NA	1.3	(5YR4/4), dry, ver	y stiff (SM) (TILL).	column to coarse saile, there only, reaction of our
12	42		·		0.0 - 1.1' SILT and SA	AND, fine, little fine to coarse grave	I, trace medium to coarse sand, trace clay, reddish
13	21 18	0.0	NA	1.1	brown (5YR4/4), v	wet, very stiff (SM) (TILL).	
14	17 8				0.0 - 1.1' SAND, fine,	little clay and fine gravel, reddish b	rown (5YR4/4), wet, loose (SP).
. 15	21 -	0.0	NA	1.3	1.1 - 1.3' SANDSTO	NE, weathered, reddish brown (5YR	4/4).
16	19 22				0.0 - 0.8' SAND, fine,	and SILT, some fine to coarse grav	el, trace medium to coarse sand, trace clay,
17	20 100/5"	0.0	NA	0.8	reddish brown (5Y	R4/4), moist, medium dense (SM) (	TILL).
18	51				0.0 - 1.0' SANDSTO	NE, weathered, reddish brown (5YR	4/4), wet.
19	43	0.0	NA	1.0			
20	53					(End of Boring	at 20 feet)
20						(200 01 2010)	
							· · · ·
2.5							
24							
25							
26							
27							
28							
29							•
DRILLING	RIG TYPE:	Mobile B-80	Hollow-stem Auger			SURFACE ELEVATION	57.37
BOREHOLE	DIAM		8 1/4 ^p			START DATE	5/31/2016
DUKEHULE			0 1/4				
WELL INST	ALLED:		Yes			END DATE:	5/31/2016
NOTES:							
Depths m NA = not	easured from gr applicable	ound surface			LB4/BC		Page I of I
cpm = com ppm = pa	unts per minute ns per million				MAA400		

			D				B	ORING NUM	BER:
			D	PROJEC	CT: Mav	wood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FEDI	ERAL S	SERVICES	LOCATI	ION-	Maywood, NJ	CLIENT:		USACE
	-			CONTR		SGS	0212111		
						Epoleofiel	DRILLER	: To	n Lynch
				WELL P	ERMIT NUMBER:	E201005154	FIELD RE	IP: Je	ff Cook
			SAMPLER	CASING	CORE BARREL		EPTH OF GROUND	WATER	
	TYPE		Split-spoon	steel	NA	DATE: 5/3	1/2016		
HAM	MER WEIGH	r	<u>NA</u>	NA NA	NA NA	Groundwater Depth (Feet):		~12	•
HAN	MER FALL		NA	NA	NA				
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
0									
1			-					}	
2			-		Hand-cleared 0 to	5 feet.			
, 3			-						
4			-						
			1						
>			-						
6			-						
7			-						
8			-						
9			-						
10									
11									
12								15	
12			-	Se	e Boring Log for overburg	den well MW48S.			
13			-						
14			Collect split-spoon sar MUDSTONE weather	mple from 14-16	'. ish hrown (5YR4/3)				,
15	0.0			,					6
16			1						
17			-						
18			-						
			-						
. 19			-						
20			18.5 - 25' SANDSTON Extensively fractured r	NE, weathered, re rock, yield ~40 g	eddish brown, up to 4" pie pm.	cces recovered.			
21					-				
22									
23		/				Aug	er 10-1/4" ID to 23.5'.		
24						. Air	hammer 9-7/8" to 38'.		
			Mare competent sol	et ~25'					
			more competent rock t	נ⊿~ .					
26								9-7/8	
27									
28									
29								-	
			l		(continued on Pa	ge 2)			
DRILLING R	IG TYPE:		Mobile B-80			SURFACE ELEVATI	ON: 57,75		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/24/201	6	
WELL INSTA	ALLED:		Yes			END DATE:	5/31/201	6	
OTES:									
Denths m	asured from a	tound surface	e ann = ailen	s per minute				Page 1 of 3	
NA = not	applicable	, Janu Bullall	- Bhu - Brion	- per minute	MIMARD 4			. "20 1 01 3	
epm = cou	nts per minute ts per million				MW48D-1				

			B	DRING LO	DG		B	ORING NUM MW48D	1BER:
<u> </u>				PROJEC	CT: Maywo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FEDI	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			····-
				WELL P	PERMIT NUMBER:	E201605154	DRILLER	; To	m Lynch
							FIELD RE	.P: Je	eff Cook
	ТҮРЕ		SAMPLER Split-spoon	CASING steel	CORE BARREL NA	DEPTH DATE: 5/31/2016	OF GROUND	WATER	
HAM	SIZE (ID) MER WEIGHT	r	2" NA	6" NA	NA . NA	Groundwater Depth (Feet):		~12	
HAN	MER FALL		NA.	NA	NA		·		
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (in
30								· · · · · · · · · · · · · · · · · · ·	
31			Fracture (31-32').		1				
32	0.4		MUDSTONE, sandy,	reddish brown.					
33			1						
34			-					9-7/8	. 6
35	0.4		-						
36									
37			-			Air barnm Install 6" ste	er 9-7/8" to 38'.		
38			-				a cusing to 50.		
39			MUDSTONE, reddish	brown, wet.					
40			Fracture (40-41'), wate	r bearing.					
41									
42			-						
43			Fracture (43-44').						
44			MUDSTONE, reddish	brown, wet.					
45	0.0		-						
46			-						
47			Fracture water bearing						
48			Yield ~1.0 gpm.	j.		• · · ·		د	Onen
49			MUDSTONE, reddish	brown, wet.				5-7/8	Borehole
50	0.0		Yield ~2.0 gpm.						
51									
52									
53									
54	0,0		MUDSTONE, sandy, r Fracture.	eddish brown, w	vet.				
55						-			
56			Fracture, water bearing Yield ~2.5 gpm.						
57									
58			Fracture (58-58.5').						
59			MUDSTONE, sandy, n	eddish brown, w	et. (continued on Page	3)			
	IG TYPE		Mobile B-80			SURFACE ELEVATION	57 75	I	
BOREHOLE	DIAM:	9_7/R*	5-7/8" (onen horehole)			START DATE	5/24/201	6	
		<i>,                                    </i>	Vor				5/01/001	-	
WELL INSTA	LLED;		IES			BND DATE:	5/31/201		
Depths me NA = not a cpm = cou	asured from gr applicable nts per minute	ound surface	e gpm = gallons	s per minute	MW48D-2			Page 2 of 3	

			B	DRING L	06		B	ORING NUN	IBER:
	·		D	PROJE	CT: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL S	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
			·	CONTR	ACTOR:	SGS			
				WELLI	PERMIT NUMBER:	F201605154	DRILLER	: To	m Lynch
							FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DE	PTH OF GROUND	WATER	
	TYPE SIZE (ID)		Split-spoon	steel	NA NA	DATE: 5/3	1/2016		
HAM	MER WEIGH	г	NA	NA	NA	Groundwater Depth (Feet):		~12	
		r <u></u>							
(Feet)	(ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		DIAM (in)	DIAM (in)
60									_
61			-					5-7/8	Open Borehole
62			Total vield ~3.0 gpm.			Air	hämmer 5-7/8" to 63'.		
63			-		(End of Boring at 6	3 feet)			
64			1						
65			4						
66		<u> </u>							
67		·							
			-						
69									
70			-						
71			-				i		
72									
73			-						
74									
75									
77									
78									
79									
80									
81									
82								ĺ	
83									
85			1						
80									
87									
88									
89									
			L				l		
DRILLING I	UG TYPE:		Mobile B-80			SURFACE ELEVATIO	JN: 57.75		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	5/24/201	<b>6</b>	
WELL INST	ALLED:		Yes			END DATE:	5/31/201	6	
OTES:									
Depths m NA = not	easured from g applicable	round surface	e gpm = gallons	s per minute				Page 3 of 3	
cpm = co	ints per minute				MW48D-3				
ppm = pa	ts per million								

-			BC	RING LO	00		BORING NUMBER:
				PROJEC	T: Maywo	od FUSRAP Superfund Site	JOB NUMBER: 500102
CB	&I FEDE	RAL SE	RVICES	LOCAT	ION:	Maywood, NJ	CLIENT: USACE
				CONTR	ACTOR:	SGS	
				WELL P	ERMIT NUMBER:	E201607079	DRILLER: Larry Lynch
							FIELD REP: Jeff Cook
	TYPE		SAMPLER Split-spoor	CASING_NA	CORE BARREL	DEPTH (	OF GROUNDWATER
ЦАМ	SIZE (ID)		2"	NA	NA	Groundwater Death (Feet):	~14
HAN	MMER FALL		30 in.	NA	NA	Citatiawater Deptir (1 ctt).	
DEPTH	BLOW	PID	RAD	RECOVE	RY	DESCRIPTION OF	MATERIALS
(reet)	COUNTS	(ppm)	(cpm)	(Feet)			
]							
2	NA	NA	NA	NA		Hand-cleared 0	to 5 feet
3		101			ļ		
4							
5	26				0.0 - 1.0' SILT, trace f	ine to coarse sand, trace fine gravel,	reddish brown (2.5YR4/4), dry, hard (ML).
6	44	0.0	NA	1.0			
7	56				0.0 - 1.5' SILT clavey	trace fine to coarse sand reddish br	own (2 5YR4/4) moist hard (ML).
•	40	0.0	NA	1.5			
•	72						and and the bound (2 SVD4/4) brittle
9	45	0.0	NA	1.4	dry, hard at base.	MODSIONE, very weathered, fine	sandy, readisti brown (2.51 K4/4), unitie,
10	105						
11	33 46	0.0	NA	15	0.0 - 1,5' SILTSTONE	/MUDSTONE, weathered, fine sand	ly, reddish brown, brittle, moist, hard at base.
12	100/5.5"	0.0	,	1.2			
13	52 89	0.0	, NA	15	0.0 - 1.5' SILTSTONE	MUDSTONE, weathered, fine sand	ly, reddish brown, brittle, wet at 14 '.
14	<u>66</u> 52	0.0	NA	1.5			
15	100/5,5"				0.0 - 0.4' SILTSTONE	MUDSTONE, weathered, fine sand	ly, reddish brown, brittle, hard, wet.
16		0,0	NA	0.4			
17					Air Hammer to 19'.		
18		NA	NA	NA	SILTSTONE/MUDST	ONE, weathered, reddish brown, ha	rd, wet.
19	· · · · · · · · · · · · · · · · · ·					(End of Boring a	t 19 feet)
20							
21							
22							
23							
24							
25							
26	-						
27							
28							
29							
DRILLING I	RIG TYPE:	Sch	മനന T-450			SURFACE ELEVATION:	54.77
BOREHOLE	DIAM:		5 7/8"			START DATE:	6/29/2016
WELL INST	ALLED:		Yes			END DATE:	6/29/2016
TES:							
Depths m	easured from gro	ound surface					Page 1 of 1
NA = not cpm = cor	applicable unts per minute				MW51S		
ppm = pa	rts per million						

CB&	I FEDI	ERALS	SERVICES	PROJE	CT: Maywoo	d FUSRAP Superfund Site	JOB NUMI	BER:	500102
CB&	I FEDI	ERAL S	SERVICES						200102
T Siz HAMME				LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
T SIZ HAMME				CONTR	ACTOR	SGS			
T SIZ HAMME				Contra		500	DRILLER:	Lar	ry Lynch
T SIZ HAMME				WELL	PERMIT NUMBER;	E201607077	FIELD RE	P: Je	ff Cook
T SIZ HAMME									<u></u>
SIZ HAMME	TYPE		SAMPLER NA	CASING steel	CORE BARREL NA	DATE: 6/28/2016	FGROUNDY	VATER	
LIAMA	ZE (ID)		NA NA	6"	NA NA	Groundwater Denth (Feet):		~14	
ПАМИМ	MER FALL		NA	NA	NA				
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING
(Feet) 0	(ppm)	(cpm)					<u> </u>		DIAM (in)
			-						
			-						
2					Hand-cleared 0 to 5	feet.			
3									
4									
5									
6			-						
7			-			Drive 10" conductor	casing to 6.5'.		
			-	Se	ee Boring Log for overburden	well MW-51S.			
8			-						
9			Top of weathered rock						
10									
11									
12			SILTSTONE and MUI	DSTONE, exte	nsively weathered, red-brown,	(5YR4/3), soft			
12 .			-						
			-						
14								9-7/8	6
15			SILTSTONE and MUI	DSTONE, exte	nsively weathered, red-brown,	(5YR4/3), soft			
16									
17									
18									
19		-	Competent rock at ~19						
			MUDSTONE and SAN	NDSTONE, fin	e, reddish brown (5YR4/3) (1	9-26').			
21									
22									
23									
24									
25									
26			MUDSTONE shales	reddish brown (	(26-28 51)				
			INCOUCTOINE, SINNEY, I	water prowil (	an 20.0 j.				
27									
28			MUDSTONE and SAN	DSTONE red	dish brown (28.5-29')	Air hammer Install 6" steel	9-7/8" to 29'. casing to 29'.		
29				,,,,,	(postioned D	2)	3	5-7/8	Open Borehole
			P		(continued on Page	<i>2)</i>			
DRILLING RIG	3 TYPE:	:	Schramm T-450			SURFACE ELEVATION:	54.66		
BOREHOLE DI	IAM:	9-7/8°,	5-7/8" (open borehole)			START DATE:	6/27/2010	5	
WELL INSTAL	LED:		Yes			END DATE:	6/28/2010	6	
OTES:							T		
Denths mean	sured from m	round surface	e one callons	ner minute				Page 1 of 2	
NA = not app	plicable		- Bhu - Baronz	. per minute	MM/51D-4			- 450 / 0/ 2	
epm = counts ppm = parts r	s per minute per million				MINO ID-1				

			R	ORING	06		B	ORING NUM	IBER:
			D	PROJE	CT: Maywo	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FEDI	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT		USACE
				CONTE	ACTOR	868	Children (1)		
						500	DRILLER	l: La	rry Lynch
				WELL	PERMIT NUMBER:	E201607077	FIELD RE	CP: Je	eff Cook
			SAMPLEP	CASING	COPE RAPPEI	DEBI	HOFGROUND	WATER	
	TYPE		NA	steel	NA NA	DATE: 6/28/20	016	HALLA	
HAM	SIZE (ID) MER WEIGH	Г	NA NA	6" NA	NA NA	Groundwater Depth (Feet):		~14	
HA	MMER FALL		NA	NA	NA			· · ·	
DEPTH (Feet)	PID (mm)	RAD (com)			DESCRIPTION OF MA	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (in)
30			_						
31	0,0		SANDSTONE, fine,	reddish brown, s	soft.				
32			-						
33			Fracture (33-34')						
24	·····		Viald . 0.0 mm						
			- 11eia ~0.0 gpm. -			1.1			
35			-						
36	0.0		SANDSTONE, fine, 1	reddish brown, s	soft.				
37			1						
38			-						
39			Yield ~0.0 gpm.						
40									
41	0.0		SANDSTONE Free	addich brown a	A				
	0.0		JOANDO I VINE, TINE, I	caasii orown, s	buil.			5-7/8	Open
42			-						Borehole
43			Fracture.						
. 44			MUDSTONE, reddist	n brown, harder.	Yield ~0.0 gpm.				
45			-						
46	0.0		MUDSTONE, reddisł	i brown.					
47			-						
48									
40			MUDSTONE	harry Vield					
+7			Fracture.	DIGWIL LIEIU	-uace ghn:				
50									
51	0.0		MUDSTONE, reddish	i brown.					
52			MUDSTONF/SILTST	ONE reddish b	prown (52,5-54')				
53			Total world _0.6	,		A 1	mar 5-7/20 in 54		
54	•		10(a) yielu ~0.3 gpm.		(End of Boring at 54	feet)	110 J-110 10 J4'.		
55									
56									
57			-						
50			1						
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			-						
59									
DRILLING	UG TYPE:		Schramm T-450			SURFACE ELEVATION	54.66		
	DIANE	0.5/05	6 7/9 ( L L L			STAPT DATE	( <b>1</b> 7,00	£	
BOKEHOLE	DIAM:	9-7/8",	>-//8" (open borehole)			START DATE:	6/2//201	0	
WELL INST	ALLED:		Yes			END DATE:	6/28/201	6	
OTES:				-					
Depths m	easured from g	round surfac	e gpm = gallon	s per minute				Page 3 of 3	
cpm = con	unts per minute	•	-		MW51D-2				
ррт = ра	rts per million								

		BORING NUMBER:						
			В	PROJEC	CT: Maywo	od FUSRAP Superfund Site	JOB NUMBER:	500102
CB	&I FEDE	RAL SE	RVICES	LOCAT	ION:	Maywood, NJ	CLIENT:	USACE
				CONTR	ACTOR:	SGS		
				WELL I	ERMIT NUMBER:	E201609990	DRILLER:	Larry Lynch
							FIELD REP:	Jeff Cook
	TVBE		SAMPLER	CASING	CORE BARREL	DEPTH C	OF GROUNDWATER	
	SIZE (ID)		2"	NA NA	NA NA	DATE: 6/51/2010		
HAM	MMER FALL		30 in.	NA NA	NA NA	Groundwater Depin (reel):		-0
DEPTH	BLOW	PID	RAD	RECOVE	RY	DESCRIPTION OF	MATERIALS	
0	COUNTS	(ppn)	(cpm)	(reel)				
. <u> </u>								
2	NA	NA	NA	NA		Hand-cleared 0	to 5 feet.	
3.								
4.						· /		
5	20	· · ·		+	0.0 - 1.3' SAND, fine	o medium, little coarse sand, trace for	ne gravel and silt, brown (	7.5YR4/3), moist to
6	16	0,0	NA	1.3	wet, medium dense	(or).		
7	15 11 78		`		0.0 - 0.5' SAND (same	e as above) (SP).		
8	93	0.0	NA	1.7	0.9 - 1.7' MUDSTON	E, weathered, reddish brown (5YR4/4)	, wet.	
9	33			_	0.0 - 1.0' MUDSTONI	E, weathered, some medium to coarse	e sand, reddish brown (5Y	R4/4), wet.
10	35	0.0	NA	1.0				
11						(End of Boring at	t 11 feet)	
12								
13								
14								<b>`</b>
15								
16								
17	-							
18	······································							
19								
20								
21								
22								
23								
24								
25								
26								
27								
28		· [						
29								
DRILLING F	UG TYPE:	Schr	amm T-450			SURFACE ELEVATION:	44.34	
BOREHOLE	DIAM:		8 1/4"			START DATE:	8/31/2016	
WELL INST.	ALLED:		Yes			END DATE:	8/31/2016	
NOTES:	<u></u>		<u></u>		<u></u>	1		
Depths m	easured from gro	und surface					Page	lofl
NA = not cpm = col	applicable unts per minute				MW52S			
ppm = pa	rts per million							

				ORING LO	OG	······	B	ORING NUN	ABER:
				PROJEC	CT: Maywoo	d FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
1				CONTR	ACTOR:	SGS			
				WELL P	ERMIT NUMBER:	E201609991	DRILLER:	: La	rry Lynch
							FIELD RE	P: Jo	eff Cook
			SAMPLER	CASING	CORE BARREL	DEPTH O	F GROUND	WATER	
	SIZE (ID)	······	NA NA	steel 6"	NA NA	DATE: 8/30/2016	·		· ·
HAM HAI	MER WEIGH MMER FALL	T	NA NA	NA NA	NA NA	Groundwater Depth (Feet):		~6	
DEPTH	PID	RAD			DESCRIPTION OF MA	FERIALS		BOREHOLE	CASING
(Feet) 0	(ppm)	(cpm)		·		<u>_</u>		DIAM (in)	DIAM (in)
1			-						
2			1						
3		·	-		Hand-cleared 0 to 5	eet.			
		·							
			-						
			-						
6			-						
7			-	-					
8			- · ·	See	e Boring Log for overburden	well MW-52S.			
9			-						
10			-						
11			Top of weathered rock						
12			-						
13									
			•						
			SANDSTONE, weath	ered, reddish bro	wn (5YR4/3).			9-7/8	6
15	· · · · · · · · · · · · · · · · · · ·		-			Drive 10" conductor ca	sing to 15.5 ¹ .		
16									
17	· · · ·	· · · · · · · · · · · · · · · · · · ·							
18									
19			SANDSTONE weather	red reddish bro	wn (SYR4/3)				
20			5711 150 1 01 12, Wellin		m (3 1 (4 5),				
21									
22			More competent bedro	ck at ~22'.				1	
23									
24									
	·		MUDSTONE reddish	brown (5YR4/3)					
26				(())					
									:
28									
29					(continued on Page 2	)			
DRILLING R	IG TYPE:	5	Schramm T-450			SURFACE ELEVATION:	44.19		
BOREHOLE	DIAM:	9-7/8", :	5-7/8" (open borehole)			START DATE:	8/29/2016		
WELL INSTA	LLED:		Yes			END DATE:	B/30/2016		
NOTES:						1			
Depths me	asured from g	round surface	gpm = gallons	per minute				Page 1 of 3	
NA = not a cpm = cour	applicable nts per minute				MW52D-1				
ppm = part	ts per million								

			D	ODINC I	00		B	ORING NUM	IBER:
				PROJE	CT: Maywo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FEDI	ERAL	SERVICES	LOCAT		Manwood NI	CLIENT		USACE
				CONT	RACTOR	SGS			
				CONT		303	DRILLER	: Lar	ту Lynch
				WELL	PERMIT NUMBER:	E201609991	FIELD RE	P: Je	ff Cook
			SAMDI ED	CASINC	CODE PADDEL	DEPTH		WATER	
·	ТҮРЕ		NA	steel	NA NA	DATE: 8/30/2016			
HAM	MER WEIGHT	r	NA NA	NA	NA NA	Groundwater Depth (Feet):		· ~6	
HAN	MMER FALL		NA	NA	NA				
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (in
30						· · · · · · · · · · · · · · · · · · ·			
31			-						
32			_						
33			MUDSTONE, reddisl	h brown.				9-7/8	6
34			-					3 110	·
35			-						
						A in 1			
		· · ·				Install 6" stee	el casing to 37'.		
			_						
38	0.0		MUDSTONE, reddist	h brown.					
39									
40			-			4			
41			Fracture						
42	0.0			n brown.					
43			Yield ~0.25 gpm.						
44	0.0		MUDSTONE, fine sa	ndv reddish bro	DWD.				
40			-						
47			Yield ~0.25 gpm.						
48			Fracture.					5-7/8	Open Borehole
49	0.0		MUDSTONE, fine sa	ndy, reddish bro	own.				
50			Fracture.						
51									
52			Yield ~0.5 gpm.						
53			-						
54	0.0		SANDSTONE, fine, r	eddish brown.					
			-						
56			Softer (56-57)						
57			Vield ~0.5 com						
			Son/fractured (58-59)						
59	0.0		SANDSTONE, reddis	h brown.	(continued on Page	3)			
DRILLING F	RIG TYPE:		Schramm T-450			SURFACE ELEVATION:	44.19		
OREHOUR	DIAM	9 <b>-7/8</b> *	5-7/8" (open horehole)			START DATE	8/29/201	6	
		<i>y-110</i> ,					0.0.7.601	-	
WELL INST.	ALLED:		Yes			END DATE:	8/30/201	o	
TES:								_	
Depths m NA = not cpm = cou	easured from g applicable unts per minute rts per million	round surfac	e gpm = gallon	s per minute	MW52D-2			Page 2 of 3	

			RC	RING LO	)G		В	MW52D	IBER:
				PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
CBa	&I FEDI	ERAL S	SERVICES	LOCATI	ON:	Maywood, NJ	CLIENT:		USACE
				CONTRA	ACTOR:	SGS			
				WELLP	FOMIT NUMBER-	E201609991	DRILLER	: La	ту Lynch
				W 13615 1	BAHT RUMBER,	L201007771	FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	DEPT	H OF GROUND	WATER	
	TYPE		NA	steel	NA	DATE: 8/30/20	16		
HAMM	MER WEIGH	r	NA	NA	NA	Groundwater Depth (Feet):		~6	
HAN	NNER FALL			NA	NA				
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASINO DIAM (in
60			-					5.7/9	Open
61			SANDSTONE, reddisi	h brown		Air ham	mer 5-7/8" to 62.	5-778	Borehole
62					(End of Boring at 6	2 feet)			
63			-						
64			-						
65									
66			-						
			-						
67									
68									
69			-						
70									
71								-	
72			-						
73									
74			-						
/4			-						
75			_						
76			-						
77									
78									
79									
80						· ·			
81									
87						-			
83									
84									
85									
86									
87									
88									
89									
			l						
DRILLING R	IG TYPE:	5	Schramm T-450			SURFACE ELEVATION:	44.19		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	8/29/201	6	
WELL INSTA	ALLED:		Yes			END DATE:	8/30/201	6	
TES.									
Depths me	easured from g	round surface	e gpm = gallons	per minute				Page 3 of 3	

			BC	DRING L	00		BORING	NUMBER:	
			DL	PROJE	СТ: Маум	ood FUSRAP Superfund Site	JOB NUMBER:	500102	
СВ	&I FEDE	RAL SE	RVICES	LOCAT	ION:	Maywood, NJ	CLIENT:	USACE	
				CONTR	ACTOR:	SGS			
				WELLI	PERMIT NUMBER	E201698452	DRILLER:	Larry Lynch	
				11 465			FIELD REP:	Jeff Cook	
			SAMPLER	CASING	CORE BARREL	DEPTH	OF GROUNDWATER		
	TYPE SIZE (ID)		Split-spoon 2"	NA NA	NA NA	DATE: 7/21/2010	j		
HAM1 HAM	MER WEIGHT		140 lbs. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):	~	6	
DEDTU	PL OW	BID		PECOVE	PV I	DESCRIPTION OF	MATERIALS		
(Feet)	COUNTS	(ppm)	(epm)	(Feet)	-	DESCRIPTION OF	MATERIALS		
0									
		·							
2	NA	NA	NA	. NA		Hand-cleared 0	to 5 feet.		
3									
4									
5	15				0.0 - 1.2' SAND, fine	e, little medium sand, trace silt, dark g	ray (10YR4/1), moist to we	et, loose (SP).	
66	11	0.0	NA	1.2					
7	5				0.0 - 1.2 SAND (san	ne as above), wet (SP).			
8	8	0.0	NA	1.2					
9	15				0.0 - 1.0' SAND, fine	, little medium sand, dark grayish bro	wn (10YR3/2), wet, loose;	at bottom, becoming	
10	9 8	0.0	NA	1.0	SAND, fine to me	dium, little coarse sand, dark olive gr	ay (5Y3/2) (SP/SW).		
11	8 W.O.H.				0.0 - 0.8' SAND, med	lium to coarse, dark olive gray (5Y3/	2), wet, very loose (SW).		
12	W.O.H. 3	0.0	NA	0.8		· · · · ·			
13	3				0.0 - 1.2' SAND met	lium to coarse, trace fine gravel, dark	olive grav $(5Y3/2)$ wet lo	ose (SW).	
14	4	0.0	NA	1.2	0.0-1.2 0/112, 100	num to coase, trace the Bravel, and			
14	6			-					
15	6	0.0	NA	0.8	0.0 - 0.8 SAND (san	le as above) (SW).			
16	8								
17	5	0.0	NA	0.9	0.0 - 0.7' SAND, fine loose (SP).	, very dark grayish brown (10YR4/2)	to dark yellowish brown (1	0YR4/4), wet,	
18	100/6"				0.7 - 0.9' SANDSTO	NE, weathered, reddish brown (5YR4	/3).		
19						(End of Boring	at 19 feet)		
20									
21									
22									
23									
24									
25				1					
26									
27									
28									
29									
			<u> </u>	1				, 	
DRILLING R	IG TYPE:	Sch	ramm T-450			SURFACE ELEVATION:	52.18		
BOREHOLE	DIAM:		8 1/4"			START DATE:	7/21/2016		
WELL INST	ALLED:		Yes			END DATE:	7/21/2016		
OTES:	<u></u>								
Depths me	easured from gro	und surface	W.O.H. ≈ wei	ght of hammer			Page	l of l	
NA = not cpm = cou	applicable ints per minute				MW53S				
ppm = par	ts per million								

			BO	ORING LO	ŊĠ		B	ORING NUM MW53D	IBER:
			<u> </u>	PROJEC	T: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
CB	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood NJ	CLIENT:		USACE
				CONTR	L CTÓD.	000			
				CONTRA	ACTOR:	303	DRILLER	· La	ту Lynch
				WELL P	ERMIT NUMBER:	E201608451	FIELD RE	p. le	ff Cook
				·					
	TUBE		SAMPLER	CASING	CORE BARREL	DEPTI	I OF GROUND	VATER	
	SIZE (ID)		NA NA	6"	NA NA	DATE: //21/20			
HAM	MER WEIGH MMER FALL	<u>г                                    </u>	<u>NA</u>	NA NA	NA NA	Groundwater Depth (Feet):		~10	
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF M	ATERIALS		BOREHOLE DIAM (in)	CASING DIAM (ir
0					tind a general analysis of the	All services and the service of the		ht	
1			-						
2			-						
			-		Hand-cleared 0 to	5 feet.			
3			-						
4			1						
5			+						
		[							
6			-						
7	·		-						
8			1						
0			-						
,									
10			-						
11			-						
12			-	See	e Boring Log for overburde	n well MW-53S.			
			-						
			-						
14			-						
15			-					9-7/8	6
16			-						
			-						
			-						
18									
19			Top of weathered bedr	ock.					
20									
			1						
21									
22			SANDSTONE, reddisi	h brown (5YR4/.	<ol><li>extensively weathered, s</li></ol>	soft.			
23									
-24									
						Drive 10" conducto	r casing to 24.7'.		
25			· .						
26			]						
27			SANDSTONE, reddist	h brown (5YR4/2	3), weathered, soft.				
28									
29					(continued on Pao	e 2)			
							I	L	
KILLING R	UG TYPE:	i	Senramm T-450			SURFACE ELEVATION:	52,23		
OREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	7/19/201	5	
VELL INST/	ALLED:		Yes			END DATE:	7/21/2010	5	×
TES:									-
								n · •	
NA = not	easurea from g applicable	round surface	e gpm = gallons	s per minute				Page 1 of 3	
					MM63D-1		1		

СВб	&I FEDI	TDAL.			<u> </u>			Uretytel	
СВб	&I FEDI	TRAL		PROJE	CT: Maywoo	od FUSRAP Superfund Site	JOB NUM	BER:	500102
			SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
							DRILLER	: La	ту Lynch
					PERMIT NUMBER:	E201608451	FIELD RE	P: Je	ff Cook
			SAMPI FP	CASING		NEDTH /		WATER	
	TYPE		NA	steel	NA	DATE: 7/21/2016	GROURD	THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERTY	
HAMM	IZE (ID) IER WEIGHT		NA NA	6" NA	NA NA	Groundwater Depth (Feet):		~10	
HAM	IMER FALL			NA	NA			r	
DEPTH (Feet)	PID (app)	RAD (com)			DESCRIPTION OF MA	TERIALS		BOREHOLE DIAM (in)	CASING DIAM (ir
30		(Jpni)	-						
31			SANDSTONE, reddis	h brown (5YR4	1/3), weathered, soft.				
32			More competent rock	(32-42').					
				-					
34			-						
			-						
35			-					9.7/9	6
36			SANDSTONE, reddis	h brown (5YR4	//3).			2.110	0
			-						
38			-						
39			-						
40			-						
			SANDSTONE raddia	h brown (SVP4	(a)	Airhamma	0.7/9 ⁰ to 42 ¹		
		• • • • • • • • • • • • • • • • • • • •	-	n otown (5 1 K4	<i>'')</i> .	Install 6 ^h stee	casing to 42'.		
			_					-	
43			-						
44		· · · · · · · · · · · · · · · · · · ·							
45			-						
46	0.0		SANDSTONE, reddis	h brown (5YR4.	/3).				
47			-						
			-						
			-					,	
			-			-			
50								5-7/8	Open
. 51	0.0		SANDSTONE, reddisl	1 brown.					Borehole
52			Yield ~0.1 gpm.						
53									
54			Fracture.						
55									
56	0.0		Fracture. MUDSTONE and SAM	DSTONE, fine	grained, reddish brow				
			Yield ~0.1 anm		-				
			Bhun						
					(continued on Page	3)			
ORILLING PI	G TYPE		Schramm T-450		<b></b>	SURFACE FLEVATION	57 72		
		0 = lov	5 7/01/. 1 1 1 1				-2.43	c.	
SOREHOLE D	ЛАМ:	9-7/8",	5-7/8" (open borehole)			START DATE:	7/19/201	0	
VELL INSTAU	LLED:		Yes			END DATE:	7/21/201	6	
TES:						•			
Depths mea	sured from gr	ound surface	e gpm = gallons	per minute				Page 2 of 3	
NA = not ap cpm = coun	pplicable its per minute				MW53D-2				

			B0	<u>DRING L</u>	OG		В	MW53D	IDEN:
				PROJE	CT: Mayw	ood FUSRAP Superfund Site	JOB NUM	BER:	500102
СВ	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTRA	NCTOR.	(CC)			
				CONTR	ACTOR:	202	DRILLER	: La	rry Lynch
				WELL	PERMIT NUMBER:	E201608451		ים,	ffCook
	TUPE		SAMPLER	CASING	CORE BARREL	DEPT	H OF GROUND	WATER	
	SIZE (ID)		NA NA	steel 6"	<u>NA</u>	DATE: 7/21/20			
HAM HA	MER WEIGH	r	NA NA	NA	NA NA	Groundwater Depth (Feet):		~10	
	1	í				<b> </b>	·····		
DEPTH (Feet)	PID (ppm)	RAD (cpm)			DESCRIPTION OF MA	ATERIALS		BOREHOLE DIAM (in)	CASIN DIAM (
60			Soft seam(s), water be	aring				<u>`</u>	
61								5-7/8	Boreho
62			Total yield ~15 gpm.		(Fod of Boring at 6	Air ham 2 feet)	mer 5-7/8" to 62'.		
			-1		Cena or pound at e	- noty .			
63			-1						
64			-						
65			1						
66			-						
		· · · · · · · · · · · · · · · · · · ·	1				1		
67			-1						
68			-						
69			-						
70			1						
70			-						
71			· ·						
72			1						
73			-						
			-1				-		
/4	·		-1						
75			-						
76			-						
77			-						
			-1						
78			-						
79			1						
80			1						
			· ·						
10									
82									
83									
84			1						
95	·								
6.0			]						
86			1						
87			1						
88									
202						·			
י מעד ד האמ			Sobrame T 450						
CRITTING 1	GOTTPE:		Solramni 1-450			SURFACE BLEVATION:	52.23		
BOREHOLE	DIAM:	9-7/8",	5-7/8" (open borehole)			START DATE:	7/19/2010	б.	
WELL INST	ALLED:		Yes			END DATE:	7/21/2010	6	
TES:									
Depths m NA = not	easured from gr applicable	ound surface	e gpm = gallons	per minute				Page 3 of 3	
					MW53D-3				

	B	ORING LOO	G			GNUMBER:
		PROJECT	: Mayw	ood FUSRAP Superfund Site	JOB NUMBER:	500102
CB&I FEDERAL S	SERVICES	LOCATIO	N:	Maywood, NJ	CLIENT:	USACE
		CONTRAC	CTOR:	SGS		
		WELL PER	RMIT NUMBER:	E201608454	DRILLER:	Larry Lynch
					FIELD REP:	Jeff Cook
	SAMPLER	CASING	CORE BARREL	DEPT	H OF GROUNDWATER	
SIZE (ID)	Split-spoon 2"	NA NA	<u>NA</u>	DATE: 7/28/20	-16	
HAMMER WEIGHT HAMMER FALL	140 lbs. 30 in.	NA NA	NA NA	Groundwater Depth (Feet):		-5
DEPTH BLOW PID	RAD	RECOVERY	7	DESCRIPTION	OF MATERIALS	<u> </u>
(Feet)         COUNTS         (ppm)           0	(cpm)	(Feet)		· · · · · · · · · · · · · · · · · · ·		
NA NA	NA	NA		Hand-cleared	1 0 to 5 feet.	
				the table for a state of the		
4 0.0	NA	1.3	0.0 - 1.3 SAND, met	aom, mue me and coarse sand, br	own (7,5 1 x4/4), Wel, 100se	io nicutum dense (i
6 10						
<u>7 8</u> <u>17</u> 00	NA	11	0.0 - 0.3' SAND (san 0.3 - 1.1' SILT, trace	ie as above) (SP). fine sand and clay, brown (7.5YR4	/4), moist, medium dense (N	(L).
<u>8 14</u> 18						
9 9 22 0.0	214		0.0 - 0.9' SILT (same 0.9 - 1.6' MUDSTON	as above) (ML). IE, weathered, reddish brown (5YF	(4/3), wet.	
10 23 0.0	NA	1.0	Hard augering to 11'			
· II				(End of Borin	g at 11 feet)	
<u>12</u> .						
13				······································		
14						
15						
16						
17						
18						-
19						
20						
21						
. 22						
23						
24						
25						
26						
27						
28						
20						
DRILLING RIG TYPE:	Schramm T-450			SURFACE ELEVATION:	54.57	
BOREHOLE DIAM:	8 1/4"			START DATE:	7/28/2016	
WELL INSTALLED	Yes			END DATE:	7/28/2016	
OTES:	1.03				12010	
Depths measured from mound surface					Dom	el of l

			B	DRING L	00		B	ORING NUM	IBER:
			D	PROJEC	CT: Maywoo	od FUSRAP Superfund Site	JOB NUM	IBER:	500102
CB	&I FED	ERAL	SERVICES	LOCAT	ION:	Maywood, NJ	CLIENT:		USACE
				CONTR	ACTOR:	SGS			
				WELLT	PROMIT NUMBER.	E301609463	DRILLER	t: La	ry Lynch
	BORING LOG         BORING LOG           &I PEDERAL SERVICES         FINUE:         Maywood PUENA' Superfued Sin LOCATION:         Maywood PUENA' Superfued Sin LOCATION:         DD NUMBER.         2010           AI PEDERAL SERVICES         FINUE:         LOCATION:         Maywood PUENA' Superfued Sin LOCATION:         DD NUMBER.         2010           VIEL PEDRIT NUMBER:         2010/015         PREIDERAL SERVICES         DEFTH OF CRUMENATER:         Matter Cruck           VIEL PEDRIT NUMBER:         2010/015         PREIDERAL         PR		ff Cook						
	BORING LOG         BORING NUMBER: Window           B&I FEDERAL SERVICES         FADACC: Maywood PLEAP Synchol Sin CONTRACTOR: WALL PENNIT NUMBER: WALL PENNIT NUMEER: WALL PENNIT NUMBER: WALL PENNIT NUMEER: WALL PENNIT NUMEER: WALL PENNIT NUMEER: WALL PENNIT NUMEER: WALL PENNIT N								
	TYPE		NA NA	CASING steel	CORE BARREL	DATE: 7/27/20	H OF GROUND	WATER	
НАМ	SIZE (ID) MER WEIGH	T	NA NA	6" NA	NA	Groundwater Depth (Feet):	<u></u>	~6	
HA	MMER FALL		NA	NA	NA				
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING
(Peet) 0	(ppm)	(cpm)						DIAM (in)	DIAM (m)
1	l		-						
			-						
<u>Z</u>					Hand-cleared 0 to 5	feet.			
3				J.					
4			· ·						
5			-			·····		1	
6		BORING LOG         BORING NUM           FEDERAL SERVICES         ROUCT: Maywad PUBAP Superior Size UOANDS: WELL PERMIT NUMBER: 2016843         Dob NUMBER: 2016843         CLIPT: 2016843           FEDERAL SERVICES         Maywad NU CUTTACTOR: WELL PERMIT NUMBER: 2016843         Dob NUMBER: 2016843         CLIPT: 2016843           region         MA         CANNC         CORE MARKER: NA         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         NA         MA         DA         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         NA         MA         DA         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         NA         MA         DA         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         MA         DOS NUMPER: 2016843         DOS NUMPER: 2016843         MA           region         DESCRIPTION OF MATERIALS         DOS NUMPER: 2016843         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         DESCRIPTION OF MATERIALS         DOS NUMPER: 2016843         DOS NUMPER: 2016843         DOS NUMPER: 2016843           region         SandoSTONE, fine, weathered, reddith brave (SVR42), not         Drive 10 ^o condumer canding to 18         9.78           SANDSTONE, fine, weathered, reddith brave (SVR42), not         SURFACE ELEVATIO							
7									
0				Se	ee boring log for overburden	well MW-54S.			
0	·		-						
9			-						
10									
. 11			Top of weathered bedr	rock.					
12			MUDSTONE, weather	red, reddish brov	wn (SYR4/3).				
13									
				a 1 18					
14		·	SANDSTONE, fine, w	reathered, reddis	sh brown (5 Y R4/3), very soft			9-7/8	6
15								2.114	-
16			·			Drive 10° condu	ctor casing to 16'.		
17									
18									
19									
20		• • • • • • •	SANDSTONE, fine, w	eathered, reddis	h brown (5YR4/3), soft.				
21									
22		•	Harder.						
23									
24									
25									
20									
27			SANDSTONE, fine, re	ddish brown (53	YR4/3).				
28			Competent rock at ~28	-					
29		••••••				2)			
					(continued on Page	<b>2</b> j	<u>,</u> [		
DRILLING I	NG TYPE:		Schramm T-450			SURFACE ELEVATION:	54.42		
BOREHOLE	DIAM:	9-7/8°,	5-7/8" (open borehole)			START DATE:	7/25/201	6	
WELL INST	ALLED:		Yes			END DATE:	7/27/201	6	
OTES:									
Depths m	easured from g	round surfac	e gpm = gailons	per minute				Page 1 of 3	
NA = not cpm = cor	applicable unts per minute				MW54D-1				
ppm = pa	rts per million								

			B	ORING L	OG			<u>Б</u>	MW54D	IDEN
				PROJEC	CT: Ma	wood FUSRAP Superf	und Site	JOB NUM	BER:	5001
СВ	&I FEDI	ERALS	SERVICES	LOCAT	ION:	Maywood, NJ		CLIENT:		USA
				CONTR	ACTOR:	SGS				
				WELL I	PERMIT NUMBER:	E201608	453	DRILLER	: La	rry Lync
								FIELD RE	P: Je	ff Cook
			SAMPLER	CASING	CORE BARREL	<b>a</b> +	DEPTH O	F GROUND	WATER	
	TYPE SIZE (ID)		NA NA	steel 6"	NA NA	DATE:	7/27/2016			
HAM	MER WEIGHT	r	NA NA	NA NA	NA NA	Groundwater Dept	h (Feet):		~6	
ДЕРТН	PID	RAD			DESCRIPTION	MATERIALS			BOREHOLE	CA
(Feet)	(ppm)	(cpm)	S=A++ (20, 210						DIAM (in)	DI/
			Soner (30-31).							
31			_							
32			SANDSTONE, fine,	reddish brown (:	5YR4/3).					
33			-						Ω. <i>⊐1</i> ₽	
34			-						2-110	
35			1							
36										
37			SANDSTONE, fine,	eddish brown (S	5YR4/3).		Air hammer	9-7/8" to 38'.		
38			 				insiall o" steel	casing to 38'.		
39			-							
40			-							
41			-							
42			SANDSTONE fire	eddish hrown						
			-							
43			-							
44			-							
45		······								
46										
47	0.0		SANDSTONE, fine, a	eddish brown.						
48			Yield ~0.0 gpm.						E 71/0	Seel
49			Fracture.						J-1/0	Pa
50										
51			-1							
52	0.0		SANDSTONE, fine, r	eddish brown.						
53			Yield ~0.0 gpm.							
54										
55			-							
56			-							
57	0.0		SANDSTONE, silty fi	ne, reddish brov	vn.					
58			Yield ~0.0 pnm							
			OM(1)							
					(continued on	Page 3)	<u> </u>			
DRILLING	RIG TYPE:		Schramm T-450			SURFACE E	LEVATION:	54.42		
BOREHOLE	DIAM:	9-7/8°,	5-7/8" (open borehole)			START DAT	E:	7/25/201	6	
WELL INST	ALLED:		Yes			END DATE:		7/27/201	6	
NOTES:						1				
Depths m	easured from g	round surfac	e gpm = gallon	s per minute					Page 2 of 3	
	appliashla		•						-	
			BO	ORING LO	DG		В	ORING NUN MW54D	<b>IBER</b> :	
----------------------	--------------------------------	--------------	--------------------------	-------------------------------------------------------------------------------------	----------------------------------------	--------------------------------	----------------------	--------------------	---------------------	--
				PROJEC	PROJECT: Maywood FUSRAP Superfund Site			JOB NUMBER: 500102		
СВ	&I FED	ERAL	SERVICES	LOCAT	ION:	CLIENT:		USACE		
				CONTR	ACTOR:	SGS				
				WELL P	ERMIT NUMBER:	E201608453	DRILLER	: La	rry Lynch	
							FIELD RE	P: Je	eff Cook	
			SAMPLER	CASING	CORE BARREL	DE	PTH OF GROUND	WATER		
	SIZE (ID)		NA	steel 6"	/2016					
HAM HA	MER WEIGH MMER FALL	<u>r</u>	NA NA	NA         NA         IGroundwater Depth (Feet):           NA         NA         NA						
DEPTH	PID	RAD			DESCRIPTION OF MA	TERIALS		BOREHOLE	CASING	
(Feet) 60	(ppm)	(cpm)	·					DIAM (in)	DIAM (in)	
61			-							
67	0.0		SANDSTONE of the P	na miliah bray						
				ine, reduisit brow	en.					
			- 11810 ~0.0 gpm.							
64			-							
65			-							
65			-							
67	0.0		MUDSTONE, fine sat	ndy, reddish bro	wn, harder.					
68			Yield ~0.0 gpm.							
69			Fracture					5-7/8	See Note 2 Below	
70										
71			-							
72	0.0		MUDSTONE, reddish	brown, harder.		-				
73			Yield ~0.0 gpm.							
74					-					
			-							
76			Fracture.							
77										
			SANDSTONE fine r	eddish hmwn						
70			Total yield - 0.17 GPM	f (see Note 1 bei	ow).	Air h	ammer 5-7/8" to 79',			
				6.11	(End of Boring at 79	leely				
au			~10.1' of wat	er accumulation	after ~85 minutes (approx. 0	). 17 gpm). 24 hour GW leve	l is artesian.			
81			Note 2: Installed 2° dia	umeter PVC well	screen (0.010-inch slotted)	within 5-7/8" borehole, from 5	8.5 - 78.5 feet.			
82			Installed #00	sand (54 - 56') a	nd #1 sand (56 - 79') filter pa	ack. Grouted up from 54 feet.				
83										
85										
86										
87										
88										
89										
			0. J							
DRILLING	KIG TYPE:		Schramm T-450			SURFACE ELEVATIO	JN: 54.42			
BOREHOLI	E DIAM:	9-7/8",	5-7/8" (open borehole)		7/25/201	6				
WELL INST	ALLED:		Yes			END DATE:	7/27/201	6		
NOTES:										
Depths m NA = poi	neasured from g tapplicable	round surfac	e gpm = gallon:	s per minute				Page 3 of 3		
cpm = co	unts per minute	:			MW54D-3					
hhur – bs	ara bei numnu									

ŝ,

## **APPENDIX B**

## CONSTRUCTION DIAGRAMS FOR MODIFIED AND NEW LTM WELLS









































.















Maywoo Maywoo USACE SGS Larry Lyr Jeff Cool 2.03 53.17 54.47 51.70 57/8 57/8 57/8	d FUSRAP d, NJ hch k		Well No.: Site Location: Installation Date: Northing: Easting: NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	MW47D         MISS         6/7/16         752559.75         610401.82         NGVD: 88         Steel         11         5         No         ize Pad)         24" Diameter         Concrete
<u>Maywood</u> <u>USACE</u> <u>SGS</u> <u>Larry Lyr</u> <u>Jeff Cool</u> 2.03 53.17 1.47 51.70 51.70 5.7/8 5.7/8 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	d, NJ nch k 		Site Location: Installation Date: Northing: Easting: NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	MISS         6/7/16         752559.75         610401.82         NGVD: 88 <u>Steel</u> 11         5         No         ze Pad) <u>24" Diameter</u> <u>Concrete</u>
USACE <u>SGS</u> <u>Larry Lyr</u> <u>Jeff Cool</u> 2.03 53.17 1.47 51.70 5.7/8 5.7/8 5. 5. 6.(approx)	nch k		Installation Date: Northing: Easting: NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	<u>6/7/16</u> <u>752559.75</u> <u>610401.82</u> NGVD: 88 <u>Steel</u> <u>11</u> <u>5</u> <u>No</u> 24" Diameter <u>Concrete</u>
SGS Larry Lyr Jeff Cool 2.03 53.17 53.17 51.70 51.70 57/8 57/8 5 5 (approx)	nch k		Northing: Easting: NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	752559.75         610401.82         NGVD: 88         11         5         No         xe Pad)         24" Diameter         Concrete
Larry Lyr Jeff Cool 2.03 53.17 1.47 51.70 57/8 57/8 57/8			Easting: NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	610401.82         NGVD: 88         11         5         No         ize Pad)         24" Diameter         Concrete
<u>Jeff Cool</u> 2.03 53.17 1.47 51.70 9.7/8 57/8 5 5 7/8 5 5 5 6 (approx)			NAD: 83 Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	Steel
2.03 53.17 53.17 51.70 51.70 57/8 57/8 5 5 (approx)			Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	Steel         11         5         No         24" Diameter         Concrete
53.17 53.17 51.70 57/8 57/8 57/8 5 5 (approx)			Protective Cover Type: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	Steel         11         5         No         >>         Pad)         24" Diameter         Concrete
5. 17 51.70 57/8 57/8 5 5 (approx)			Туре: Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Туре:	Steel         11         5         No         24" Diameter         Concrete
9 7/8 9 7/8 5 7/8 5 (approx)			Dimensions (in): Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	<u>11</u> <u>5</u> <u>No</u> 24" Diameter <u>Concrete</u>
9 7/8 9 7/8 5 7/8 5 6 (approx)			Length (ft): Guard / Post: Ground Seal (Surfac Dimensions: Type:	5 No æ Pad) 24" Diameter Concrete
9 7/8 5 7/8 5 6 (approx)			Guard / Post: Ground Seal (Surfac Dimensions: Type:	No e Pad) 24" Diameter Concrete
9 7/8 5 7/8 3 6 (approx)			Ground Seal (Surfac Dimensions: Type:	e Pad) <u>24" Diameter</u> Concr <u>ete</u>
5 7/8 5 6 (approx)			Dimensions: Type:	24" Diameter Concrete
5 7/8			Туре:	Concrete
) (approx)			туре.	Conciete
<u>(approx)</u> -				
i (approx)			Annular Space Seal	
approx)			Туре:	Portland Cement Grout
(approx)			Installation:	Gravity Tremie Pumped
			Desta ita Cast. Nas	
			Bentonite Seal - Nor	
			Туре:	Pellets Slurry
			Installation:	6-in. lifts One Section
				Gravity Tremie Pumped
			Hydration Time (h	rs):
0			Filter Pack Material -	None
0	· · · · ·		Size:	
			Volume Added (ft ^a	):
			Installation:	Gravity Tremie
			Well Casing	
			Type:	Steel
			Diameter (in):	6
,			Well Screen - None	
			Туре:	
			Slot Size (in):	
			Slot Type:	Cont. Wrap Factory slot
			Sume/End One	Nano
			Sumprend Cap:	
<u>~</u>			Backfill Material:	None
<u> </u>	┓			
	-			
3	3			Filter Pack Material - Size: Volume Added (ft ³ Installation: Well Casing Type: Diameter (in): Well Screen - None Type: Slot Size (in): Slot Type: Sump/End Cap: Backfill Material:




















# APPENDIX C Development Forms for Existing and New LTM Wells

### **APPENDIX C**

## WELL DEVELOPMENT FORMS FOR EXISTING AND NEW LTM WELLS

PAGE <u>1</u> of <u>1</u>

		1					·			
DATE: 4-6-16		WELL ID: B381	W015	STATIC WATER	R LEVEL (FT. TIC):	6.20	WELL DEPTH (	FT. TIC): 26.00		
WATER COLUN	/IN (FT.): 19.80		SLUDGE THICK	NESS (FT.): ~0.1		WELL CASING	DIAMETER (IN):	2		
WELL CASING/	BOREHOLE VOL	UME (GALS.): 3	.23		FILTER PACK D	IAMETER (IN.):	8	FILTER PACK LENGTH (FT.): 9		
FILTER PACK W	ATER VOLUME	(GALS.): 4.43	CASING AND FI	LTER PACK PUR	GE VOLUME (GALS.): 7.66 TOTAL PURGE VOLUME (X 3): 23					
FIELD PERSON	NEL: J Cook, M S	ileger					ı	<u> </u>		
Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
13:20	Start									
13:30	13.20	0.33		14.81	2.453	7.10	-102.0	3.80	> 1200	0.0
13:40	13.00	0.33		13.51	2.401	6.71	-66.0	3.99	1195.7	
13:50	12.90	0.33		13.30	2.406	6.70	-56.7	4.75	305.1	
14:00	12.80	0.33		· 13.82	2.457	6.82	-48.7	4.71	308.2	
	Stop Surging									
14:10	12.90	0.28		13.37	2.426	6.67	-68.5	0.63	61.5	0.0
14:20	12.70	0.28		13.5 <del>9</del>	2.434	6.66	-74.3	0.79	36.6	
14:30	12.65	0.28		13.29	2.437	6.68	-74.8	1.22	29.2	
14:35	12.65	0.28	23	13.48	2.438	6.66	-74.8	1.44	27.6	
14:35	Stop Pump									
			Ì							
										. <u> </u>

TOTAL WATER PURGED (GALS): 23

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE ______ of _____

DATE: 4-6-16	ATE: 4-6-16 WELL ID: B38W02D		STATIC WATER LEVEL (FT. TIC): 16.55		WELL DEPTH (FT. TIC): 45.80			
WATER COLUMN (FT.): 29.25 SLUDGE THIC			THICKNESS (FT.): ~0.1 WELL CASING DIAMETER (IN):			iameter (IN):	2	
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): 8 FILTER PACK LENGTH (FT.): 29.			FILTER PACK LENGTH (FT.): 29.5			
FILTER PACK WATER VOLUME (	LTER PACK PUR	GE VOLUME (GA	LS.): 19.25		TOTAL PURGE VOLUME (X 3): 58			
FIELD PERSONNEL: J Cook, M Sieger								

Time	Water Level (Ft. TJC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:19	Start					•				
8:30	30.30	0.5	5	11.98	0.453	6.62	176.0	6.35	> 1200	0.0
8:40	33,30	0.38		13.04	0.643	7.28	-7.9	5.57	> 1200	
8:50	33.40	0.38		12.44	0.725	7.15	52.2	6.68	802.3	
9.00	34.40	0.38		12.98	0.595	7.08	67.6	7.81	> 1200	
9:10	35.40	0.38	-	13.40	0.774	7.02	71.8	7.58	1007.6	
9:20	35.30	0.35		13.64	0.838	7.10	63.6	5.61	> 1200	
9:10	34.60	0.38		13.51	0.837	7 14	55.7	7 33	> 1200	
9.40	24.00	0.39		13 29	0.859	7.14	91.8	7.44	> 1200	
9.50	34.00	0.35		13.2.5	0.000	7 19	94.7	7 51	517.9	
5.50	Ston Surging	. 0.30		13.34	0.672	7.15	04.4	7.33	517.0	
10:00	32 00			13.76	0.972	7.00	49.0	6.21	109.2	
10:00	33.90	0.30	42	13.70	0.872	7.03	48.0	6.51	94.0	
10:10	33.90	0.38	43	13.70	0.855	7.07	43.5	6.05	64.9 51.0	
10:20	32.90	0.3	:	13.70	0.8//	7.10	42.8	6.34	51.8	
10:30	32.80	0,3		13.59	0.856	7.07	43.4	6.61	28.3	
10:40	32.80	0.3		13.56	0.852	7.07	45.3	6.78	29.1	
10:50	32.90	0.3		13.60	0.852	7.06	43.9	6.60	25.8	
11:00	32.90	0.3		13.53	0.848	7.07	41.9	6.49	20.3	
11:00	Stop Pump		58	· · · · ·			· · ·			
		-								
		A							· · · · · ·	

TOTAL WATER PURGED (GALS): S8

,

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI5S On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-15-16	WELL ID: B38W03D STATIC WAT			LEVEL (FT. TIC):	9.49	WELL DEPTH (F	T. TIC): 42.16
WATER COLUMN (FT.): 32.67 SLUDGE THICKNESS			NESS (FT.): 0.0	5 (FT.): 0.0 WELL CASING DIAMETER (IN): 2			2
WELL CASING/BOREHOLE VOL		FILTER PACK D	AMETER (IN.): 6	5	FILTER PACK LENGTH (FT.): 14		
FILTER PACK WATER VOLUME	LTER PACK PUR	GE VOLUME (GA	LS.): 10.0		TOTAL PURGE VOLUME (X 3): 30.0		
FIELD PERSONNEL: J Cook, R DeMott							

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
10:52	Start									
11:00	10.91	0.5		14.74	1.689	6.42	8.3	5.49	58.2	
11:10	10.84	0.5		14.70	1.731	6.49	-58.4	0.80	41.2	
11:20	10.93	0.5		14.88	1.888	6.47	-73.9	0.71	10.6	
	Stop Surging	0.0		21100			7410			
11,20	10.90	0.5		14.00	1 0/9	E 19	- 03 3	0.08	11 6	
11:40	10.00	0.5		14.00	1.052	6.40	-02.2 96 F	0.90	15.3	
11.40	10.50	0.5	70	14.92	1.555	5.40	-60,3	0.95	13.2	
11:50	10.86	0.5		14.89	1.958	0.48	-89.1	1.07	21.8	
11:50	Stop Pump									
11:55	9.75						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	•					-				
										,
	· · · · ·							<u></u>	·	
	L			•						

TOTAL WATER PURGED (GALS): 30

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE __1__ of ___1__

DATE: 3-15-16	WELL ID: B38	N07B	STATIC WATER	LEVEL (FT. TIC): 8.81 WELL DE			PTH (FT. TIC): 42.46	
NATER COLUMN (FT.): 32.65 SLUDGE THICKNESS (FT.):				.2 WELL CASING DIAMETER (IN): 2			2	
WELL CASING/BOREHOLE VOL	UME (GALS.): 5.	33		FILTER PACK DI	AMETER (IN.): 6	5	FILTER PACK LENGTH (FT.): 14	
FILTER PACK WATER VOLUME (GALS.): 4.3 CASING AND FILTER PACK PUR			GE VOLUME (GA	LS.): 9.67		TOTAL PURGE VOLUME (X 3): 29.0		
FIELD PERSONNEL: J Cook, R D	eMott	•					·	

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
8:56	Start									
9:00	10.58	0.6		13.08	1.743	6.32	182.6	No Reading	365.3	
9:10	10.7S	0.6		13.26	1.791	6.90	179.1	7.55	233.9	
9:20	10.47	0.6		13.69	1.791	6.95	173.1	5.46	846.7	
9:30	10.35	0.6	20	12.86	1.735	7.16	188.7	8.43	625.5	
9:40	10.40	0.6		13.34	1.746	6.95	181.5	6.93	995.2	
9:50	10.50	0.6	32	13.61	1.741	6.92	184.2	5.47	72.5	
	Stop Surging					<u></u>				
10:00	9.67	0.3		13.47	1.722	6.80	183.6	0.57	38.5	
10:10	9.63	0.3		13.52	1.723	6.80	179.1	0.39	13.7	
10:20	9.61	0.3		13.61	1.720	6.80	175.8	0.44	13.3	
10:30	9.59	0.3	45	13.57	1.719	6.80	172.4	0.45	12.0	
10:30	Stop Pump								•	
10:35	9.03									
	-									
							· · · · ·			

TOTAL WATER PURGED (GALS): 45

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

ATE: 3-28-16 WELL ID: B38W14S STATI			STATIC WATER	TATIC WATER LEVEL (FT. TIC): 4.20			WELL DEPTH (FT. TIC): 13.63		
WATER COLUMN (FT.): 9.43 SLUDG			SLUDGE THICKNESS (FT.): 0.0 WELL CA			ASING DIAMETER (IN): 2			
WELL CASING/BOREHOLE VOLU	JME (GALS.): 1.	54		FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (FT.): 8			FILTER PACK LENGTH (FT.): 8.0		
FILTER PACK WATER VOLUME (GALS.): 1.64 CASING AND FILTER PACK PUR				GE VOLUME (GA	LS.): 3.18		TOTAL PURGE VOLUME (X 3): 9.54		
FIELD PERSONNEL: J Cook, K G	erdes					<u></u>			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO *	Turbidity (NTU)	OVA/PID (PPM)
9:24	Start									
9:30	4.63	0.6		9.51	3.114	6.27	92.3	11.52	365.0	
9:40	4.63	0.6	· ·	9.11	2.422	6.65	72.0	No Reading	77.1	0.0
	Stop Surging									
9:50	4.63	0.6		9.51	2,671	6.52	51.0	9.64	4.3	
10:00	4.63	0.5		9.48	2 563	6.51	50.9	9.81	34	
10:02	Ston Burnn	0.0	22	5.40	2,505	0.31				
10.03	Scop Fump	<u></u>	2.3							
· · · · · · · · · · · · · · · · · · ·				-						
· · · · ·										
									<del>_</del>	

TOTAL WATER PURGED (GALS): 23

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

1

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = DO readings appear to be in error, DO membrane to be replaced.

PAGE <u>1</u> of <u>1</u>

DATE: 3-28-16	WELL ID: B38V	V14D	STATIC WATER	LEVEL (FT. TIC): 2,34 WELL D		WELL DEPTH (F	DEPTH (FT. TIC): 50.85	
WATER COLUMN (FT.): 48.51 SLUDGE THICKNESS (FT.): ~0.2					WELL CASING DIAMETER (IN): 2			
WELL CASING/BOREHOLE VOL	UME (GALS.): 7.9	9		FILTER PACK DI	AMETER (IN.): 1	8	FILTER PACK LENGTH (FT.): 22.0	
FILTER PACK WATER VOLUME (GALS.): 10.80 CASING AND FILTER PACK			LTER PACK PUR	GE VOLUME (GA	LS.): 18.70		TOTAL PURGE VOLUME (X 3): 56.1	
IELD PERSONNEL: J Cook, K Gerdes						, , , , , , , , , , , , , , , , , , , ,		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO *	Turbidity (NTU)	OVA/PID (PPM)
10:07	Start									
10:20	17.40	0.8		13.04	1.483	6.96	25.7	No Reading	1555.7	0.0
10:30	18.50	0.8		13.65	1.511	6.92	0.6	No Reading	1563.7	
10:40	21.00	0.8		13.49	1.467	6.97	-0.5	No Reading	311.6	
10:50	24.70	0.8		13.65	1.508	6.97	15.4	No Reading	1563.7	
11:00	26.10	0.8	42	13.92	1.518	6.99	20.3	No Reading	1567.6	
11:10	26.00	0.5		13.76	1.535	7.00	26.2	No Reading	138.0	
	Stop Surging									
11:20	25.50	0.5		14.09	1.537	6.96	30.2	No Reading	15.4	
11:30	25.80	0.5		14.11	1.536	6.95	33.6	No Reading	6.8	
11:40	25,80	0.5		14.14	1.532	6.95	36.2	No Reading	3.8	
11:45	25.90	0.5	65	14.15	1.532	6.96	37.4	No Reading	3.2	
11:45	Stop Pump									
							<u> </u>			
					•				······=;·····	
										· ···
									<b>.</b>	
									_	

TOTAL WATER PURGED (GALS): 65

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = DO readings over 100%, DO membrane to be replaced.

PAGE <u>1</u> of <u>1</u>

DATE: 3-29-16	3-29-16 WELL ID: B38W15S STATIC WATE			LEVEL (FT. TIC):	4.88	WELL DEPTH (F	WELL DEPTH (FT. TIC): 16.12		
WATER COLUMN (FT.): 11.24 SLUDGE THICKNESS (FT.)			NESS (FT.): ~0.1	0.1 WELL CASING DIAMETER (IN): 2			2		
WELL CASING/BOREHOLE VOLU	JME (GAL5.): 1.	84		FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (FT.):			FILTER PACK LENGTH (FT.): 9.5		
FILTER PACK WATER VOLUME (	GALS.): 1.94	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 3.8		TOTAL PURGE VOLUME (X 3): 11.4		
FIELD PERSONNEL: J Cook, K G									
				1					

					Specific					
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO DO	(NTU)	(PPM)
8.20	Start									
0.20	Start		1		<u>+</u>					
8:30	6.20	0.3		11.98	1.919	6.52	22.0	3.44	28.6	
8:40	6.10	0.3		13,45	1.967	7.13	-111.5	1.46	578.2	
8:50	6.40	0.25		14.08	1.912	7.23	-109.2	3.06	367.7	
9:00	6.40	0.25		13.88	1.970	7.33	-95.8	4.14	141.9	0.0
	Stop Surging									
9:10	6.25	0.25		13.90	1.969	7.31	-96.5	0.25	54.8	
9:20	6.15	0.25		14.08	1.964	7.30	-99.6	0.25	22.7	
9:30	6.15	0.25	19	14.07	1 962	7 30	-102.2	0.20	8.7	
	0.20	0.20		24.07		7.30		0.20		
9:30	Stop Pump									
					·					
									····	
								- ···		
										· · ·
	·····									

TOTAL WATER PURGED (GALS): 19

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

				1		r					
DATE: 3-29-16		WELL ID: B38V	V15D	STATIC WATER	R LEVEL (FT. TIC):	4.26	WELL DEPTH	(FT. TIC): 46.60			
WATER COLUM	IN (FT.): 42.34		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 6.	9		FILTER PACK DI	AMETER (IN.):	10	FILTER PACK LI	ENGTH (FT.): 19.	5	
FILTER PACK W	ATER VOLUME (	GALS.): 16.7	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 23.6		TOTAL PURGE VOLUME (X 3): 71			
FIELD PERSONN	IEL: J Cook, K G	er <b>de</b> s	• · · · · ·								
					J						
	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)	
9:33	Start					-					
9:40	17.10	1.0		14.87	1.622	7.81	-83.7	3.37	1623.8		
9:50	17.20	1.0		15.07	1.224	7.50	-43.0	3.06	1627.1	0.0	
10:00	17.40	1.0		14.73	1.915	7.50	-34.7	3.78	1622.8		
10:10	17.05	1.0		14.72	1.916	7.52	-34.6	4.03	929.2		
10:20	17.00	1.0		14.76	1.926	7.51	-31.8	4.20	1046.8		
10:28			55								
10:30	17.30	1.0		14.54	1.916	7.49	-30.9	3.63	1103.6		
10:40	17.70	1.0		14.63	1.923	7.49	-29.3	3.84	334.1		
	Stop Surging										
10:50	17.10	1.0		14.97	1.930	7.47	-25.2	0.18	54.7		
11:00	17.15	1.0	87	14.97	1.931	7.46	-21.0	0.15	27.6	0.0	
11:05	Reduce Flow										
11:10	15.10	0.75		14.95	1.935	7.46	-16.0	0.15	9.2		
11:20	15.05	0.75	103	15.04	1.933	7.49	-13.6	0.16	6.5		
11:20	Stop Pump										
			-								
· · ·											

TOTAL WATER PURGED (GALS): 103

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-28-16	WELL ID: B38V	STATIC WATER	TATIC WATER LEVEL (FT. TIC): 8.23 WELL DEI			T. TIC): 16.75	
WATER COLUMN (FT.): 8.52		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2
WELL CASING/BOREHOLE VOLU		FILTER PACK DI	AMETER (IN.): 8	1	FILTER PACK LENGTH (FT.): 9.0		
FILTER PACK WATER VOLUME	LTER PACK PUR	GE VOLUME (GA	LS.): 5.8		TOTAL PURGE VOLUME (X 3): 17.4		
FIELD PERSONNEL: J Cook, K G							

13:20    Start	Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рĤ	ORP	DO *	Turbidity (NTU)	OVA/PID (PPM)
13:30    11.40    0.2    11.66    0.574    7.71    S.4    No Reading    557.4      13:40    11.50    0.2    11.79    0.642    6.66    33.9    No Reading    402.1      13:50    12.00    0.15    11.79    0.673    6.45    65.1    No Reading    240.7      14:00    11.90    0.15    12.24    0.694    6.48    63.5    No Reading    198.3      5top Surging	13:20	Start									
13:40    11.50    0.2    11.79    0.642    6.66    33.9    No Reading    402.1      13:50    12.00    0.15    11.79    0.673    6.45    65.1    No Reading    240.7      14:00    11.90    0.15    12.24    0.694    6.48    63.5    No Reading    198.3      stop Surging	13:30	11,40	0.2		11.66	0.574	7.71	S.4	No Reading	557,4	
13:50    12:00    0.15    11.79    0.673    6.45    65.1    No Reading    240.7      14:00    11:90    0.15    12.24    0.694    6.48    63.5    No Reading    198.3      14:00    12.25    0.15    12.24    0.694    6.48    63.5    No Reading    198.3      14:10    12.25    0.15    12.31    0.701    6.48    57.2    No Reading    69.1      14:20    12.35    0.15    12.61    0.751    6.52    53.8    No Reading    33.6      14:30    12.37    0.15    12.84    0.776    6.56    48.2    No Reading    5.6      14:40    12.35    0.15    12.84    0.789    6.60    47.6    No Reading    3.5      14:50    12.36    0.15    12.90    0.796    6.63    46.5    No Reading    3.2      15:00    12.38    0.15    13.00    0.809    6.65    47.0    No Reading    5.1	13:40	11.50	0.7		11 79	0.642	6.66	33.9	No Reading	402.1	
14:00  11.90  0.15  12.24  0.694  6.48  63.5  No Reading  198.3    14:00  11.90  0.15  12.24  0.694  6.48  63.5  No Reading  198.3    14:10  12.25  0.15  12.31  0.701  6.48  57.2  No Reading  69.1    14:20  12.35  0.15  12.61  0.751  6.52  53.8  No Reading  33.6    14:30  12.37  0.15  12.84  0.776  6.56  48.2  No Reading  11.8    14:40  12.35  0.15  12.84  0.789  6.60  47.6  No Reading  5.6    14:50  12.36  0.15  12.90  0.796  6.63  46.5  No Reading  3.5    15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  13.01  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump	12:50	12.00	0.15		11 70	0.672	6 / E	65 1	No Reading	240.7	-
14.30  0.13  12.24  0.394  6.48  63.3  NO Reading  195.3    stop Surging	14:00	11.00	0.15		12.24	0.075	6.40	63.5	No Reading	100.2	
Stop Surging    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O    O <t< td=""><td>14:00</td><td>11.90</td><td>0.15</td><td></td><td>12.24</td><td>0.094</td><td>0.48</td><td>03.5</td><td>No Reading</td><td>190.5</td><td></td></t<>	14:00	11.90	0.15		12.24	0.094	0.48	03.5	No Reading	190.5	
14:10  12.25  0.15  12.31  0.701  6.48  57.2  No Reading  69.1    14:20  12.35  0.15  12.61  0.751  6.52  53.8  No Reading  33.6		Stop Surging	<del></del>							,	
14:20  12.35  0.15  12.61  0.751  6.52  53.8  No Reading  33.6    14:30  12.37  0.15  12.84  0.776  6.56  48.2  No Reading  11.8    14:40  12.35  0.15  12.84  0.789  6.60  47.6  No Reading  5.6    14:40  12.36  0.15  12.90  0.796  6.63  46.5  No Reading  3.5    14:50  12.38  0.15  12.90  0.796  6.63  46.7  No Reading  3.2    15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump	14:10	12.25	0.15		12.31	0.701	6.48	57.2	No Reading	69.1	
14:30  12.37  0.15  12.84  0.776  6.56  48.2  No Reading  11.8    14:40  12.35  0.15  12.84  0.789  6.60  47.6  No Reading  5.6    14:50  12.36  0.15  12.90  0.796  6.63  46.5  No Reading  3.5    15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  5top Pump  1  1  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump  1  1  0.817  6.67  46.7  No Reading  1    15:10  Stop Pump  1  1  1  1  1  1  1    15:10  Stop Pump  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1	14:20	12.35	0.15		12.61	0.751	6.52	53.8	No Reading	33.6	
14:40  12.35  0.15  12.84  0.789  6.60  47.6  No Reading  5.6    14:50  12.36  0.15  12.90  0.796  6.63  46.5  No Reading  3.5    15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump  1  1  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump  1  1  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1	14:30	12.37	0.15		12.84	0.776	6.56	48.2	No Reading	11.8	
14:50  12.36  0.15  12.90  0.796  6.63  46.5  No Reading  3.5    15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump	14:40	12.35	0.15		12.84	0.789	6.60	47.6	No Reading	5.6	
15:00  12.38  0.15  13.00  0.809  6.65  47.0  No Reading  3.2    15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump	14:50	12.36	0.15		12.90	0.796	6.63	46.5	No Reading	3.5	
15:10  12.38  0.15  18  13.11  0.817  6.67  46.7  No Reading  5.1    15:10  Stop Pump	15:00	12.38	0.15		13.00	0.809	6.65	47.0	No Reading	3.2	_
15:10  Stop Pump  Image: stop Pump<	15:10	12.38	0.15	18	13.11	0.817	6.67	46.7	No Reading	5.1	
	15:10	Stop Pump									
							•				
											/
											<u>.</u> .

TOTAL WATER PURGED (GALS): 18

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = DO readings over 100%, DO membrane to be replaced.

ι

PAGE <u>1</u> of <u>1</u>

DATE: 3-29-16	STATIC WATER	LEVEL (FT. TIC):	8.57	WELL DEPTH (F	T. TIC): 42.85
WATER COLUMN (FT.): 34.28	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2
WELL CASING/BOREHOLE VOLU		FILTER PACK DI	AMETER (IN.): 6	5	FILTER PACK LENGTH (FT.): 28.3
FILTER PACK WATER VOLUME (	LTER PACK PUR	GE VOLUME (GA	LS.): 11.4		TOTAL PURGE VOLUME (X 3): 34.2
FIELD PERSONNEL: J Cook, K G					· · · · · · · · · · · · · · · · · · ·

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
12:24	Start									
12:35	8.70	0.75		13.91	3.820	7.20	-97.1	3.02	6.6	
12:45	8.70	0.75		13.33	3.857	6.82	-91.6	3.17	4.0	0.0
12:55	8.70	0.75		13.09	3.821	6.82	-94.9	3.59	2.3	
	Stop Surging									
13:05	8.70	0.75		13.40	3.764	6.78	-102.3	0.17	1,1	
13:15	8.70	0.75		13.42	3.727	6.77	-106.0	0.15	0.5	0.0
13:25	8.70	0.75		13.39	3.695	6.77	-107.5	0.15	1.7	
13:35	8.70	0.75		13.39	3.670	6.77	-108.8	0.14	1.3	
13:45	8.70	0.75		13.42	3.651	6.77	-109.6	0.15	0.9	
13:45	Stop Pump		60							
									1	
		·						····		
		······································								
		i								

TOTAL WATER PURGED (GALS): 60

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>4</u>

							•					
DATE: 7-5-16,	7-6-16	WELL ID: B38V	V18DR	STATIC WATER	TER LEVEL (FT. TIC): 8.00 WELL DEPTH (FT. TIC): 73.00							
WATER COLUN	1N (FT.): 65.00	· · · · ,	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	6				
WELL CASING/	BOREHOLE VOL	UME (GALS.): 95	5.5		FILTER PACK D	AMETER (IN.):	NONE	FILTER PACK L	ENGTH (FT.): NO	NE		
FILTER PACK W	ATER VOLUME	(GALS.): NONE	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 95.5		WATER LOSS D	OURING INSTALL	(GALS.): 0		
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 2	86.5	FIELD PERSONNEL: K Gerdes							
			1	r	Engelific		1	1	1	]		
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID		
Time	(Ft. TIC)	(GPM)	Purged (gai)	Temp. (C)	(mS/cm)	pH	ORP	DO	(NTU)	(PPM)		
6/21/16			165					}				
	Initial driller de	evelopment by s	urging/overpum	ping.	· · · · · ·							
	No visible sedir	ment at complet	ion of developm	ient.								
7/5/16 13:25	8.00	0.3	0	17.30	0.893	7.90	-23,9	5.62	104.3	0.3		
13:30	9.10	0.3	1.5	16.52	0.824	7.62	-79.4	4.19	75.6	0.0		
13:35	10.55	0.3	3	16.92	0.818	7.45	-85.9	3.93	972.0	0.0		
13:40	11.40	0.3	4.5	16.87	0.821	7.45	-88.1	4.26	559.3	No Reading		
13:45	12.30	0.3	6	16.92	0.820	7.41	-95.6	3.05	581.6	0.0		
13:50	13.05	0.3	7.5	16.95	0.826	7.40	-97.3	3.58	255.1	No Reading		
13:55	13.70	0.3	9	16.94	0.826	7.37	-94.8	3.49	220.7	0.0		
14:00	14.50	0.3	10.5	17.14	0.830	7.36	-92.6	3.34	259.7	No Reading		
14:05	14.90	0.3	12	17.64	0.836	7.43	-74.4	4.94	240.3	0.0		
14:10	15.25	0.3	13.5	17.81	0.836	7.39	-88.3	3.34	211.5	No Reading		
14:15	15.50	0.3	15	17.71	0.836	7.37	-90.9	3.30	212.9	0.0		
14:20	15.75	0.3	16.5	17.68	0.758	7.39	-109.5	3,60	29.5	No Reading		
	Stop Surging											
14:25	16.00	0.3	18	17.34	0.825	7.32	-96.7	2.49	59.3	0.0		
14:30	16.25	<b>0.3</b> .	19.5	17.38	0.826	7.30	-111.3	1.10	28.2	No Reading		
14:35	16.30	0.3	21	17.27	0.826	7.26	-109.0	1.21	59.8	0.0		
14:40	16.40	0.3	22.5	17.62	0.826	7.27	-114.5	0.98	33.5	No Reading		
14:45	16.45	0.3	24	17.38	0.827	7.27	-117.7	0.91	9.9	0.0		
14:50	16.45	0.3	25.5	17.47	0.829	7.26	-118.1	0.88	27.8	No Reading		
14:55	16.50	0.3	27	17.43	0.829	7.21	-105.7	0.94	7.4	0.0		
15:00	16.50	0.3	28.5	17.36	0.830	7.21	-109.9	0.91	3.7	No Reading		

TOTAL WATER PURGED (GAL5): 289.5 WATER QL

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 4

DATE: 7-5-16,	7-6-16	WELL ID: B3B	N18DR	STATIC WATER	LEVEL (FT. TIC):	8.00	WELL DEPTH (	FT. TIC): 73.00			
WATER COLUN	IN (FT.): 65.00	•	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	6			
WELL CASING/I	BOREHOLE VOL	JME (GALS.): 9	5.5		FILTER PACK D	AMETER (IN.):	NONE	FILTER PACK L	ENGTH (FT.): NO	)NE	
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	NLS.): 95.5		WATER LOSS	OURING INSTALL	(GALS.): 0	
REQUIRED PUR	GE VOLUME (3)		LOSS) (GALS.): 2	86.5	FIELD PERSONNEL: K Gerdes						
	1		1	1	Specific	I	1		1		
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/5/16 15:05	16.50	0.3	30	17.84	0.833	7.22	-110.5	0.87	5.0	0.0	
15:10	16.50	0.3	31.5	17.87	0.834	7.21	-109.9	0.85	4.1	No Reading	
15:15	16.50	0.3	33	17.77	0.834	7.19	-109.0	0.84	2.9	0.0	
15:20	16.50	0.3	34.5	17.82	0.835	7.15	-106.3	0.83	0.5	No Reading	
15:25	16.50	0.3	36	17.84	0.835	7.15	-106.1	0.83	0.2	0.0	
15:30	16.50	0.3	37.5	17.73	0.836	7.14	-105.7	0.83	0.9	No Reading	
15:30	Stop Pump										
7/6/16 8:10	8.30	0.3	39	16.83	0.821	6.91	157.5	6.24	19.7	0.0	
8:15	8.90	0.3	40.5	16.95	0.830	6.73	-10.8	4.29	225.3	No Reading	
. 8:20	9.45	0.3	42	16.70	0.832	6.93	-73.9	3.79	177.3	0.0	
8:25	9.95	· 0.3	43.5	16.63	0.832	7.02	-90.2	3.54	98.1	No Reading	
8:30	10.45	0.3	45	16.51	0.835	7.08	-91.8	3.60	140.5	0.0	
8:35	11.00	0.3	46.5	16.70	0.837	7.13	-98.0	3.34	110.1	No Reading	
8:40	11.50	Ó.3	48	16.73	0.836	7.16	-99.0	3.48	109.7	0.0	
	Stop Surging										
8:45	12.10	0.3	49.5	16.53	0.830	7.16	-106.9	1.71	66.4	No Reading	
8:50	12.55	0.3	51	16.64	0.829	7.20	-119.7	1.16	39.0	0.Ò	
8:5\$	12.95	0.3	52.5	16.57	0.828	7.23	-120.6	1.05	19.4	No Reading	
9:00	13.35	0.3	54	16.70	0.829	7.23	-117.7	1.00	12.4	0.0	
<del>9</del> :05	13.75	0.3	55.5	16.60	0.830	7.23	-114.5	0.96	11.7	No Reading	
9:10	14.15	0.3	57	16.54	0.830	7.22	-112.3	0.94	6.9	0.0	
9:15	14.45	0.3	58.8	16.64	0.829	7.21	-111.0	0.93	6.1	No Reading	
9:20	14.80	0.3	60	16.59	0.830	7.22	-109.5	0.92	6.0	0.0	
9:25	15.10	0.3	61.5	16.75	0.829	7.22	-108.0	0.90	7.0	No Reading	

TOTAL WATER PURGED (GALS): 289.5 WA

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 3____ of _____

DATE: 7-5-16, 7	7-6-16	WELL ID: B38V	V18DR	STATIC WATER	LEVEL (FT. TIC):	8.00	WELL DEPTH (	FT. TIC); 73.00			
WATER COLUN	IN (FT.): 65.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING I	DIAMETER (IN):	6			
WELL CASING/I	BOREHOLE VOLU	JME (GAL5.): 95	.5		FILTER PACK D	AMETER (IN.): I	NONE	FILTER PACK LENGTH (FT.): NONE			
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 95.5		WATER LOSS D	URING INSTALL	(GAL5.): 0	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 2	86.5	FIELD PERSON	NEL: K Gerdes					
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/6/16 9:30	15.40	0.3	63	16.68	0.827	7.20	-106.1	0.89	1.3	0.0	
9:35	15.70	0.3	64.5	16.73	0.826	7.19	-104.6	0.88	1.5	No Reading	
9:40	16.00	0.3	66	16.74	0.826	7.19	-104.3	0.88	0.1	0.0	
9:45	16.10	0.3	67.5	17.01	0.823	7.18	-104.2	0.87	0.0	No Reading	
9:50	16.20	0.3	69	16.95	0.823	7.17	-104.2	0.87	0.2	0.0	
9:55	16.30	0.3	70.5	17.03	0.822	7.17	-104.2	0.86	0.1	No Reading	
10:00	16.40	0.3	72	17.16	/ 0.820	7.17	-104.4	0.86	0.0	0.0	
10:05	16.50	0.3	73.5	16.88	0.819	7.16	-104.2	0.85	0.2	No Reading	
10:10	16.60	0.3	75	16.93	0.817	7.1 <del>6</del>	-103.7	0.84	0.0	0.0	
10:15	16.75	0.3	76.5	16.98	0.816	7.17	-103.1	0.84	0.1	No Reading	
10:20	16.90	0.3	78	17.04	0.816	7.16	-102.5	0.84	0.0	0.0	
10:25	17.00	0.3	79.5	17.11	0.816	7.15	-101.7	0.83	0.0	No Reading	
10:30	17.10	0.3	81	17.26	0.814	7.14	-100.8	0.83	0.0	0.0	
10:35	17.15	0.3	82.5	17.25	0.815	7.13	-100.4	0.82	0.0	No Reading	
10:40	17.15	0.3	84	17.18	0.814	7.12	-99.8	0.82	0.0	0.0	
10:45	17.15	0.3	85.5	17.34	0.813	7.11	-99.3	0.82	0.0	No Reading	
10:50	17.20	0.3	87	17.24	0.813	7.10	-98.8	0.82	0,0	0.0	
10:55	17.20	0.3	88.5	17.13	0.812	7.09	-98.1	0.82	0.0	No Reading	
11:00	17.20	0.3	90	16.67	0.811	Ź.07	-96.7	0.82	0.2	0.0	
11:05	17.20	0.3	91.5	16.98	0.810	7.06	-95.4	0.81	0.0	No Reading	
11:10	17.20	0.3	93	17.13	0.810	7.06	-94.2	0.81	0.0	0.0	
11:15	17.20	0.3	94.5	16.84	0.810	7.04	-92.3	0.82	0.2	No Reading	
11:20	17.20	0.3	96	16.75	0.809	7.05	-90.1	0.81	0.0	0.0	
11:25	17.20	0.3	97.5	16.86	0.808	7.04	-88.6	0.81	0.0	No Reading	

TOTAL WATER PURGED (GALS): 289.5 WAT

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE ______ of _____

~

DATE: 7-5-16, 7	-6-16	WELL ID: B38V	V18DR	STATIC WATER	LEVEL (FT. TIC):	8.00	WELL DEPTH (	FT. TIC): 73.00			
WATER COLUM	N (FT.): 65.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	6			
WELL CASING/E	OREHOLE VOL	JME (GAL5.): 95	.5		FILTER PACK DI	IAMETER (IN.): 1	NONE	FILTER PACK LE	NGTH (FT.): NO	NE	
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 95.S		WATER LOSS DURING INSTALL (GALS.): 0			
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 2	86.5	FIELD PERSON	NEL: K Gerdes					
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/6/16 11:30	17.20	0.3	99	16.98	0.806	7.05	-88.1	0.81	0.0	0.0	
11:35	17.20	0.3	100.5	16.65	0.805	7.03	-87.9	0.81	0.3	No Reading	
11:40	17.20	0.3	102	16.67	0.804	7.04	-88.4	0.80	0.6	0.0	
11:45	17.20	0.3	103.5	16.77	0.803	7.04	-90.0	0.80	0.2	No Reading	
11:50	17.20	0.3	105	16.91	0.801	7.05	-92.2	0.80	0.1	0.0	
11:55	17.20	0.3	106.5	16.75	0.799	7.06	-94.5	0.80	0.9	No Reading	
12:00	17.20	0.3	108	17.03	0.798	7.07	-96.9	0.80	0.0	0.0	
12:05	17.20	0.3	109.5	17.10	0.796	7.08	-99.9	0.79	0.0	No Reading	
12:10	17.20	0.3	111	17.30	0.795	7.10	-102.2	0.79	0.0	0.0	
12:15	17.20	0.3	112.5	17.37	0.795	7.09	-104.0	0.79	0.0	No Reading	
12:20	17.20	0.3	114	17.09	0.794	7.10	-105.0	0.79	0.0	0.0	
12:25	17.20	0.3	115.5	17.16	0.794	7.10	-104.9	0.79	0.0	No Reading	
12:30	17.20	0.3	117	17.22	0.794	7.10	-104.7	0.79	0.0	0.0	
12:35	17.20	0.3	118.5	17.14	0.793	7.09	-104.1	0.79	0.0	No Reading	
12:40	17.20	0.3	120	17.41	0.794	7.09	-103.7	0.78	0.0	0.0	
12:45	17.20	0.3	·121.5	17.11	0.794	7.07	-101.3	0.79	0.0	No Reading	
12:50	17.20	0.3	123	16.71	0.793	7.04	- <del>9</del> 7.8	0.79	0.0	0.0	
12:55	17.20	0.3	124.5	16.65	0.793	7.04	-96.7	0.79	0.0	No Reading	
12:55	Stop Pump										

TOTAL WATER PURGED (GALS): 289.5

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE ______ of _____

DATE: 6-21-16	N245	STATIC WATER	LEVEL (FT. TIC):	10.89	WELL DEPTH (FT. TIC): 17.00	
WATER COLUMN (FT.): 6.11		SLUDGE THICK	(NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN): 2
WELL CASING/BOREHOLE VO	0		FILTER PACK DI	AMETER (IN.): 8	FILTER PACK LENGTH (FT.): 8.11	
FILTER PACK WATER VOLUM	(GALS.): 5.58	CASING AND F	ILTER PACK PUR	GE VOLUME (GA	LS.): 6.58	TOTAL PURGE VOLUME (X 3): 19.8
FIELD PERSONNEL: K Gerdes			i.			

					Specific					
<b>T</b> I	Water Level	Discharge	Volume	<b>T</b> (C)	Conductivity	-11		55	Turbidity	OVA/PID
Time	(Ft. IIC)	(GPIVI)	Purgeo (gai)	1emp. (C)	(ms/cm)	p <del>n</del>	URP			(PPIVI)
14:20	11.70	0.25	0	23.77	0.018	7.22	-5.0	2.83	249.7	No Reading
14:25	11.90	0.25	1.25	22.43	1.896	6.94	3.4	3.59	1273.6	No Reading
14:30	11.80	0.25	2.5	22,29	1.944	6.73	13.5	3.29	1273.1	No Reading
14:35	11.80	0.25	3.75	22.16	2.225	6.62	16.3	3.25	1270.0	No Reading
14:40	12.00	0.25	5	21.88	3.858	6.54	17.7	3.00	624.5	No Reading
14:45	11.95	0.25	6.25	21.62	2.002	6.46	15.1	3.51	493.2	No Reading
14:50	12.00	0.25	7.5	21.90	0.220	6.40	16.8	2.94	107.4	No Reading
14:55	11.80	0.25	8.75	22.12	3.830	6.31	21.1	2,20	37.0	No Reading
	Stop Surging									
15:00	11.9\$	0.25	10	21.56	3.782	6.23	21.0	0.80	27.6	No Reading
15:05	11.95	0.25	11.25	21.59	3.794	6.21	20.2	0.72	10.7	No Reading
15:10	11.90	0.25	12.5	21.63	3.785	6.21	19.9	0.69	3.8	No Reading
15:15	11.90	0.25	13.75	21.78	3.771	6.21	19.7	0.68	2.5	No Reading
15:20	11.90	0.25	15	21.67	3.754	6.21	19.5	0.67	2.6	No Reading
15:25	11.90	0.25	16.25	21.73	3.751	6.21	19.5	0.67	1.7	No Reading
15:30	11.85	0.25	17.5	21.82	3.742	6.21	19.7	0.66	1.0	No Reading
15:35	11.85	0.25	18.75	21.80	3.735	6.20	20.1	0.66	0.4	No Reading
15:40	11.85	0.25	20	21.95	3.725	6.19	20.3	0.66	0.7	No Reading
15:40	Stop Pump									
							·····			

TOTAL WATER PURGED (GALS): 20

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE ______ of _____

DATE: 3-15-16	WELL ID: 838V	V24D	STATIC WATER	LEVEL (FT. TIC):	9.55	WELL DEPTH (I	T. TIC): 28.83
WATER COLUMN (FT.): 19.28 SLUDGE THICKNESS (FT.				WELL CASING DIAMETER (IN): 2			2
WELL CASING/BOREHOLE VOLUME (GALS.): 3.15				FILTER PACK DI	AMETER (IN.): (	5	FILTER PACK LENGTH (FT.): 12.3
FILTER PACK WATER VOLUME (GALS.): 4.3 CASING AND FILTER PACK PUR			ILTER PACK PUR	GE VOLUME (GA	LS.): 7.45		TOTAL PURGE VOLUME (X 3): 22.35
FIELD PERSONNEL: J Cook		·	· · · · · ·				•

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
13:05	Start									
13:15	10.28	0.5		16.14	1.660	6.34	-60.3	1.61	23.9	
13:25	10.19	0.5		16.33	1.686	6.20	-85,4	1.07	38.6	
13:35	10.19	0.5		16.36	1.719	6.22	-93.4	0.73	45.8	
	Stop Surging							*		
13:45	10.18	0.5	20	16.37	1.706	6.20	-101.1	1.08	8.9	
13:55	10.22	0.5		16.34	1.727	6.21	-104.7	1.07	10.2	
14:05	10.20	0.5	30	16.36	1.720	6.21	-108.6	1.22	13.4	
14:05	Stop Pump									
14:12	9.62	· · · · · ·						1		
				••••						
						· · ·			1	
								-		
		1				· · ·				
				·····						
							-			
						·····				
	-									
	****									

TOTAL WATER PURGED (GALS): 30

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 1 of 2

DATE: 7-7-16		WELL ID: B38V	V25SR	STATIC WATER	LEVEL (FT. TIC):	5.92	WELL DEPTH (	FT. TIC): 14.14		**	
WATER COLUN	AN (FT.): 8.22		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2		u.	
WELL CASING/	BOREHOLE VOL	UME (GALS.): 1.	3		FILTER PACK D	AMETER (IN.):	8	FILTER PACK LENGTH (FT.): 9			
FILTER PACK W	ATER VOLUME	(GALS.): 5.5	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.8		WATER LOSS D	URING INSTALL	(GAL5.): 20	
REQUIRED PUR	RGE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 8	0.4	FIELD PERSONNEL: K Gerdes						
					Enocific	I	1		1		
Í _	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pH	ORP	DO	(NTU)	(PPM)	
6/8/16	ļ		90			4		1			
	Initial driller de	evelopment by s	urging/overpum	ping.			•				
	No vîsible sedî	nent at complet	ion of developm	ent.					   .		
7/7/16 8:10	5.92	0.3	0	17.92	3.434	5.84	10.9	4.40	303.2	0.0	
8:15	7.00	0.3	1.5	18.47	3.365	6.16	-68.1	3.27	886.9	No Reading	
8:20	7.15	0.3	3	18.23	3.411	6.22	-74.4	3.60	461.9	0.0	
8:25	7.30	0.3	4.5	18.39	3.420	6.29	-79.4	3.83	798.2	No Reading	
8:30	7.35	0.3	6	19.05	3.366	6.35	-73.7	4.51	1238.2	0.0	
8:35	7.40	0.3	7.5	18.69	3.372	6.34	-77.7	3.86	1234.6	No Reading	
8:40	7.30	0.3	9	18.25	3.339	6.34	-79.1	3.37	1230.2	0.0	
8:45	7.35	0.3	10.5	18.15	3.449	6.35	-75.0	3.94	1229.5	No Reading	
8:50	7.45	0.3	12	18.18	3.367	6.34	-77.1	3.67	1229.7	0.0	
8:55	7.40	0.3	13.5	18.01	3.423	6.34	-74.4	3.71	1145.1	No Reading	
9:00	7.30	0.3	15	18.10	3.401	6.32	-74.3	3.65	1229.5	0.0	
9:05	7.40	0.3	16.5	17.92	3.436	6.32	-75.2	3.58	1216.5	No Reading	
<del>9</del> :10	7.40	0.3	18	17.96	3.476	6.31	-74.0	3.45	1176.9	0.0	
9:15	7.45	0.3	19.5	17.7 <del>9</del>	3.382	6.33	-74.6	3.75	\$71.5	No Reading	
9:20	7.30	0.3	21	18.28	3.466	6.29	-72.1	3.74	843.1	0.0	
9:25	7.35	0.3	22.5	17.87	3.383	6.32	-83.8	3.73	960.9	No Reading	
9:30	7.40	0.3	<b>2</b> 4	18.12	3.339	6.32	-73.3	3.60	695.1	0.0	
9:35	7.40	0.3	25.5	17.97	3.345	6.30	-75.5	3.36	384.1	No Reading	
	Stop Surging										
9:40	7.35	0.3	27	18.15	3.339	6.28	-65.9	2.24	141.4	0.0	
9:45	7.30	0.3	28.5	17.84	3.325	6.24	-76.8	1.20	74.1	No Reading	
									· · · · · · · · · · · · · · · · · · ·		

TOTAL WATER PURGED (GALS): 129 WAT

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI55 On-Site Treatment Plant

PAGE 2_____ of _____2

DATE: 7-7-16		WELL ID: B38V	V255R	STATIC WATER	LEVEL (FT. TIC):	5.92	WELL DEPTH (FT. TIC): 14.14			
WATER COLUM	N (FT.): 8.22		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2	·····	
WELL CASING/		JME (GALS.): 1.	3		FILTER PACK D	AMETER (IN.): 8	8	FILTER PACK LE	ENGTH (FT.): 9	
FILTER PACK W	ATER VOLUME (	GALS.): 5.5	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	ME (GALS.): 6.8 . WATER LOSS DURING INSTALL (GALS.				(GALS.): 20
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOS5) (GALS.): 8	0.4	FIELD PERSON	NEL: K Gerdes			***	
	1	· · · · · · · · · · · · · · · · · · ·								[
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/7/16 9:50	7.30	0.3	30	17.87	3.302	6.23	-81.8	1.01	41.7	0.0
9:55	7.30	0.3	31.5	17.90	3.290	6.23	-84.1	0.95	27.9	No Reading
10:00	7.30	0.3	33	17.78	3.281	6,22	-85.5	0.92	21.5	0.0
10:05	7.30	0.3	34.5	18.52	3.344	6.21	-86.8	0.88	18.0	No Reading
10:10	7.30	0.3	36	18.25	3.290	<del>6</del> .22	-88.0	0.87	14.6	0.0
10:1S	7.30	0.3	37.5	18.40	3.292	6.21	-88.9	0.86	12.9	No Reading
10:20	7.30	0.3	39	18.34	3.283	6.21	-89.5	0.85	9.8	0.0
10:20	Stop Pump									
		·····								
						~ <del></del>		ļ		
					1					
							·····			
								1		
·										
				·····						

TOTAL WATER PURGED (GALS): 129

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>3</u>

DATE: 7-7-16,	7-11-16	WELL ID: B38V	V25DR	STATIC WATER	LEVEL (FT. TIC):	9.64	WELL DEPTH (	I (FT. TIC): 60.00			
WATER COLUN	IN (FT.): 50.36	•	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	6			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 74			FILTER PACK DI	AMETER (IN.): I	NONE	FILTER PACK LE	NGTH (FT.): NC	NE	
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	.LS.): 74		WATER LOSS D	URING INSTALL	(GALS.): 0	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 2	22	FIELD PERSON	IEL: K Gerdes		**			
	<u>r</u>	1	I	r	Encoifie		1	<u>,                                     </u>	1	,	
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рн	ORP	DO	(NTU)	(PPM)	
6/16/16			165								
	Initial driller de	velopment by s	urging/overpum	ping.		<u> </u>					
	No visible sedir	nent at complet	ion of developm	ent.							
7/7/16 11:45	9.64	0.25	0	17.15	5.135	6.91	7.4	5.42	1221.3	0.0	
11:50	10.90	0.25	1.25	16.11	5.085	6.31	-26.4	3.41	1212.6	No Reading	
11:55	11.90	0.25	2.5	16.44	5.017	6.24	-25.3	3.70	1204.3	0.0	
12:00	12.50	0.25	3.75	16.11	5.085	6.19	-28.1	3.36	1212.0	No Reading	
12:05	12.90	0.25	5	<b>16.58</b>	4.988	6.18	-29.5	3.25	1215.2	0.0	
12:10	13.30	0.25	6.25	16.49	4.995	6.20	-30.7	3.22	1214.9	No Reading	
12:15	13.70	0.25	7.5	16.16	5.075	6.19	-31.7	3.26	1212.4	0.0	
12:20	14.00	0.25	8.75	16.47	4.997	6.23	-32.1	3.61	1212.3	No Reading	
12:25	14.25	0.25	10	16.39	5.060	6.20	-32.1	3.41	1214.7	0.0	
12:30	14.25	0.25	<b>11.2</b> 5	17.38	4.990	6.25	-32.5	3.56	1219.7	No Reading	
12:35	14.35	0.25	12.5	16.91	5.022	6.25	-32.4	3.71	1219.6	0.0	
12:40	14.40	0.25	13.75	17.24	4.997	6.26	-30.2	3.30	1224.1	No Reading	
12:45	14.40	0.25	15	17.32	5.040	6.28	-29.3	4.09	1224.6	0.0	
12:50	14.40	0.25	16.25	17.86	4.966	6.27	-29.7	3.61	1229.5	No Reading	
12:55	14.40	0.25	17.5	17.37	4.999	6.31	-29.9	4.21	1221.7	0.0	
13:00	14.40	0.25	18.75	16.91	4.990	6.23	-29.0	3.85	1217.6	No Reading	
13:05	14.40	0.25	20	17.08	4.955	6.22	-27.7	3.91	1220.3	0.0	
13:10	14.50	0.25	21.25	16.76	4.933	6.20	-27.2	4.15	1215.7	No Reading	
13:15	14.50	0.25	22.5	17.52	4.936	6.26	-27.2	4.30	1224.0	0.0	
13:20	14.55	0.25	23.75	16.95	4.967	6.25	-24.9	4,21	1221.0	No Reading	
13:25	14.50	0.25	25	17.34	4.891	6.18	-22.8	3.86	1223.0	0.0	

TOTAL WATER PURGED (GALS): 231.2S

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2___ of ___ 3___

DATE: 7-7-16, 7-11-16	E: 7-7-16, 7-11-16 WELL ID: B38W25DR ST		STATIC WATER LEVEL (FT. TIC): 9.64			WELL DEPTH (FT. TIC): 60.00		
WATER COLUMN (FT.): 50.36 SLUDGE THICKNESS (FT.): C			NESS (FT.): 0.0	WELL CASING DIAMETER (IN): 6			6	
WELL CASING/BOREHOLE VOLUME (GALS.): 74				FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.)			FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PURG	GE VOLUME (GA	L5.): 74		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 222				FIELD PERSONN	EL: K Gerdes			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/7/16 13:30	14.60	0.25	26.25	16.77	4.908	6.16	-22.6	3.50	1220.6	No Reading
13:35	14.65	Q.25	27.5	17.25	4.907	6.20	-23.2	3.68	1227.2	0.0
13:40	14.70	0.25	28.75	17.91	4.881	6.22	-23.9	4.14	1222.7	No Reading
13:45	14.75	0.25	30	17.68	4.902	6.20	-24.7	4.41	1225.8	0.0
13:50	14.75	0.25	31.25	17.29	4.874	6.17	-25.3	4.04	1223.4	No Reading
13:55	14.80	0.25	32.5	16.88	4.881	6.14	-23.9	4.18	1216.5	0.0
14:00	14.90	0.25	33.75	16.79	4.870	6.13	-22.6	4.34	1215.7	No Reading
14:05	14.95	0.25	35	17.05	4.859	6.08	-23.1	3.72	1219.9	0.0
14:10	15.00	0.25	36.25	16.59	4.886	6.13	-20.9	4.21	1213.4	No Reading
14:15	15.00	0.25	37.5	17.04	4.900	6.12	-20.4	3.99	1172.9	0.0
14:20	15.00	0.25	38.75	17.17	4.892	6.20	-24.0	4.43	603.4	No Reading
14:25	15.00	0.25	40	17.16	4.821	6.13	-21.2	3.62	1007.6	0.0
14:30	15.00 -	0.25	41.25	16.95	4.869	6.22	-17.9	4.38	593.5	No Reading
14:35	15.10	0.25	42.5	16.92	4.848	6.16	-20.1	4.02	689.6	0.0
14:40	15.20	0.25	43.75	17.01	4.842	6.17	-19.8	3.79	171.8	No Reading
14:45	15.20	0.25	45	17.16	4.846	6.19	-22.9	3.30	950.5	0.0
14:50	15.20	0.25	46.25	16.76	4.851	6.15	-20.4	4.10	564.4	No Reading
14:55	15.20	0.25	47.5	16.79	4.842	6.18	-18.7	4.32	246.8	0.0
	Stop Surging									
15:00	15.20	0.25	48.75	16.28	4.780	5.99	-16.0	1.61	204.0	No Reading
15:05	15.20	0.25	50	16.36	4.769	5.98	-17.7	1.13	136.6	0.0
15:10	15.20	0.25	51.25	16.11	4.758	6.02	-20.3	0.97	106.2	No Reading
15:15	15.20	0.25	52.5	16.10	4.749	6.07	-22.1	0.92	84.4	0.0
15:20	15.20	0.25	53.75	16.47	4.741	6.13	-24.4	0.87	58.1	No Reading

TOTAL WATER PURGED (GALS): 231.25 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 3 of 3

DATE: 7-7-16, 7-11-16	WELL ID: B38V	V25DR	STATIC WATER	R LEVEL (FT. TIC): 9.64 WELL DEPT			(FT. TIC): 60.00		
WATER COLUMN (FT.): 50.36	- <u></u>	SLUDGE THICKNESS (FT.): 0.0 WELL CASING DIAMETER (IN): 6							
WELL CASING/BOREHOLE VOLUME (GALS.): 74				FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME	GALS.): NONE	CASING AND F	ILTER PACK PUR	GE VOLUME (GA	LS.): 74		WATER LOSS DURING INSTALL (GALS.): 0		
EQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 222			222	FIELD PERSONNEL: K Gerdes					

	Water Lovel	Discharge	Volume		Specific				Turbidity	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)
7/7/16 13:30	15.20	0.25	55	16.49	4.734	6.13	-25.2	0.85	46.4	No Reading
13:30	Stop Pump									
7/11/16 12:00	9.65	0.25	56.25	16.97	4.783	6.31	186.4	6.63	60.3	0.0
12:05	10.35	0.25	57.5	16.24	5.108	6.35	-29.2	5.14	46.1	No Reading
12:10	10.70	0.25	58.75	16.78	5.053	6.36	-44.7	2.06	59.4	0.0
12:15	10.90	0.25	60	17.30	5.080	6.35	-55.3	1.28	21.7	No Reading
12:20	11.00	0.25	61.25	16.69	5.069	6.34	-59.3	1.13	16.1	0.0
12:25	11.15	0.25	62.5	16.43	5.069	6.34	-62.5	1.07	17.0	No Reading
12:30	11.25	0.25	63.75	16.48	5.066	6.34	-64.5	1.03	10.5	0.0
12:35	11.30	0.25	65	16.59	5.068	6.34	-66.5	0.99	12.0	No Reading
12:40	11.35	0.25	66.25	16.05	5.069	6.34	-68.6	0.95	7.6	0.0
12:40	Stop Pump		:							
									· · · ·	

TOTAL WATER PURGED (GALS): 231.25

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 1 of 1

DATE: 3-22-16	'E: 3-22-16 WELL ID: BRPZ-2		STATIC WATER LEVEL (FT. TIC): 9.05			WELL DEPTH (F	WELL DEPTH (FT. TIC): 62.28		
WATER COLUMN (FT.): 53.23		SLUDGE THICKNESS (FT.): 0.0		WELL CASING DIAMETER (IN): 2		IAMETER (IN):	2		
WELL CASING/BOREHOLE VOLUME (GALS.): 8.7				FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (FT.): 2			FILTER PACK LENGTH (FT.): 25.0		
FILTER PACK WATER VOLUME (GALS.): 7.9 CASING AND FILTER PACK P				GE VOLUME (GA	LS.): 16.6		TOTAL PURGE VOLUME (X 3): 49.8		
FIELD PERSONNEL: J Cook		•					J		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	Ha	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
13:08	Start									
13:20	11.40	0.9		14.04	7.925	6.63	-52.6	4.86	339.8	0.2
13:30	11.75	0.9		14 15	7 873	6.44	-72.2	3.97	125.0	0.1
13:40	11.95	0.0		14.02	7 713	6 70	00 1	4 67	65.0	
13.50	11.05	0.9		14.03	7.712	6.70	-00.1	4.33	63.0	·
13:50	11.95	0.9		14.23	7.622	6.45	-/1./	3.45	57.9	
	Stop Surging						<u> </u>		<del>.</del>	
13:52			40							
14:00	11.80	0.9		14.40	7.224	6.28	-83.3	0.11	32.8	
14:10	11.75	0.9	55	14.39	7.040	6.28	-90.6	0.12	27.0	
14:10	Reduce Flow									
14:20	10.75	0.5		14.40	6.888	6.27	-75.0	0.08	20.9	
14:30	10.65	0.5		14.40	6.753	6.27	-62.3	0.10	13.3	
14:40	10.60	0.5		14.36	6.743	6.27	-85.0	0.12	7.9	
14:50	10.55	0.5	75	14.48	6.719	6.26	-89.0	0.11	6.8	0.1
14:50	Stop Pump									
	·									•
	·									
								1		
					· · · · · · · · · · · · · · · · · · ·					•
		· · ·								

TOTAL WATER PURGED (GALS): 75 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 3-22-16	E: 3-22-16 WELL ID: BRPZ-3 STATIC		ATIC WATER LEVEL (FT. TIC): 10.27			-T. TIC): 57.40
WATER COLUMN (FT.): 47.13 SLUDGE THICKNESS (F			0.4	WELL CASING DIAMETER (IN): 2		
WELL CASING/BOREHOLE VOL	FILTER PACK D	FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (F				
FILTER PACK WATER VOLUME (GALS.): 7.87 CASING AND FILTER PACK PUR			URGE VOLUME (GA	LS.): 15.57		TOTAL PURGE VOLUME (X 3): 46.71
FIELD PERSONNEL: J Cook						•

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:10	Start									
8:20	13.70	0.67		12.85	5.258	5.99	-5.1	6.97	1479.4	0.0
8:30	14.40	0.67	1	13 37	5 807	6.61	-35.4	5.48	1481 7	
8:40	14 50	0.67		17 54	6 310	E 40	52.6	6.61	E04.7	
0.40	14.00	0.07		43.34	0.310	<u> </u>	-52.0	0.51	504.7	
8:50	14.90	0.67		13.43	6./56	6.48	-60.3	4.9/	351.8	0.0
9:00	14.70	0.67		13.69	5.620	6.48	-68.2	4.02	37.1	
	Stop Surging									
9:10	14.40	0.625	40	14.28	5.602	5.96	-3.8	0.48	41.3	
9:20	14.40	0.625		14.28	5.678	6.30	-57.7	0.93	31.3	
9:30	14.40	0.625		14.29	5.743	6.31	-71.0	0.80	33.9	
9:40	14.40	0.625		14.32	5.749	6.31	-75.8	0.80	41.5	
9:50	14.40	0.625	65	14.26	5.578	6.32	-75.3	0.68	39.3	
9:55	Stop Pump									
								·		
······										

TOTAL WATER PURGED (GALS): 65

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-23-16	WELL ID: BRPZ-4 STATIC WAT			9.55	WELL DEPTH (F	I (FT. TIC): 62.75		
WATER COLUMN (FT.): 53.20	SLUDGE THICKNESS (FT.): ~1.5	5 WELL CASING DIAMETER (IN): 6						
WELL CASING/BOREHOLE VOL	JME (GALS.): 78	.2	FILTER PACK DI	AMETER (IN.): N	NONE	FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME	CASING AND FILTER PACK PUR	GE VOLUME (GA	LS.): 78.2		TOTAL PURGE VOLUME (X 3): 235			
FIELD PERSONNEL: J Cook		1				I		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	ρH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:43	Start									
8:55		18		14 40	9.672	6.97	-114.9	5 41	> 1200	
0.05	13.60	1.0		15 15	9.445	6.61	P1 0	2 03	> 1200	
0.45	13.00	1.0		13.13	0.074	0.01	-81.9	3.03	> 1200	
9:15		1.8		14.09	9.0/1	6.55	-68.4	3.83	232.4	
	Ground Fault Er	ror on Pump / S	Switch Out Pump	•						
9:45	15.85	1.8		14.15	9.036	6.97	-166.3	5.37	469.8	0.0
9:55		1.8	110	14.38	8.896	6.66	-80.0	5.09	98.1	
	Stop Surging									
10:05		2.4		14.39	8.917	6.38	-59.4	3.17	48.7	
10:15	17.55	2.4		14.38	8.819	6.38	-60.3	3.39	14.9	
10:18	Reduce Flow		165							
10:25	14.85	0.9		14.28	8.762	6.50	-66.0	1.81	13.5	
10:35		0.9		14.29	8.821	6.07	-25.8	1.12	9.2	0.0
10:45		0.9		14.29	9.046	6.21	-65.9	0.33	9.4	
10:55		0.9		14.31	8.561	6.23	-79.7	0.09	9.7	
11:05		0.9		14.31	8.484	6.24	-85.0	0.15	11.4	
11:15		0.9		14.36	7.735	6.26	-89.6	0.09	27.4	
11:20			220							
11:25		0.9		14.37	7.908	6.25	-86.4	0.05	15.7	
11:35		0.9		14.43	7.863	6.34	-96.9	0.08	14.1	
11:40		0.9	240	14.44	7.866	6.24	-94.7	0.04	13.9	
11:40.	Stop Pump									

TOTAL WATER PURGED (GALS): 240

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

.

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 3-23-16, 3-24-16	WELL ID: BRPZ	-5	STATIC WATER	LEVEL (FT. TIC): 8.82 WELL DEPTH (F			T. TIC): 62.30
WATER COLUMN (FT.): 53.48	NESS (FT.): ~1.0	WELL CASING DIAMETER (IN): 2			2		
WELL CASING/BOREHOLE VOLU		FILTER PACK DI	AMETER (IN.): 6	;	FILTER PACK LENGTH (FT.): 25.0		
FILTER PACK WATER VOLUME (GALS.): 7.9 CASING AND FILTER PACK PUR				GE VOLUME (GA	LS.): 16.6		TOTAL PURGE VOLUME (X 3): 49.6
FIELD PERSONNEL: J Cook							• • • • • •

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	ova/pid (ppm)
3/23/16 8:07	Start									
8:20	25.60			12.98	16.04	5.87	-27.9	4.92	693.5	
8:30	27.70			13.43	16.04	6.51	-51.3	5.88	1511.5	0.2
8:40	30.50			13.73	15.72	6.21	-56.3	3.24	1516.1	
8:50	32.90			14.32	15.64	6.38	-68.2	4.31	1337.9	
9:00	33.10			14.39	15.36	6.84	-74.5	6.52	830.5	
9:10	34.20			14.72	14.65	6.41	-77.4	5.27	187.7	
9:20	35.60			15.14	15.35	6.56	-78.2	5.52	134.4	
9:30	No Reading			No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	
9:40	36.20			15.59	15.75	6.29	-56.2	3.68	101.2	
9:45	37.40			No Readings - Y	SI Unavailable					0.0
10:00	38.20			No Readings - Y	Si Unavailable					
10:15	39.40			No Readings - Y	SI Unavailable					
10:30	40.40			No Readings - Y	SI Unavailable					
10:45	40.60			No Readings - Y	Si Unavailable					
10:50			20							
11:00	40.60	325 ml/min		No Readings - Y	SI Unavailable					
11:15	41.50			No Readings - Y	SI Unavailable					
11:30	41.70			No Readings - Y	SI Unavaîlable					
11:45	41.60	375 ml/min		No Readings - Y	SI Unavailable					
12:00	41.25			17.29	15.88	6.08	-72.8	0.33	17.9	
13:00	40.60	320 ml/min		17.56	15.43	6.15	-91.6	0.04	19.2	
13:30	40.40	300 ml/min		18.11	15.44	6.35	-98.6	0.11	13.7	0.0
13:36 to 13:42	Stop Pump	Re-fuel Generator								

1

TOTAL WATER PURGED (GALS): 57 WATE

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-5ite Treatment Plant

PAGE <u>2</u> of <u>2</u>

DATE: 3-23-16, 3-24-16	3-23-16, 3-24-16 WELL ID: BRPZ-5 STATIC WATE			LEVEL (FT. TIC):	8.82	WELL DEPTH (F	т, TIC): 62.30
WATER COLUMN (FT.): 53.48	NESS (FT.): ~1.0	WELL CASING DIAMETER (IN): 2			2		
WELL CASING/BOREHOLE VOLL		FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (FT.): 25.0			FILTER PACK LENGTH (FT.): 25.0		
FILTER PACK WATER VOLUME (GALS.): 7.9 CASING AND FILTER PACK PUR				GE VOLUME (GA	LS.): 16.6		TOTAL PURGE VOLUME (X 3): 49.6
FIELD PERSONNEL: J Cook	<u></u>						

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
3/23/16 14:00	41.00			18.15	14.48	6.20	-79.4	0.25	5.0	
14:05	Stop Pump	Pump Not Holding Flow	40							
14:25	32.00	Re-start								
14:30	36.25			16.86	15.66	6.02	-55.5	0.07	100.2	
14:40	39.90			17.27	15.63	6.01	-72.3	0.06	28.2	
14:50	40.70			17.18	14.68	6.03	-78.8	0.10	28.4	
15:00	41.30	320 ml/min		17.46	14.51	6.04	-84.8	0.11	34.1	
15:10	41.60		45	18.51	14.38	6.05	-83.5	0.0B	27.9	
15:10	Stop Pump									
3/24/16 7:45	Re-start									
7:55	36.40			13.45	14.53	6.13	-58.4	0.34	10.4	
8:05	38.00			13.26	14.82	6.06	-63.0	0.11	7.0	
8:15	39.00			13.36	15.17	6.05	-67.9	0.14	6.1	
8:25	41.10			14.18	15.11	6.04	-74.5	0.14	5.5	
8:35	41.60		57	13.74	14.94	6.04	-73.6	0.18	6.2	
8:35	Stop Pump									
									1	
							······			
									· · · ·	
1	° •				······			······································		
						····· •				

TOTAL WATER PURGED (GAL5): 57

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE_____ of ____

DATE: 3-21-16	WELL ID: BRPZ-9 STATIC WATER			LEVEL (FT. TIC): 9.88 WELL DEPTH			fH (FT. TIC): 54.60	
WATER COLUMN (FT.): 44.72	r.): ~0.2	WELL CASING DIAMETER (IN): 6						
WELL CASING/BOREHOLE VOL	FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.): NO			FILTER PACK LENGTH (FT.): NONE				
FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK PUR				GE VOLUME (GA	LS.): 65.7		TOTAL PURGE VOLUME (X 3): 198	l
FIELD PERSONNEL: J Cook		• • • • • • • • • • • • • • • • • • •					·	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
10:54	Start									
11:10	17.30	1.0	-	13.97	10.81	6.45	-46.6	8.00	> 1200	
11.70	20.20	10		14.03	11.08	6.71	-55.7	3.68	> 1200	
11.20	20.30	1.0		13.70	11.00	6.40	48.0	A 57	097.7	
11:30	22.20	1.0		13.78	11.40	0.49	-40.0	4.37	567.5	
11:40	24.00	1.0		13.55	11.53	6.45	-42.6	4.67	909.4	
11:50	25.30	1.0	55	13.81	11.63	6.44	-36.7	4.41	755.9	
12:00	26.60	0.9		13.67	11.59	6.42	-42.4	4.13	1107.6	
12:10	27.70	0.9		13.05	11.69	6.63	-50.9	4.55	932.9	
12:20	27.80	0.9		13.58	11.50	6.64	-52.8	4.22	1116.2	
12:30	27.85	0.9		13.70	11.67	6.61	-39.3	4.74	511.7	
12:40	28.00	0.9		14.15	11.62	6.37	-45.9	4.51	394.4	
12;50	28.15	0.9	110	13.98	11.62	6.35	-49.0	3.08	287.3	
13:00	28.20	0.8		14.16	11.61	6.34	-51.5	3.94	276.0	
	Stop Surging		1							
13:10	28.10	0.8		13.59	11.64	6.34	-53.0	3.76	615.5	
13:20	28 10	0.8		13.85	11.55	6.30	-54.2	3.54	154.7	0.2
19:30	27.90	0.8		14 27	11 55	6.26	-65.9	0.41	174.0	
13:40	27.75	0.8		14.32	11.54	6.25	-73.8	0.47	42.1	0.0
13:50	27.70	0.75		14 31	11 54	6.25	-77.3	0.74	37.1	
14:00	27.70	0.75	165	14 34	11 54	6.26	-80.0	1.00	36.1	0.0
14.00	27.70	0.75	105	14.34	11.34	0.20	-50.0	1.00	30.2	
14:10	27.65	0.8		14.28	11.53	6.24	-82.5	1.07	34.3	
14:20	27.70	0.8		14.30	11.51	6.25	-85.1	1.47	28.0	
14:30	27.70	0.8		14.33	11.50	6.24	-87.0	1.66	23.3	
14:40	27.75	0.8		14.33	11.47	6.25	-88.4	1.70	20.2	

TOTAL WATER PURGED (GALS): 205 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>2</u> of <u>2</u>

DATE: 3-21-16	WELL ID: BRPZ	-9 S	TATIC WATER	LEVEL (FT. TIC):	9.88	T. TIC): 54.60	
WATER COLUMN (FT.): 44.72 SLUDGE THICKNESS (FT.): ~(				5 WELL CASING DIAMETER (IN): 6			6
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.): NONE			FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME (	TER PACK PURC	GE VOLUME (GA	LS.): 65.7	•	TOTAL PURGE VOLUME (X 3): 198		
FIELD PERSONNEL: J Cook							4

Time	Water Levei (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
14:50	27.75	0.8	205	14.33	11.46	6.24	-89.8	1.69	18.6	
14:50	Stop Pump									
	<u>.</u>									
					·	<u></u>				
		•								
				•			 			
									,	
· · · · · · · · · · · · · · · · · · ·										÷
		-								

TOTAL WATER PURGED (GALS): 205

,

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 6-21-16	WELL ID: PW-15 STATIC		STATIC WATER	TATIC WATER LEVEL (FT. TIC): 6.54		WELL DEPTH (FT. TIC): 20.88		
WATER COLUMN (FT.): 14.34 SLUDGE THICKNESS (FT.):				WELL CASING DIAMETER (IN): 4			4	
WELL CASING/BOREHOLE VOLU	JME (GALS.): 9.4	1		FILTER PACK DIAMETER (IN.): 8 FILTER PACK LENGTH (FT.): 16.			FILTER PACK LENGTH (FT.): 16.84	
FILTER PACK WATER VOLUME (	LTER PACK PURG	SE VOLUME (GA	LS.): 17.99		TOTAL PURGE VOLUME (X 3): 53.97			
FIELD PERSONNEL: K Gerdes							·	

Time	Water Level (Ft. TJC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	Ha	ORP	DO	Turbidity (NTU)	OVA/PID
13:05	6.54	1.25	0	18.51	0.912	6.95	-71.8	3.74	479.1	No Reading
13:10	6.90	1.25	6.25	16.98	1.778	7.76	-64.6	3.41	336.0	No Reading
12:15	6.00	1.25	17.6	17.77	0.004	7.20		2.52		No Reading
13.13	0.50	1.23	12.3	17.37	0.504	7.30	-34.4	3.35	04.0	NO Reading
13:20	- 6.95	1.25	18.75	17.31	1.861	7.43	-43.8	2.02	8.2	No Reading
13:25	7.05	1.25	25	16.06	1.812	7.45	-31.0	2.40	61.2	No Reading
13:30	7.10	1.25	31.25	15.78	1.826	7.28	-34.7	0.89	0.3	No Reading
	Stop Surging									
13:35	7.10	1.25	37.5	15.72	1.807	7.28	-34.5	0.80	0.6	No Reading
13:40	7.15	1.25	43.75	15.66	1.816	7.28	-35.8	0.78	0.6	No Reading
13:45	7.15	1.25	50	15.65	1.813	7.29	-35.9	0.76	0.2	No Reading
13:50	7.15	1.25	56.25	15.64	1.811	7.29	-36.1	0.75	0.1	No Reading
13:50	Stop Pump									
	-				·				<u> </u>	
· · · · ·										
			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
1. A.A.			I				·			

TOTAL WATER PURGED (GALS): S6.5

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 7-5-16		WELL ID: OVPZ-17R		STATIC WATER LEVEL (FT. TIC): 8.46		WELL DEPTH (FT. TIC): 20.31					
WATER COLUMN (FT.): 11.85 SLUDGE THICKNESS (FT.):				NESS (FT.): 0.0	WELL CASING DIAMETER (IN): 2						
WELL CASING/BOREHOLE VOLUME (GALS.): 1.9					FILTER PACK D	AMETER (IN.): 8	B FILTER PACK LENGTH (FT.): 9.5				
FILTER PACK WATER VOLUME (GALS.): 5.8 CASING AND FILTER PACK PUR					GE VOLUME (GA	L5.): 7.7		WATER LOSS DURING INSTALL (GALS.): 20			
	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 8	3.1	FIELD PERSONNEL: K Gerdes						
					Energific	· · · · ·	1	1			
_	Water Level	Discharge	Volume	T (0)	Conductivity				Turbidity	OVA/PID	
<i>clasiac</i>	(PC. 110)	(GPWI)	Purged (gai)	Temp. (C)	(ms/cm)		URF		((10)	(((****))	
6/14/16											
	Initial driller development by surging/overpumping.							· · · · · · · · · · · · · · · · · · ·			
7/5/40 0.50	NO VISIDIE SEGII	No visible sediment at completion of development.				F 03	49.5	F 3F	770.0	0.0	
7/5/16 8:50	8.50	0.3	0	19.24	3.315	5.92	18.5	5.25	703.7	0.0	
8:55	8.80	0.3	1.5	17.83	3.803	6.41	-00.9	4.33	F60 7	0.0	
9:00	9.75	0.3	3	16.74	3.890	0.00	-61.5	3.74	203.7	0.0	
9:05	9.90	0.3	4.5	16.90	3.840	0.64	-79.8	4.38	014.2	0.0	
9:10	9.95	0.3	6	17.25	3.819	6.63	-86.1	3.06	014.2	0.0	
9:15	10.00	0.3	7.5	17.21	3.7/1	6.65	-84.4	3.35	//1./	0.0	
9:20	9.90	0.3	9	17.14	3./33	6.68	-84.0	3.46	821.4	0.0	
9:25	10.05	0.3	10.5	17.06	3.667	6.69	-83.2	3.92	741.2	0.0	
9:30	10.10	0.3	12	17.11	3.058	6.69	-83.1	3.66	741.2	0.0	
9:35	10.15	0.3	13.5	17.02	3.550	6.70	-82.6	3.65	/62.9	0.0	
9:40	10.15	0.3	15	17.95	3.593	6.68	-87.4	3.10	807.2	0.0	
9:45	10.20	0.3	16.5	16.86	3.563	6.70	-85.7	3.28	262.9	0.0	
9:50	10.20	0.3	18	16.76	3.550	6.70	-83.9	3.59	383.9	0.0	
0.55	Stop Surging		40.5	16.60	2 627	6.70	74.4	2.61	100.4	0.0	
9:55	10.20	0.3	19.5	16.60	3.53/	6.79	-/1.1	3.61	109.4	0.0	
10:00	10.20	0.3	21	16.09	3.429	6.64	-91.5	1.21	51.0	0.0	
10:05	10.20	0.3	22.5	16.68	3.521	6.63	-94.2	1.08	27.9	0.0	
10:10	10.20	0.3	24	16.92	3.483	5.63	-98.1	86.0	17.2	0.0	
10:15	10.20	0.3	25.5	16.73	3.492	6.63	-100.2	0.95	12.0	0.0	
10:20	10.20	0.3	27	16.78	3.465	6.63	-101,3	0.92	12.8	0.0	
10:25	10.20 Stop Pump	0.3	28.5	16.63	3.344	6.65	-102.8	0.91	11.0	0.0	

TOTAL WATER PURGED (GAL5): 88.5 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. LEL alarm on initial OVA/PID reading, dissipated quickly. LEL alarm again after surging.
PAGE <u>1</u> of <u>2</u>

DATE: 6-28-16		WELL ID: MISS	-01AR	STATIC WATER	TIC WATER LEVEL (FT. TIC): 7.85 WELL DEPTH (FT. TIC): 15.32						
WATER COLUN	IN (FT.): 7.47		SLUDGE THICK	NESS (FT.): 0.0	· · ·	WELL CASING I	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	2		FILTER PACK D	IAMETER (IN.): 4	8	FILTER PACK L	ENGTH (FT.): 10		
FILTER PACK W	ATER VOLUME (	GALS.): 6.12	CASING AND FI	LTER PACK PUR	PACK PURGE VOLUME (GALS.): 7.32 WATER LOSS DURING INSTALL (GALS.): 10						
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 5	i1.96	FIELD PERSONNEL: K Gerdes						
		1	I	1		1	1	1		ł	
Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	DH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
6/15/16			50								
	Initial driller de	velopment by s	urging/overpum	Ding.							
	No visible sedir	nent at complet	ion of developm	ient.							
6/28/16 13:05	8.50	0.3	0	18.48	1.676	7.66	-86.9	5.44	413.5	0.0	
13:10	8.50	0.3	1.5	17.97	2.594	7.37	-90.2	3.25	627.9	0.0	
13:15	8.60	0.3	3	17.69	2.588	7.28	-83.6	3.88	793.5	No Reading	
13:20	8.60	0.3	4.5	18.55	2.562	7.23	-88.6	2.38	778.4	0.0	
13:25	8.60	0.3	6	18.10	1.309	7.23	-83.4	3.76	453.5	No Reading	
13:30	8.60	0.3	7.5	17.64	2.508	7.24	-83.5	2.78	567.0	0.0	
13:35	8.60	0.3	9	17.53	2.470	7.24	-79.5	3.42	456.6	No Reading	
13:40	8.60	0.3	10.S	17.34	2.463	7.24	-79.2	3.21	160.9	0.0	
13:45	8.60	0.3	12	17.18	2.421	7.24	-83.2	2.98	225.8	No Reading	
13:50	8.60	0.3	13.5	17.05	2.141	7.25	-80.4	3.07	427.8	0.0	
13:55	8.60	0.3	15	17.28	2.259	7.25	-77.7	3.24	271.7	No Reading	
14:00	8.60	0.3	16.5	17.38	2.603	7.26	-77.9	3.12	480.9	0.0	
14:05	8.60	0.3	18	17.09	2.095	7.24	-79.8	2.70	283.9	No Reading	
14:10	8.60	0.3	19.5	16.97	2.236	7.25	-75.9	3.18	365.1	0.0	
14:15	8.60	0.3	21	16.82	2.279	7.25	-76.7	2.79	353.8	No Reading	
14:20	8.60	0.3	22.5	16.45	2.056	7.25	-67.8	3.31	640.7	0.0	
14:25	8.60	0.3	24	16.76	2.134	7.24	-71.3	3.21	375.8	No Reading	
14:30	8.60	0.3	25.5	17.14	2.442	7.25	-78.0	2.68	248.0	0.0	
14:35	8.60	0.3	27	16.75	2.152	7.23	-76.1	3.00	334.0	No Reading	
14:40	8.60	0.3	28.5	16.63	2.060	7.25	-76.2	2.78	376.4	No Reading	
14:45	8.60	0.3	30	16.59	2.151	7.24	-75.0	2.80	654.0	No Reading	

TOTAL WATER PURGED (GALS): 92

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-28-16	WELL ID: MIS	5-01AR	STATIC WATER LEVEL (FT. TIC): 7.85 WELL DE			WELL DEPTH (F	न. TIC): 15.32
WATER COLUMN (FT.):	7.47	SLUDGE THICKNESS (FT.): 0.0			WELL CASING DIAMETER (IN): 2		2
WELL CASING/BOREHOLE VOLUME (GALS.): 1.2				FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LENGTH (FT.): 10
FILTER PACK WATER VO	FILTER PACK WATER VOLUME (GALS.): 6.12 CASING AND FILTER PACK P						WATER LOSS DURING INSTALL (GALS.): 10
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 51.96				FIELD PERSONN	EL: K Gerdes		• • • • • • • • • • • • • • • • • • •

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
14:50	8.60	0.3	31.5	16.44	2.387	7.23	-70.2	3.41	645.7	0.0
14:55	8.60	0.3	33	16.28	2.397	7.23	-66.6	3.44	608.4	No Reading
15:00	8.60	0.3	34.5	16.12	2.393	7.21	-69.2	2.94	456.6	0.0
15:05	8.60	0.3	36	16.08	2.190	7.20	-77.4	3.06	160.6	No Reading
15:10	8.60	0.3	37.5	16.60	2.151	7.20	-72.1	2.92	43.6	0.0
	Stop Surging									
15:15	8.60	0.3	39	16.10	2.111	7.21	-69.5	1.51	9.6	0.0
15:20	8.60	0.3	40.5	16.02	2.123	7.18	-74.1	1.12	7.2	No Reading
15:25	8.60	0.3	42	16.13	2.126	7.17	-79.0	0.93	3.8	No Reading
15:25	Stop Pump									
						,				
						· ·.··				
					·					
e.,										

TOTAL WATER PURGED (GALS): 92 WA

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI5S On-Site Treatment Plant

PAGE _____ of ____

DATE: 7-14-16	5	WELL ID: MIS	5-01BR	STATIC WATE	R LEVEL (FT. TIC)	7.75	(FT. TIC): 67.00			
WATER COLUI	MN (FT.): 59.25			NESS (FT.): 0.0		WELL CASIN	G DIAMETER (IN	): 6		
WELL CASING	BOREHOLE VOLU	JME (GALS.): 8	7		FILTER PACK D	IAMETER (IN.)	: NONE	FILTER PACK	LENGTH (FT.): NO	NE
FILTER PACK V	VATER VOLUME	GALS.): NONE	CASING AND F	ILTER PẠCK PUP	RGE VOLUME (G	ALS.): 87		WATER LOSS	DURING INSTALL	(GALS.): 0
	RGE VOLUME (3)	VOLUME AND	LOSS) (GALS.):	161	FIELD PERSON	NEL: K Gerde:	3			
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/16/16			165			-				
-	Initial driller de	velopment by s	urging/overpum	ping.						

	No visible sedin	nent at complet	ion of developn	nent.						
7/14/16 8:55	7.75	0.75	0	16.68	1.176	7.74	196.4	6.33	648.3	0.0
9:00	8.00	0.75	3.75	15.39	1.067	7.58	202.3	4.95	1235.9	No Reading
9:05	8.10	0.75	7.5	14.97	1.092	7.36	202.5	4.51	1233.2	0.0
9:10	8.10	0.75	11.25	14.93	1.035	7.32	195.2	4.18	1232.4	No Reading
9:15	8.10	0.75	15	15.05	0.997	7.27	193.0	4.35	1197.4	0.0
9:20	8.15	0.75	18.75	14.92	0.965	7.22	191.4	4.48	357.3	No Reading
9:25	8.20	0.75	22.5	14.88	0.956	7.14	195.0	4.89	449.7	0.0
9:30	8.20	0.75	26.25	14.90	0.948	7.12	199.5	4.17	139.8	No Reading
	Stop Surging									
9:35	8.20	0.75	30	14.60	0.932	7.11	205.8	4.60	34.5	0.0
9:40	8.20	0.75	33.75	14.51	0.929	7.04	212.4	2.86	15.5	No Reading
9:45	8.20	0.75	37.5	14.48	0. <b>926</b>	7.00	215.7	2.63	2.7	0.0
9:50	8.20	0.75	41.25	14.50	0.923	6.98	218.8	2.56	0.5	No Reading
9:55	8.20	0.75	45	14.56	0.921	6.97	221.4	2.53	0.1	0.0
10:00	8.15	0.75	48.75	14.61	0.919	6.95	223.6	2.51	0.2	No Reading
10:05	8.15	0.75	52.5	14.56	0.918	6.92	225.9	2.50	1.5	0.0
10:10	8.15	0.75	56.25	14.51	0.917	6.89	230.3	2.49	1.6	No Reading
10:15	8.15	0.75	60	14.51	0.916	6.83	239.1	2.48	1.4	0.0
10:20	8.15	0.75	63.75	14.52	0.915	6.83	242.6	2.48	1.3	No Reading
10:25	8.15	0.75	67.5	14.50	0.914	6.82	248.3	2.47	1.3	0.0
10:30	8.15	0.75	71.25	14.48	0.915	6.81	252.8	2.47	1.6	No Reading

TOTAL WATER PURGED (GAL5): 266.25 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI55 On-Site Treatment Plant

PAGE 2____ of ____2___

								·			
WATER COLUMN	IN (ITT.). 50.05	WELLID: MISS	SUDCE THE		ι ενει (F1, ΠC):	1,73		F1. HCJ: 67.00	<u></u>		
	IN (F1.): 59.25		SLUDGETHICK	NESS (F1.): U.U	1	WELL CASING	DIAMETER (IN):	6 T			
WELL CASING/I	BOREHOLE VOLU	JME (GALS.): 87	, T.		FILTER PACK D	IAMETER (IN.):	NONE	FILTER PACK L	ENGTH (FT.): NO	DNE	
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND F	ILTER PACK PUR	IGE VOLUME (GA	ALS.): 87		WATER LOSS I	DURING INSTALL	(GALS.): 0	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 2	261	FIELD PERSONNEL: K Gerdes						
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/14/16 10:35	8.15	0.75	75	14.51	0.914	6.81	256.8	2.46	1.6	0.0	
10:40	8.15	0.75	78.75	14.50	0.914	6.81	259.7	2.45	1.5	No Reading	
10:45	8.15	0.75	82.5	14.48	0.913	6.81	262.3	2.45	1.8	0.0	
10:50	8.15	0.75	86.25	14.45	0.912	6.81	264.5	2.45	1.8	No Reading	
10:55	8.15	0.75	90	14.44	0.913	6.82	266.3	2.45	1.7	0.0	
11:00	8 15	0.75	93.75	14.45	0.912	6.83	267.4	2 44	1.8	No Reading	
11:05	815	0.75	97.5	14.50	0.912	5.83	267.8	2.44	1.8	0.0	
11:10	8 15	0.75	101.25	14.50	0.911	6.84	768.0	2.44	19	No Reading	
11.10	Stop Bump	0.10			0.511	0.04	2.50.0			ino neounig	
11.10	stop Fullip										
	· · · · · · · · · · · · · · · · · · ·	····				:					
								· ·			
								•			
	***					* 11					
										[	
						···					
									·		
·											
		1									

TOTAL WATER PURGED (GALS): 266.25

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 7-13-16	ATE: 7-13-16 WELL ID: MISS-02AR S			STATIC WATER LEVEL (FT. TIC): 6.28			ELL DEPTH (FT. TIC): 18.91		
WATER COLUMN (FT.): 12.63	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2				
WELL CASING/BOREHOLE VOLU		FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LENGTH (FT.): 10				
FILTER PACK WATER VOLUME (	GALS.): 6.0	CASING AND FI	LTER PACK PURC	SE VOLUME (GA	LS.): 8.1		WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME (3)	4.3	FIELD PERSONN	IEL: K Gerdes, J	Cook	· · ·				

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/11/16			55							
3.0 hours	Initial driller de	velopment by si	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/13/16 9:10	6.28	0.3	0 .	17.67	4.369	7.01	15.4	6.53	718.9	0.0
9:15	8.80	0.3	1.5	17.06	4.262	6.33	-36.9	5.83	965.0	No Reading
9:20	9.30	0.3	3	16.79	4.267	7.44	-72.8	4.05	1186.5	0.0
9:25	9.75	0.3	4.S	17.35	4.212	7.42	-75.1	3.90	1176.6	No Reading
9:30	10.00	0.3	6	16.84	4.051	7.42	-85.7	3.60	544.3	0.0
9:35	10.05	0.3	7.5	16.53	4.184	7.40	-87.3	3.71	1184.3	No Reading
9:40	10.60	0.3	9	16.27	4.215	7.38	-87.8	3.64	1181.8	0.0
9:45	10.85	0.3	10.5	16.46	4.211	7.35	-95.5	3.24	1183.7	No Reading
9:50	10.55	0.3	12	16.77	4.235	7.33	-97.9	3.30	1188.2	0.0
9:55	10.60	0.3	13.5	17.14	4.203	7.29	-103.6	3.37	1042.6	No Reading
10:00	10.50	0.3	15	16.77	4.275	7.29	-108.6	3.28	1185.8	0.0
10:05	11.05	0.3	16.5	16.96	4.209	7.27	-106.8	3.08	531.8	No Reading
10:10	11.25	0.3	18	16.79	4.165	7.23	-109.9	3.03	655.6	0.0
10:15	12.15	0.3	19.5	16.30	4.196	7.23	-116.0	2.67	1182.0	No Reading
10:20	12.60	0.3	21	16.26	4.318	7.25	-114.2	2.68	1181.2	0.0
10:25	12.65	Q.3	22.5	16.30	4.333	7.23	-113.2	2.49	1180.1	No Reading
	Stop Surging - C	ontinue to colle	ct YSI readings in	cup due to hig	h turbidity.					
10:30	12.70	0.3	24	16.11	4.340	7.22	-114.1	2.47	1179.5	0.0
10:35	12.80	0.3	25.5	16.12	4.344	7.22	-114.8	2.41	1178.7	No Reading
10:40	12.70	0.3	27	16.95	4.328	7.20	-116.9	2.76	1169.3	0.0
10:45	12.80	0.3	28.5	16.93	4.368	7.26	-110.4	2.74	813.1	No Reading

TOTAL WATER PURGED (GALS): 83.5 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. Final purge water is straw-colored.

PAGE _____ of _____

DATE: 7-13-16		WELL ID: MISS	-02AR	STATIC WATER	LEVEL (FT. TIC):	6.28	WELL DEPTH (	FT. TIC): 18.91			
WATER COLUM	IN (FT.): 12,63		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING I	DIAMETER (IN):	2			
WELL CASING/I	BOREHOLE VOLI	JME (GALS.): 2.	1		FILTER PACK D	AMETER (IN.):	8	FILTER PACK LI	ENGTH (	FT.): 10	
FILTER PACK W	ATER VOLUME (	(GALS.): 6.0	CASING AND FI	LTER PACK PUR	IGE VOLUME (GALS.): 8.1 WATER LOSS DURING INSTALL (GALS.): 0						
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 2	4.3	FIELD PERSON	NEL: K Gerdes, J	Cook				
		1	1	r			1	I	1		, []
	Water Level	Discharge	Volume		Conductivity				Turl	oidity	OVA/PID
Time	. (Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DÖ	(N1	ru)*	(PPM)
7/13/16 10:50	12.90	0.3	30	16.60	4.374	7.24	-109.8	2.73	661.5		0.0
10:55	12.95	0.3	31.5	16.70	4.356	7.21	-108.8	2.70	624.1	L	No Reading
11:00	13.00	0.3	33	16.65	4.367	7.18	-109.6	2.50	671.2	<u> </u>	0.0
11:05	13.05	0.3	34.5	16.80	4.365	7.16	-109.2	2.67	694.1		No Reading
11:10	13.10	0.3	36	16.76	4.398	7.19	-104.9	3.10	536.4		0.0
11:15	13.65	0.3	37.5	16.79	4.164	7.18	-107.5	3.04	607.0		No Reading
11:20	13.50	0.3	39	16.59	4.455	7.19	-102.0	3.02	491.3		0.0
11:25	13.50	0.3	40.5	16.61	4.419	7.17	-104.1	2.31	3\$2.5		No Reading
11:30	13.55	0.3	42	16.63	4.431	7.21	-103.9	2.60	373.2		0.0
11:35	13.55	0.3	43.5	16.49	4.441	7.18	-103.9	2.66	411.3		No Reading
11:40	13.55	0.3	45	16.43	4.434	7.17	-105.6	2.60	361.0		0.0
11:45	13.60	0.3	46.5	16.43	4.460	7.15	-104.5	2.55	231.0		No Reading
11:50	13.60	0.3	48	16.67	4.460	7.16	-104.6	2.51	243.1		0.0
11:55	13.60	0.3	49.5	16.57	4.454	7.14	-103.5	2.49	203.4		No Reading
12:00	13.65	0.3	51	16.66	4.466	7.14	-102.3	2.47	202.0		0.0
	Break - Connec	t YSI flow-throug	șh cell								
13:00	6.38	0.2	51	18.29	4.603	7.42	-64.8	2.41	63.0	48.3	0.0
13:05	7.95	0.2	<b>S</b> 2	18.87	4.544	7.06	-85.0	1.20	67.9	30.6	No Reading
13:10	8.00	0.2	53	19.08	4.568	7.05	-96.5	0.97	21.4	15.0	0.0
13:15	8.00	0.2	54	19.03	4.576	7.04	-101.8	0.91	13.7	8.4	No Reading
13:20	8.00	0.2	55	19.34	4.562	7.05	-107.5	0.86	3.5	6.3	0.0
13:20	Stop Pump										

TOTAL WATER PURGED (GALS): 110

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI5S On-Site Treatment Plant

COMMENTS: Surge with pump. Final purge water is straw-colored. * = Results in second turbidity column collected from LaMotte 2020 turbidity meter.

PAGE <u>1</u> of <u>1</u>

DATE: 7-13-16	WELL ID: MISS	-02BR	2BR STATIC WATER LEVEL (FT. TIC): 9.3 W				VELL DEPTH (FT. TIC): 63.00		
WATER COLUMN (FT.): 53.	(NESS (FT.): 0.0	a.	WELL CASING D	IAMETER (IN):	6				
WELL CASING/BOREHOLE V	OLUME (GALS.): 78	.9		FILTER PACK DI	AMETER (IN.): N	IONE	FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUM	AE (GALS.): NONE	CASING AND F	ILTER PACK PURG	SE VOLUME (GA	LS.): 78.9		WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME	236.7	FIELD PERSONN	IEL: K Gerdes, J	Cook					

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pН	ORP	DO	(NTU)	(PPM)
6/25/16			165							
	Initial driller de	velopment by si	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/13/16 13:30	9.30	0.9	0	17.13	3.734	7.96	-39.6	5.65	120.8	0.0
13:35	10.00	0.9	4.5	15.55	3.780	7.36	-34.8	3.30	36.5	No Reading
13:40	10.80	0.9	9	15.53	3.704	7.32	-26.1	5.78	219.4	0,0
13:45	11.15	0.9	13.5	15.09	3.674	6.90	-28.8	2.51	70.2	No Reading
	Stop Surging						 			
13:50	11.05	0.9	18	14.87	3.595	6.70	-20.1	1.55	35.0	0.0
13:55	11.00	0.9	22.5	14.86	3.501	6.63	-18.1	1.21	21.0	No Reading
14:00	11.00	0.9	27	14.85	3.351	6.61	-19.7	1.08	12.9	0.0
14:05	11.00	0.9	31.5	14.85	3.217	6.61	-18.5	1.01	9.1	No Reading
14:10	11.00	0.9	36	14.86	3.167	6.61	-19.3	0.97	7.1	0.0
14:15	11.00	0.9	40.5	14.96	3.132	6.62	-20.7	0.94	3.8	No Reading
14:20	11.00	0.9	45	14.86	3.124	6.61	-21.3	0.93	4.0	0.0
14:25	11.00	0.9	49.5	14. <del>9</del> 3	3.123	6.61	-21.7	0.91	3.2	No Reading
14:30	11.00	0.9	54	14.91	3.131	6.60	-21.9	0.90	2.3	0.0
14:35	11.10	0.9	58.5	14.81	3.141	6.60	-21,9	1.08	7.7	No Reading
14:40	11.15	0.9	63	14.80	3.134	6.60	-21.7	1.13	1.6	0.0
14:45	11.20	0.9	67.5	14.85	3.139	6.60	-21.6	1.00	0.2	No Reading
14:50	11,20	0.9	72	14.79	3.144	6.59	-21.0	1.16	0.9	0.0
14:55	11.20	0.9	76.5	14.84	3.159	6.58	-20.4	1.15	0.3	No Reading
14:55	Stop Pump									

TOTAL WATER PURGED (GALS): 241.5 WATER Q

41.5 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>...

DATE: 9-8-16	WELL ID: MISS-04AR STATIC WATE			LEVEL (FT. TIC):	11.15	WELL DEPTH (F	T. TIC): 17.10
WATER COLUMN (FT.): 5.95 SLUDGE THICKNESS (FT.): 0			NESS (FT.): 0.0		WELL CASING D	NAMETER (IN):	2
WELL CASING/BOREHOLE VOLU		FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LENGTH (FT.): 5.95		
FILTER PACK WATER VOLUME (GALS.): 5.71 CASING AND FILTER PACK PUL				GE VOLUME (GA	L5.): 6.68		WATER LOSS DURING INSTALL (GALS.): 0
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 20				FIELD PERSONN	IEL: J Cook		±an −

					Specific		Ì				
Time	Water Level	Discharge (GPM)	Volume Purged (gal)	Temp (C)	(mS/cm)	nH	ORP	00	I TUPB	idity U)*	(PPM)
11112	(11.110)	(or m)	I diBea (Bai)	Temp. (c)	(mo) emp	Pr. I				-, 	
9/7/16			180						+		
	Initial driller de	velopment by s	urging/overpum	ping.							
4	No visible sedir	nent at complet	ion of developm	ent.							
9/8/16 8:42	11.15	Start Pump									0.1
8:50	12.00	0.26		20.45	2.246	5.54	58.S	5.34	1578.8		0.0
8:55	11.90	0.26		20.24	1.187	6.30	-1.8	4.43	1522.0		0.0
9:00	11.80	0.26		20.73	2.226	6.43	-14.5	4.57	1582.0		0.0
	Stop Surging										
9:05	11.95	0.26		20.39	2.190	6.46	-26.0	1.41	549.5		0.0
9:10	11.95	0.26		20.3 <del>6</del>	2.174	6.48	-33.8	1.26	166.6		0.0
9:15	12.00	0.26		20.21	2.145	6.51	-42.0	0.95	48.6		0.0
9:20	12.00	0.26		20.22	2.128	6.52	-42.0	0.99	40.2		0.0
9:25	12.00	0.26		20.20	2.113	6.53	-44.0	0.93	38.0		0.0
9:30	12.00	0.26		20.18	2.099	6.54	-43.6	0.97	37.6		0.0
9:35	12.00	0.26		20.17	2.081	6.55	-45.1	0.92	38.5		0.0
9:40	12.00	0.26		20.21	2.065	6.55	-45.5	0.91	38.7	1.9	0.0
9:45	12.00	0.26		20.17	2.047	6.55	-46.6	0.88	31.5	1.9	0.0
9:50	12.00	0.26	198	20.13	2.030	5.56	-47.1	0.87	27.1	2.1	0.0
9:50	Stop Pump										
6.2											

TOTAL WATER PURGED (GALS): 198

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. Strong organic odor from purged water (PID = 0.0 ppm). * = Results in second turbidity column collected from LaMotte 2020 turbidity meter.

PAGE <u>1</u> of <u>1</u>

DATE: 6-20-16		WELL ID: MISS	IOSAR	STATIC WATER	R LEVEL (FT. TIC):	10.25	WELL DEPTH (	FT. TIC): 17.72			
WATER COLUN	IN (FT.): 7.47		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2			
WELL CASING		JME (GAL5.): 1,	22		FILTER PACK D	AMETER (IN.):	7	FILTER PACK L	ENGTH (FT.): 9.4	7	
FILTER PACK W	ATER VOLUME	GALS.): 4.43	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 5.4		TOTAL PURGE VOLUME (X 3): 16.2			
FIELD PERSONN	IEL: K Gerdes										
					Enerific		1	1	<u> </u>	1	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
13:50	13.20	Start									
13:55	13.33	0.4	2	18.68	1.237	7.27	-93.9	2.87	1228.3	No Reading	
14:00	13.40	0.4	4	15.80	2.440	7.23	-107.7	3.16	1199.9	No Reading	
14:0S	13.85	0.4	6	15.72	1.983	7.15	-107.0	2.80	1202.6	No Reading	
14:10	13.55	0.4	8	15.87	2.558	7.50	-106.9	4.61	1190.6	No Reading	
14:15	13.55	0.4	10	16.37	2.580	7.45	-107.1	4.81	1208.4	No Reading	
14:20	13.80	0.4	12	15.17	2.530	7.11	-110.5	1.90	877.5	No Reading	
	Stop Surging										
14:25	13.56	0.4	14	14.86	2.528	7.03	-113.9	1.26	137.1	No Reading	
14:30	13.55	0.4	16	14.79	2.534	6.97	-118.0	0.93	83.5	No Reading	
14:35	13.45	0.4	18	14.79	2.548	6.96	-119.4	0.85	25.7	No Reading	
14:40	13.40	0.4	20	14.75	2.556	6.96	-120.3	0.82	9.3	No Reading	
14:40	Stop Pump										
		·									
station -											

TOTAL WATER PURGED (GALS): 20

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 3-24-16	-058R STATIC WATER LEVEL (FT. TIC): 9.73 W			WELL DEPTH (FT. TIC): 53.25			
WATER COLUMN (FT.): 43.52	-	SLUDGE THICK	NESS (FT.): ~0.2		WELL CASING D	IAMETER (IN):	6
WELL CASING/BOREHOLE VOL			FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME	GALS.): NONE	CASING AND FI	LTER PACK PURG	GE VOLUME (GA	LS.): 64		TOTAL PURGE VOLUME (X 3): 192
FIELD PERSONNEL: J Cook							

Time	Water Levei (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DQ	Turbidity (NTU)	OVA/PID (PPM)
9:07	Start									
9:20	13.65	1.25		13.68	35.99	6.60	-75.5	5.32	> 1200	·
9:30	14.10	1.25		13.54	18.70	6.83	-87.6	6.43	130.2	
9:40	14.20	1.25		13.58	13.70	6.80	-85.4	5.54	124.8	
9:50	14.30	1.25	55	13.80	9.919	6.83	-93.4	5.72	- 129.6	
10:00	14.43	1.0		14.05	8.964	6.65	-94.8	4.02	131.5	0.1
10:10	14.54	1.0	75	14.13	9.138	6.62	-98.9	4.30	69.0	
	Stop Surging									
10:20	13.05	0.9		14.14	8.919	6.55	-116.1	0.40	41.8	
10:30	12.79	0.9		14.14	8.982	6.57	-124.0	0.34	34.3	
10:40	12.67	0.9		14.15	8.511	6.79	-132.1	0.73	18.6	
10:50	12.63	0.9	110	14.17	8.332	6.54	-130.5	0.36	17.8	
11:00	12.62	0.85		14.14	8.198	6.53	-133.8	0.37	12.9	
11:10	12.62	0.85		14.18	8.129	6.54	-135.8	0.36	7.1	0.0
11:20	12.68	0.85		14.10	5.646	6.71	-139.3	0.98	5.9	
11:30	12.67	0.85		14.25	5.612	6.72	-139,4	1.05	6.8	
11:40	12.67	0.85		14.12	5.882	6.69	-139.5	0.82	7.7	
11:50	12.67	0.85		14.23	5.731	6.71	-141.4	0.80	9.0	
11:55			165		·					
12:00	12,67	0.8		14,14	5.883	6.68	-141.2	0.39	8.0	
12:10	12.69	0.8		14.08	5.117	6.74	-140.4	1.11	22.1	
12:20	12.69	0.8		14.19	5.311	6.79	-145.3	1.12	4.9	
12:30	12.69	0.8		14.25	5.319	6.76	-146.7	1.13	4.3	
12:40	12.69	0.8		14.29	5.309	6.82	-150.4	0.68	4.2	

TOTAL WATER PURGED (GALS): 220 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 3-24-16	ITE: 3-24-16 WELL ID: MISS-05BR STATI			TATIC WATER LEVEL (FT. TIC): 9.73 WE			т. тIС): 53.25
WATER COLUMN (FT.): 43.52 SLUDGE THICKNESS (FT					WELL CASING D	DIAMETER (IN):	6
WELL CASING/BOREHOLE VOLU	JME (GALS.): 64			FILTER PACK DI	AMETER (IN.): N	NONE	FILTER PACK LENGTH (FT.): NONE
FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK				GE VOLUME (GA	LS.): 64		TOTAL PURGE VOLUME (X 3): 192
FIELD PERSONNEL: J Cook		<u> </u>			****		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
12:50	12.69	0.8		14.29	5.311	6.85	-152.1	0.77	4.2	
13:00	12.67	0.8		14.28	5.309	6.86	-158.2	No Reading	4.0	
13:05	Stop Pump		220							
								1		
					1					
										····
				· · · · · · · · · · · · · · · · · · ·						
							······			
·····.						-				
4										
				<u></u>		•				

TOTAL WATER PURGED (GALS): 220

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

ATE: 7-14-16, 7-18-16 WELL ID: MISS-07AR			STATIC WATER	LEVEL (FT. TIC):	9.62	WELL DEPTH (F	т. тIС): 15.30
WATER COLUMN (FT.): 5.68		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): 8 FIL			FILTER PACK LENGTH (FT.): 9		
FILTER PACK WATER VOLUME	(GALS.): 5.6	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.5		WATER LOSS DURING INSTALL (GALS.): 0
REQUIRED PURGE VOLUME (3)	VOLUME AND I	.055) (GALS.): 1	9.5	FIELD PERSONN	IEL: K Gerdes, J	Cook	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/12/16			70							
	Initial driller de	velopment by su	urging/overpum	ping.						
	No visible sedir	nent at complet	ion of developm	ent.				T		
7/14/16 13:45	9.62	0.3	0	18.67	1.967	7.47	122.5	4.83	1275.9	0.0
13:50	10.20	0.3	. 1.5	17.87	1.963	7.02	-5.9	5.31	726.2	No Reading
13:55	10.05	0.3	3	18.03	1.910	6.81	-31.7	3.78	568.0	0.0
14:00	10.05	0.3	4.5	17.99	2.004	6.70	-39.6	3.18	1194.3	No Reading
14:05	10.05	0.3	6	17.16	2.151	6.64	-44.7	3.19	1260.3	0.0
14:10	10.10	0.3	7.5	17.79	2.164	6.64	-49.7	3.51	1262.3	No Reading
14:15	10.05	0.3	9	17.54	2.194	6.61	-54.8	3.50	1250.9	0.0
14:20	10.05	0.3	10.5	17.42	2.147	6.60	-55.6	2.94	1262.6	No Reading
14:25	10.05	0.3	12	17.71	2.143	6.57	-58.9	2.87	1199.7	0.0
14:30	10.05	0.3	13.5	17.45	2.224	6.55	-59.7	3.32	1178.9	No Reading
14:35	10.05	0.3	15	17.33	2.138	6.58	-57.6	3.44	773.9	0.0
14:40	10.05	0.3	16.5	17.04	2.260	6.51	-59.2	3.07	1259.9	No Reading
14:45	10.05	0.3	18	17.22	2.292	6.56	-55.3	3.82	1064.5	0.0
14:50	10.05	0.3	19.5	17.51	2.157	6.53	-57.8	3.45	850.8	No Reading
14:55	10.05	0.3	21	17.08	2.290	6.48	-55.4	4.37	1255.9	0.0
15:00	10.05	0.3	22.5	17.23	2.301	6.48	-56.4	4.22	1227.2	No Reading
	Stop Pump									
7/18/16 9:00	9.86	0.3	22.5	18.23	1.740	7.27	206.4	6.32	1097.4	0.0
9:05	10.15	0.3	24	17.49	2.211	6.71	63.2	4.17	1096.7	No Reading
9:10	10.15	0.3	25.5	17.48	2.224	6.69	-8.3	4.21	1093.3	0.0
9:15	10.15	0.3	27	17.94	2.134	6.69	-27.4	4.26	1095.6	No Reading

TOTAL WATER PURGED (GALS): 121 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

DATE: 7 14.16	7 19 16	WELL ID: MICO	ISS-07AR STATIC WATER LEVEL (FT. TIC): 9.62 WELL DEPTH (FT						FT. T(C): 15.30		
DATE: 7-14-10,	/-18-10	WELL ID: MISS	-07AR		(LEVEL (FI. HC):	9.62	WELL DEPTH (	FT. HC): 15.30			
WATER COLUN	IN (FT.): 5.68		SLUDGE THICK	NESS (FT.): 0.0	1	WELL CASING D	DIAMETER (IN):	2 .			
WELL CASING/I	BOREHOLE VOLU	JME (GALS.): 0.	9		FILTER PACK D	IAMETER (IN.): 8	3	FILTER PACK L	ENGTH (FT.): 9		
FILTER PACK W	ATER VOLUME (	GALS.): 5.6	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.5		WATER LOSS DURING INSTALL (GALS.): 0			
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 1	19.5 FIELD PERSONNEL: K Gerdes, J Cook							
·			······		1 - 17			·	1		
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)	
7/18/16 9:20	10.15	0.3	28.5	17.52	2.195	6.64	-33.6	4.10	1095.9	0.0	
9:25	10.15	0.3	30	17.63	2.122	6.65	-42.9	3.72	1093.5	No Reading	
9:30	10.20	0.3	31.5	17.36	2.170	6.62	-42.5	3.46	1095.4	0.0	
9:35	10.20	0.3	33	17.39	2.222	6.61	-48.9	3.53	1095.9	No Reading	
9:40	10.20	0.3	34.5	17.18	2.273	6.60	-49.5	3.79	817.7	0.0	
9:45	10.20	0.3	36	17.19	2.270	6.60	-52.8	3.67	696.3	No Reading	
9:50	10.20	0.3	37.5	17.30	2.286	6.59	-53.6	3.81	696.0	0.0	
9:55	10.20	0.3	39	17.06	2.290	6.59	-53.1	3.73	983.2	No Reading	
10:00	10.20	0.3	40.5	17.29	2.294	6.58	-54.2	3.64	310.2	0.0	
	Stop Surging										
10:05	10.20	0.3	42	17.05	2.271	6.57	-51. <del>6</del>	2.42	174.3	No Reading	
10:10	10.20	0.3	43.5	16.82	2.276	6.49	-60.6	1.23	119.5	0.0	
10:15	10.20	0.3	45	16.71	2.294	6.47	-65.1	1.07	50.1	No Reading	
10:20	10.20	0.3	46.5	16.82	2.303	6.46	-68.2	1.01	33.6	0.0	
10:25	10.20	0.3	48	16.91	2.313	6.46	71.1	0.97	20.9	No Reading	
10:30	10.20	0.3	49.5	16.77	2.315	6.45	-73.1	0.94	16.0	0.0	
10:35	10.20	0.3	51	16.86	2.315	6.4 <del>6</del>	-74.5	0.93	8.9	No Reading	
10:35	Stop Pump										
								1			
							······				
· .											
	· .										

TOTAL WATER PURGED (GALS): 121

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-16-16	E: 3-16-16 WELL ID: MISS078		STATIC WATER	LEVEL (FT. TIC):	10.45	WELL DEPTH (F	T. TIC): 48.86
WATER COLUMN (FT.): 38.41	NESS (FT.): ~0.2		WELL CASING D	MAMETER (IN):	3		
WELL CASING/BOREHOLE VOLU	JME (GALS.): 14	.1		FILTER PACK DI	AMETER (IN.): 1	lone	FILTER PACK LENGTH (FT.): None
FILTER PACK WATER VOLUME (GALS.): NA CASING AND FILTER PACK			LTER PACK PUR	GE VOLUME (GA	LS.): 14.1		TOTAL PURGE VOLUME (X 3): 42.3
FIELD PERSONNEL: J Cook							·

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:38	Start									
8:48	12.35	>1		13.14	6.021	6.47	12.1	5.14	702.2	
8:58	12.35			13.95	5.683	7.07	-44.0	5.73	60.4	
9.08	No Reading			No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	
G-19	12.05		43	14.22	6 2/1	7 37	-20.7	5 01	105.7	
0.29	11.00	· · · · · · · · · · · · · · · · · · ·		14.15	6 421	7.52	-33.7	5.02	100.1 AQ A	
3.20	11.50			14.15	0.421	7.35	-33.4	5.85		
9:38	11.85		60	13.97	5.315	7.20	-84.4	4.25	63.3	
	Stop Surging	<u></u>								
9:48	11.83			13.91	5.245	7.19	-98.9	9.84	10.1	
9:50	Reduce Flow									
9:58	10.93	0.4	73	14.02	S.449	7.15	-94.8	9.25	5.7	
10:08	10.90			13.99	5.489	7.14	-91.1	10.38	3.9	
10:18	10.90		85	13.99	5.489	7.14	-90.4	11.29	4.1	
10:18	Stop Pump									
10:31	10.44									
		·····								

TOTAL WATER PURGED (GALS): 85

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-5ite Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-30-16	ATE: 3-30-16 WELL ID: MW-2S STATIC 1		ATIC WATER LEVEL (FT. TIC): 4.75		WELL DEPTH (F	т. TIC): 12.30
WATER COLUMN (FT.): 7	7.55	SLUDGE THICKNESS (FT.	): 0.1	WELL CASING	DIAMETER (IN):	2
WELL CASING/BOREHOL	FILTER PA	CK DIAMETER (IN.):	6	FILTER PACK LENGTH (FT.): 11.0		
FILTER PACK WATER VOL	K PURGE VOLUM	E (GALS.): 3.48	~	TOTAL PURGE VOLUME (X 3): 10.5		
FIELD PERSONNEL: J Coo						

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pH	ORP	DO	(NTU)	(PPM)
8:06	Start									
8:10	5.60	0.25		10.20	2.852	6.18	3.9	4.87	1579.3	_
8:20	5.60	0.25		12.11	2.314	6.76	-85.9	3.72	1603.9	
8:30	5.40	0.25		12.26	1.739	7.00	-89.7	3.85	1604.3	
8:40	5.35	0.25		12.24	1.645	7.08	-79.6	3.71	1603.3	
8:50	5.40	0.25		11.87	1.644	7.09	-75.4	4.93	1338.6	
	Stop Surging			<b>u</b>						
9:00	5.35	0.25		12.86	1.658	7.05	-72.7	0.17	355.1	
9:10	5.35	0.25		12.88	1.651	7.04	-73.3	0.16	203.4	
9:20	5.35	0.25		12.82	1.637	7.03	-73.2	0.14	88.7	
9:30	5.30	0.25		12.98	1.630	7.03	-71.9	0.14	28.4	
9:40	5.30	0.25		12.95	1.623	7.03	-70.2	0.14	19.3	
9:50	5.30	0.25	25	12.95	1.613	7.02	-69.0	0.13	18.4	**···*
9:50	Stop Pump									
						· · · · · ·				
<u>.                                    </u>										
									· ·	
								•		

I.

TOTAL WATER PURGED (GAL5): 25

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

.

DATE: 3-30-16	WELL ID: MW-	2D STATIC WATER I		LEVEL (FT. TIC):	3.55	WELL DEPTH (	FT. TIC): 44.10	
WATER COLUMN (FT.): 40.55		SLUDGE THICKN	IESS (FT.): ~0.3	3	WELL CASING D	IAMETER (IN):	4	
WELL CASING/BOREHOLE VOL	UME (GALS.): 26	.5		FILTER PACK DI	AMETER (IN.): 1	NONE	FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND FIL	TER PACK PUR	GE VOLUME (GA	LS.): 26.5		TOTAL PURGE VOLUME (X 3): 79.4	
FIELD PERSONNEL: J Cook, K G	erdes					····	· · · · · · · · · · · · · · · · · · ·	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
9:55	Start									
10:15	6.65	1.2		14.28	1.828	7.46	-79.1	3.82	> 1200	
10:25	6.65	1.2		13.10	1.781	7.70	-87.6	5.32	548.2	
10:35	6.65	1.2		13.67	1.725	7.27	-80.9	4.14	452.8	
10:40		'n	55							
10:45	6.65	1.2		13.66	1.682	7.21	-76.8	4.56	241.1	
	Stop Surging. Y	'SI Display Not C	Connecting. Use	LaMotte Meter	for Turbidity.					
11:00	6.10	0.83		No Reading	No Reading	No Reading	No Reading	No Reading	12.3	
11:10	6.10	0.83		No Reading	No Reading	No Reading	No Reading	No Reading	11.0	· · · · · · ·
11:20	6.10	0.83		No Reading	No Reading	No Reading	No Reading	No Reading	14.4	
11:30	6.10	0.83		13.55	1.549	7.09	-64.0	0.24	13.3	
11:40	6.10	0.83	105	13.52	1 540	7.09	-63.8	0.23	14.1	
11:40	Stop Pump	*								
<u> </u>										
										<u>- ~ ~</u>
u										
		1								

TOTAL WATER PURGED (GALS): 105 W

WATER QUALITY METER: VSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>6</u>

DATE: 7-11-16 to 7-21-16 WELL ID: MW-3SR		3SR	STATIC WATER LEVEL (FT. TIC): 9.75		WELL DEPTH (FT. TIC): 19.30		
WATER COLUMN (FT.): 9.55		SLUDGE THICKNESS (FT.): 0.0			WELL CASING DIAMETER (IN): 2		2
WELL CASING/BOREHOLE VOL	JME (GALS.): 1.5	6		FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LENGTH (FT.): 8
FILTER PACK WATER VOLUME (GALS.): 4.9 CASING AND FILTER PACK F			ILTER PACK PURC	GE VOLUME (GA	LS.): 6.46		WATER LOSS DURING INSTALL (GALS.): 20
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GA15.): 79.4		79.4	FIELD PERSONNEL: K Gerdes, J Cook		Cook		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/20/16			60							
	Initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/11/16 13:25	12.75	0.15	. 0	17.46	2.540	8.30	-55.6	7.37	399.5	0.0
13:30	14.80	0.15	0.75	17.58	2.460	7.63	-82.3	5.70	501.3	No Reading
13:35	16.30	0.15	1.5	- 17.85	2.458	7.39	-76.7	5.77	1136.5	0.0
13:40	17.15	0.15	2.25	17.55	2.454	7.29	-68.4	7.47	698.1	No Reading
13:45	18.00	0.15	3	17.10	2.513	7.23	-61.8	7.82	220.6	0.0
	Stop Surging									
13:50	18.60	0.15	3.75	18.00	2.651	7.23	-72.0	3.98	78.4	No Reading
	Well Dry									
7/12/16 8:30	9.85	0.15	3.75	17.51	2.953	6.32	228.7	5.68	1187.3	0.0
8:35	15.40	0.15	4.5	16.68	2.649	7.00	23.8	5.62	182.9	No Reading
8:40	17.45	0.15	5.25	16.35	2.548	7.06	6.4	5.23	535.0	0.0
8:45	18.30	0.15	6	16. <b>28</b>	2.615	7.10	-1.9	5.32	414.1	No Reading
8:50	>19	0.15	6.75	16.10	2.887	7.09	-18.4	4.04	534.1	0.0
	Well Dry									
14:40	9.86	0.15	7.5	17.08	3.250	7.07	-15.7	5.68	887.2	0.0
14:45	12.90	0.15	8.25	16.36	3.001	7.10	-22.2	4.83	131.0	No Reading
14:50	15.60	0.15	9	16.43	2.720	7.05	-25.0	4.98	56.8	0.0
14:55	17.40	0.15	9.75	16.90	2.618	7.00	-17.0	5.51	57. <del>6</del>	No Reading
15:00	18.60	0.15	10.5	16.33	2.756	6.96	-18.9	6.01	132.9	0.0
	Well Dry									
7/13/16 8:00	9.76	0.1	10.5	17.73	3.233	6.70	170.3	8.07	486.8	0.0

TOTAL WATER PURGED (GALS): 81.5 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 6

DATE: 7-11-16	to 7-21-16	I-16 WELL ID: MW-3SR STATIC W			R LEVEL (FT. TIC):	9.75	WELL DEPTH (	DEPTH (FT. TIC): 19.30			
WATER COLUN	IN (FT.): 9.55	·	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	56		FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LE	ENGTH (FT.): 8		
FILTER PACK W	ATER VOLUME (	GALS.): 4.9	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.46		WATER LOSS D	URING INSTALL	(GALS.): 20	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 7	9.4	FIELD PERSONNEL: K Gerdes, J Cook						
		1			.L,				·	·	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/13/16 8:05	15.20	0.1	11	15.84	2.841	6.91	49.6	5.54	69.3	No Reading	
8:10	16.05	0,1	11.5	17.11	2.759	7.01	11.2	5.42	214.5	0.0	
8:15	16.60	0.1	12	17.09	2.779	7.05	-22.9	5.06	235.6	No Reading	
8: <b>2</b> 0	17.20	0.1	12.5	17.03	2.747	7.08	-33.6	5.51	179.0	0.0	
8:25	17.95	0.1	13	16.76	2.760	7.11	-40.2	5.52	74.3	No Reading	
8:30	18.30	0.1	13.5	16.78	2.899	7.11	-45.0	5.11	35.2	0.0	
8:35	19.00	0.1	14	16.75	2.999	7.11	-59.0	3.91	103.4	No Reading	
	Well Dry										
7/14/16	Peristaltic pum	p not working -	use Whale pump	,							
7/14/16 8:25	9.59	~2	16	15.27	2.870	6.34	215.4	7.57	137.9	0.0	
	Well Dry										
11:25	10.20	~2	18	14.78	2.860	6.53	295.7	7.02	165.9	No Reading	
	Well Dry										
	Resume using p	eristaltic pump,	resume surging			-					
13:00	11.05	0.15	18	<b>19</b> .77	3.008	7.81	81.0	7.40	1242.1	0.0	
13:05	15.15	0.15	18.75	18.35	2.884	7.63	67.4	7.77	1261.1	No Reading	
13:10	16.25	0.15	19.5	18.63	2.786	7.34	42.0	7.60	1256.1	0.0	
13:15	18.00	0.15	20.25	19.07	2,789	7.14	44.0	7.51	408.6	No Reading	
	Stop Surging										
. 13:20	19.00	0.15	21	19.24	3.001	7.18	35.2	6.25	121.5	0.0	
	Well Dry										
15:10	11.21	0.2	21	22.55	3.620	6.83	-37.6	5.61	277.6	0.0	
15:15	16.15	0.2	22	17.54	2.889	6.65	-28.0	5.88	126.6	No Reading	
15:20	18.15	0.2	23	17.31	2.730	6.56	-3.7	7.13	284.5	0.0	

TOTAL WATER PURGED (GALS): 81.5 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 3____ of ____ 6

DATE: 7-11-16 to 7-21-16 WELL ID: MW-3SR STAT			STATIC WATER	TATIC WATER LEVEL (FT. TIC): 9.75 WELL			PTH (FT. TIC): 19.30		
WATER COLUMN (FT.): 9.55		SLUDGE THICKNESS (FT.): 0.0		WELL CASING DIAMETER (IN):		AMETER (IN):	2		
WELL CASING/BOREHOLE VOLUME (GALS.): 1.56				FILTER PACK DIAMETER (IN.): 8			FILTER PACK LENGTH (FT.): 8		
FILTER PACK WATER VOLUME (GALS.): 4.9 CASING AND FILTER PACK				GE VOLUME (GA	LS.): 6.46		WATER LOSS DURING INSTALL (GALS.): 20		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 79.4			9.4	FIELD PERSONN	EL: K Gerdes, J	Cook	······		

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pН	ORP	DO	(NTU)	(PPM)
7/14/16 8:25	19.00	0.2	24	17.28	2.936	6.53	0.3	6.61	192.5	No Reading
, 	Well Dry									
7/18/16 8:25	10.07	0.2	24	18.78	3.188	6.26	305.5	6.30	49.9	0.0
8:30	14.30	0.2	25	17.27	2.625	6.50	302.7	4.50	24.1	No Reading
8:35	17.10	0.2	26	17.41	2.665	6.72	267.6	3.80	27.4	0.0
8:40	17.90	0.2	27	17.26	2.739	6.76	239.5	4.11	17.0	No Reading
8:45	19.00	0.2	28	16.98	2.991	6.78	194.6	3.53	21.6	0.0
	Well Dry									
7/18/16 10:50	10.98	0.15	28	24.21	3.643	6.85	10.9	5.14	1.1	0.0
10:55	14.40	0.15	28.75	18.78	3.266	6.80	-31.8	3.60	9.9	No Reading
11:00	16.25	0.15	29.5	18.53	2.913	6.80	-13.8	5.39	29.9	0.0
11:05	17.80	0.15	30.25	18.60	2.780	6.73	11.9	6.20	25.9	No Reading
11:10	19.00	0.15	31	18.38	2.967	6.69	29.5	5.97	21.9	0.0
	Well Dry									
14:20	10.43	0.15	31	19.63	3.777	6.68	59.0	4.93	25.9	0.0
14:25	14.00	0.15	31.7S	18.23	3.270	6.48	11.5	4.48	17.5	No Reading
14:30	15.00	0.15	32.5	18.55	2.953	6.45	35.3	5.44	25.9	0.0
14:35	17.50	0.15	33.25	18.39	2.866	6.41	79.9	5.99	81.6	No Reading
14:40	18.50	0.15	34	18.28	2.892	6.40	106.6	6.55	40.8	0.0
	Well Dry									
7/19/16 8:10	10.13	0.1	34	19.06	3.630	6.15	241.4	6.15	14.5	0.0
8:15	13.20	0.1	34.5	17.36	3.040	6.31	237.8	6.25	5.0	No Reading
8:20	14.60	0.1	35	16.94	2.980	6.46	226.4	5.68	2.8	0.0
8:25	15.60	0.1	35.5	17.07	2.923	6.56	206.4	5.63	2.0	No Reading

TOTAL WATER PURGED (GALS): 81.S WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-5ite Treatment Plant

PAGE 4____ of _____6

DATE: 7-11-16	to 7-21-16	WELL ID: MW	-3SR	STATIC WATER	LEVEL (FT. TIC):	9.75	WELL DEPTH (	EPTH (FT. TIC): 19.30				
WATER COLUN	IN (FT.): 9.55	•	SLUDGE THICK	NESS (FT.): 0.0	<u> </u>	WELL CASING D	DIAMETER (IN):	2				
WELL CASING/I	BOREHOLE VOLI	UME (GALS.): 1.	56		FILTER PACK D	AMETER (IN.): 8	3	FILTER PACK L	NGTH (FT.): 8			
FILTER PACK W	ATER VOLUME (	(GALS.): 4.9	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.46		WATER LOSS D	URING INSTALL	(GALS.): 20		
	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 7	9.4	FIELD PERSONNEL: K Gerdes, J Cook							
			1	1			1		- #	1		
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)		
7/19/16 8:30	16.80	0.1	36	16.91	2.827	6.60	160.6	5.77	3.3	0.0		
8:35	17.70	0.1	36.5	16.72	2.834	6.61	124.1	6.16	18.0	No Reading		
8:40	18.55	0.1	, 37	16.78	3.108	6.62	87.0	5.70	0.7	0.0		
8:45	19.00	0.1	37.5	16.94	3.163	6.63	55.0	4.82	3.1	No Reading		
	Well Dry											
9:45	13.00	0.08	37.5	26.59	3.357	7.33	206.7	7.48	16.2	0.0		
9:50	15.75	0.08	37.9	17.39	3.262	6.72	131.6	4.85	8.5	No Reading		
9:55	16.60	0.08	38.3	17.65	3.061	6.78	33.6	5.78	8.3	0.0		
10:00	17.65	0.08	38.7	17.69	2.950	6.76	31.9	6.50	0.4	No Reading		
10:05	18.10	0.08	39.1	18.85	2.876	6.76	30.7	6.57	0.7	0.0		
10:10	18.50	0.08	39.5	18.88	3.026	6.75	14.2	5.78	0.9	No Reading		
10:15	19.00	0.08	39.9	18.97	3.099	6.73	-9.3	4.90	0.3	0.0		
	Well Dry							<u>-</u>				
11:05	14.77	0.075	39.9	24.07	3.647	6.72	166.3	5.58	8.3	0.0		
11:10	16.40	0.075	40.275	21.16	3.415	6.73	-51.0	3.63	0.9	No Reading		
11:15	16.85	0.075	40.65	21.83	3.211	6.75	-50.4	4.82	0.3	0.0		
11:20	17.35	0.075	41.025	20.54	3.000	6.72	-25.4	6.27	0.4	No Reading		
11:25	17.80	0.075	41.4	20.98	2.970	6.71	-12.9	6.39	0.4	0.0		
11:30	18.15	0.075	41.775	20.93	2.976	6.69	-3.2	6.39	0.9	No Reading		
11:35	18.40	0.075	42.15	21.09	3.040	6.69	-1.7	6.03	0.0	0.0		
11:40	18.70	0.075	42.525	21.75	3.125	6.69	-8.5	5.20	1.1	No Reading		
11:45	19.00	0.075	42.9	21.42	3.159	6.68	-18.1	4.77	4.2	0.0		
u = new / L	Well Dry											
13:00	12.75	0.8	42.9	24.36	3.805	7.42	232.9	5.07	1.2	0.0		

TOTAL WATER PURGED (GALS): 81.5 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>5</u> of <u>6</u>

DATE: 7-11-16 to 7-21-16	E: 7-11-16 to 7-21-16 WELL ID: MW-3SR ST		STATIC WATER LEVEL (FT. TIC): 9.75		WELL DEPTH (FT. TIC): 19.30		
WATER COLUMN (FT.): 9.55 SLUDGE THICKNESS			NESS (FT.): 0.0 WELL CASING DIAMETER (IN			NAMETER (IN):	2
WELL CASING/BOREHOLE VO	LUME (GALS.): 1	56		FILTER PACK DI	AMETER (IN.): 8	}	FILTER PACK LENGTH (FT.): 8
FILTER PACK WATER VOLUME	LTER PACK PUR	GE VOLUME (GA	L5.): 6.46		WATER LOSS DURING INSTALL (GALS.): 20		
REQUIRED PURGE VOLUME (3	9.4	FIELD PERSONNEL: K Gerdes, J Cook					

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/19/16 13:05	14.80	0.08	43.3	19.02	3.560	7.16	20.3	3.22	0.2	No Reading
13:10	15.60	0.08	43.7	20.02	3.323	6.84	-34.8	4.27	2.7	0.0
13:15	16.30	0.08	44.1	20.67	3.078	6.75	-12.1	5.63	16.4	No Reading
13:20	16.75	0.08	44.5	21.11	2.989	6.69	4.5	5.82	10.6	0.0
13:25	17.25	0.08	44.9	20.31	2.984	6.66	22.5	6.21	37.5	No Reading
13:30	17.70	0.08	45.3	19.76	2.985	6.71	37.9	7.06	5.0	0.0
13:35	18.10	0.08	45.7	19.77	2.991	6.64	33.6	6.46	1.0	No Reading
13:40	18.50	0.08	46.1	19.41	3.043	6.60	32.3	6.13	0.6	0.0
13:45	19.00	0.08	46.5	19.60	3.163	6.59	13.2	5.22	4.6	No Reading
	Well Dry									
15:00	12.85	0.15	46.5	19.64	3.677	6.68	281.5	5.12	8.4	0.0
15:05	16.55	0.15	· 47.25	16.45	3.086	6.60	69.1	5.66	64.2	No Reading
15:10	18.60	0.15	48	16.32	2.931	6.56	84.6	7.45	34.2	0.0
15:15	19.00	0.15	48.75	16.16	3.089	6.52	87.5	6.74	21.4	No Reading
	Well Dry									
7/20/16 8:35	10.20	0.15	48.75	19.05	3.693	6.43	279.7	6.71	9.0	0.0
8:40	14.85	0.15	49.5	15.49	3.130	6.61	258.8	6.63	2.3	No Reading
8:45	16.30	0.15	50.25	16.66	3.047	6.64	231.2	6.65	25.0	0.0
8:50	17.60	0.15	51	16.54	2.938	6.61	<b>196.9</b>	7.19	16.7	No Reading
8:55	18.50	0.15	51.75	<b>16</b> .41	3.122	6.60	161.5	7.12	7.7	0.0
	Well Dry									
13:20	10.25	0.1	51.75	20.60	3.800	6.87	117.1	4.86	3.3	0.0
13:25	13.50	0.1	52.25	17.38	3.336	6.57	26.5	4.13	9.1	No Reading
13:30	15.20	0.1	52.75	17.51	3.128	6.49	24.3	5.52	11.0	0.0

TOTAL WATER PURGED (GAL5): 81.5 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 6 of 6

DATE: 7-11-16 to 7-21-16	:: 7-11-16 to 7-21-16 WELL ID: MW-3SR STA		STATIC WATER	STATIC WATER LEVEL (FT. TIC): 9.75		WELL DEPTH (FT. TIC): 19.30		
WATER COLUMN (FT.): 9.55 SLU		SLUDGE TH	SLUDGE THICKNESS (FT.): 0.0		WELL CASING D	DIAMETER (IN): 2		
WELL CASING/BOREHOLE VO	LUME (GALS.): 1	.56		FILTER PACK DI	8 FILTER PACK LENGTH (FT.): 8			
FILTER PACK WATER VOLUM	FILTER PACK WATER VOLUME (GALS.); 4.9 CASING AND FILTER PAC				L5.): 6.46	WATER LOSS DURING INSTALL (GALS.): 20		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 79.4				FIELD PERSONNEL: K Gerdes, J Cook				

Vater Level	Discharge	l Volume I		Conductivity				I Termini dia a	
	1		_ /->	conductivity				Turbiany	UVA/PID
(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	<u>(NTU)</u>	
16.35	0.1	53.25	17.79	2.981	6.47	39.5	6.43	29.3	No Reading
17.70	0.1	53.75	17.59	2.903	6.42	57.1	7.50	24.3	0.0
18.60	0.1	54.25	17.68	3.032	6.37	64.2	7.31	25.7	No Reading
19.00	0.1	54.75	17.83	3.169	6.36	57.6	6.52	45.2	0.0
Well Dry					<u>.</u>				
10.21	0.15	54.75	18.51	3.472	6.10	223.7	5.83	7.5	0.0
13.50	0.15	\$5.5	16.57	3.143	6.32	221.8	5.70	1.6	No Reading
15.25	0.15	56.25	16.90	3.058	6.50	216.9	5.72	0.9	0.0
17.00	0.15	57	16.86	2.930	6.63	194.5	5.97	1.2	No Reading
18.10	0.15	57.75	16.59	2.930	6.67	162.9	6.72	0.4	0.0
19.00	0.15	58.5	16.51	3.228	6.69	126.5	5.59	0.6	No Reading
Well Dry									
10.78	0.15	58.5	21.92	3.652	6.25	-11.3	5.66	1.4	0.0
14.60	0.15	59.25	18.08	3.261	6.53	-34.4	5.18	1.2	No Reading
15.75	0.15	60	18.80	3.152	6.65	-32.7	5.94	0.3	0.0
16.70	0.15	60.75	18.72	2.984	6.66	-23.8	6.24	0.9	No Reading
17.60	0.15	61.5	19.05	2.912	6.67	-19.0	6.68	0.3	0.0
top Pump									
		,							
							1		
··									
	16.35 17.70 18.60 19.00 Nell Dry 10.21 13.50 15.25 17.00 18.10 19.00 Vell Dry 10.78 14.60 15.75 16.70 17.60 pp Pump	16.35  0.1    17.70  0.1    18.60  0.1    19.00  0.1    19.00  0.1    Nell Dry  0.15    13.50  0.15    15.25  0.15    17.00  0.15    18.10  0.15    19.00  0.15    18.10  0.15    19.00  0.15    15.75  0.15    14.60  0.15    15.75  0.15    16.70  0.15    17.60  0.15    0.15  0.15    17.60  0.15    0.15  0.15    17.60  0.15    0.15  0.15	16.35    0.1    53.25      17.70    0.1    53.75      18.60    0.1    54.25      19.00    0.1    54.75      19.00    0.1    54.75      10.21    0.15    54.75      13.50    0.15    55.5      15.25    0.15    56.25      17.00    0.15    57      18.10    0.15    57      18.10    0.15    58.5      19.00    0.15    58.5      19.00    0.15    58.5      14.60    0.15    59.25      15.75    0.15    60      16.70    0.15    60.75      17.60    0.15    61.5      0.015    61.5    50      0.015    61.5    50      0.15    61.5    50      0.15    61.5    50      0.15    61.5    50      0.15    61.5    50      0.15    61.5    50	16.35    0.1    53.25    17.79      17.70    0.1    53.75    17.59      18.60    0.1    54.25    17.68      19.00    0.1    54.75    17.83      Well Dry	16.35    0.1    53.25    17.79    2.981      17.70    0.1    53.75    17.59    2.903      18.60    0.1    54.25    17.68    3.032      19.00    0.1    54.75    17.83    3.169      Well Dry          10.21    0.15    54.75    18.51    3.472      13.50    0.15    55.5    16.57    3.143      15.25    0.15    56.25    16.90    3.058      17.00    0.15    57    16.86    2.930      18.10    0.15    57.75    16.59    2.930      19.00    0.15    58.5    16.51    3.228      Vell Dry           10.78    0.15    58.5    21.92    3.652      14.60    0.15    59.25    18.08    3.152      16.70    0.15    60.75    18.72    2.984      17.60    0.15    61.5 <td>16.35    0.1    53.25    17.79    2.981    6.47      17.70    0.1    53.75    17.59    2.903    6.42      18.60    0.1    54.25    17.68    3.032    6.37      19.00    0.1    54.75    17.83    3.169    6.36      Well Dry           10.21    0.15    54.75    18.51    3.472    6.10      13.50    0.15    55.5    16.57    3.143    6.32      15.25    0.15    56.25    16.90    3.058    6.63      17.00    0.15    57    16.86    2.930    6.67      19.00    0.15    58.5    16.51    3.228    6.69      Vell Dry           10.78    0.15    58.5    21.92    3.652    6.25      14.60    0.15    59.25    18.08    3.152    6.65      16.70    0.15    61.5</td> <td>16.35  0.1  53.25  17.79  2.981  6.47  39.5    17.70  0.1  53.75  17.59  2.903  6.42  57.1    18.60  0.1  54.25  17.68  3.032  6.37  64.2    19.00  0.1  54.75  17.83  3.169  6.36  57.6    Nell Dry </td> <td>16.35    0.1    53.25    17.79    2.981    6.47    39.5    6.43      17.70    0.1    53.75    17.59    2.903    6.42    57.1    7.50      18.60    0.1    54.25    17.68    3.032    6.37    64.2    7.31      19.00    0.1    54.75    17.83    3.169    6.36    57.6    6.52      Well Dry   </td> <td>16.35  0.1  \$3.25  17.79  2.981  6.47  39.5  6.43  29.3    17.70  0.1  \$3.75  17.59  2.903  6.42  \$7.1  7.50  24.3    18.60  0.1  \$54.25  17.68  3.032  6.37  64.2  7.31  25.7    19.00  0.1  \$4.75  17.83  3.169  6.36  \$7.6  6.52  45.2    Nell Dry            10.21  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$56.25  16.57  3.143  6.52  216.9  5.72  0.9    17.00  0.15  \$57.75  16.59  2.930  6.67  162.9  6.72  0.4</td>	16.35    0.1    53.25    17.79    2.981    6.47      17.70    0.1    53.75    17.59    2.903    6.42      18.60    0.1    54.25    17.68    3.032    6.37      19.00    0.1    54.75    17.83    3.169    6.36      Well Dry           10.21    0.15    54.75    18.51    3.472    6.10      13.50    0.15    55.5    16.57    3.143    6.32      15.25    0.15    56.25    16.90    3.058    6.63      17.00    0.15    57    16.86    2.930    6.67      19.00    0.15    58.5    16.51    3.228    6.69      Vell Dry           10.78    0.15    58.5    21.92    3.652    6.25      14.60    0.15    59.25    18.08    3.152    6.65      16.70    0.15    61.5	16.35  0.1  53.25  17.79  2.981  6.47  39.5    17.70  0.1  53.75  17.59  2.903  6.42  57.1    18.60  0.1  54.25  17.68  3.032  6.37  64.2    19.00  0.1  54.75  17.83  3.169  6.36  57.6    Nell Dry	16.35    0.1    53.25    17.79    2.981    6.47    39.5    6.43      17.70    0.1    53.75    17.59    2.903    6.42    57.1    7.50      18.60    0.1    54.25    17.68    3.032    6.37    64.2    7.31      19.00    0.1    54.75    17.83    3.169    6.36    57.6    6.52      Well Dry	16.35  0.1  \$3.25  17.79  2.981  6.47  39.5  6.43  29.3    17.70  0.1  \$3.75  17.59  2.903  6.42  \$7.1  7.50  24.3    18.60  0.1  \$54.25  17.68  3.032  6.37  64.2  7.31  25.7    19.00  0.1  \$4.75  17.83  3.169  6.36  \$7.6  6.52  45.2    Nell Dry            10.21  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$54.75  18.51  3.472  6.10  223.7  5.83  7.5    13.50  0.15  \$56.25  16.57  3.143  6.52  216.9  5.72  0.9    17.00  0.15  \$57.75  16.59  2.930  6.67  162.9  6.72  0.4

TOTAL WATER PURGED (GAL5): 81.5

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>3</u>

DATE: 7-12-16	WELL ID: MW-	3DR	STATIC WATER	ER LEVEL (FT. TIC): 9.8 WELL DEPTH (FT. TIC): 65.50				
WATER COLUMN (FT.): 55.70	)	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING DIAN	AFTER (IN): 6		
WELL CASING/BOREHOLE VOLUME (GALS.): 81.8				FILTER PACK DI	AMETER (IN.): NON	IE FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK			LTER PACK PUR	GE VOLUME (GA	LS.): 81.8	WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 245.4			45.4	FIELD PERSONNEL: K Gerdes, J Cook				

Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/15/16			165							
	initial driller de	velopment by s	urging/overpum	ping.						
· .	No visible sedin	nent at complet	ion of developm	ent.						
7/12/16 9:55	9.80	0.4	0	14.64	5.371	6.74	-3.5	3.80	93.8	0.0
10:00	11.40	0.4	2	15.03	5.247	6.50	-71.4	1.43	38.4	No Reading
10:05	14.50	0.4	4	14.94	5.279	6.58	-95.4	1.21	21.8	0.0
	Stop Surging									
10:10	15.70	0.4	6	15.11	5.263	6.63	-109.4	1.10	9.8	No Reading
10:15	16.70	0.4	8	15.27	5.250	6.67	-119.0	1.03	7.1	0.0
10:20	17.30	0.4	10	15.44	5.235	6.69	-123.6	0.99	5.8	No Reading
10:25	17.75	0.4	12	15.60	5.222	<del>6</del> .71	-124.3	0.97	5.4	0.0
10:30	18.10	0.4	14	15.43	5.192	6.70	-121.5	0.95	5.1	No Reading
10:35	18.40	0.4	16	15.65	5.171	6.69	-118.1	0.93	4.6	0.0
10:40	18.60	0.4	18	15.78	5.161	6.67	-115.8	0.92	4.3	No Reading
10:45	18.85	0.4	20	15.68	5.135	6.65	-110.3	0.91	4.0	0.0
10:50	19.50	0.4	22	15.61	5.100	6.59	-100.7	0.89	3.6	No Reading
10:55	19.70	0.4	24	15.68	5.091	6.58	-98.1	0.89	3.5	0.0
11:00	19.90	0.4	26	15.70	5.083	6.56	-94.6	0.88	3.4	No Reading
11:05	20.10	0.4	28	15.55	5.081	6.56	-94.0	0.88	3.4	0.0
11:10	20.20	0.4	30	15.58	5.073	6.55	-91.8	0.87	3.3	No Reading
11:15	20.40	0.4	32	15.61	5.066	6.54	-89.5	0.87	3.2	0.0
11:20	20.50	0.4	34	15.73	5.062	6.53	-87.3	0.86	3.1	No Reading
11:25	20.70	0.4	36	15.57	5.056	6.52	-84.7	0.86	3.1	0.0
11:30	21.00	0.4	38	15.68	5.053	6.51	-82.8	0.85	3.2	No Reading

TOTAL WATER PURGED (GALS): 250 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 7-12-16	WELL ID: MW-	3DR	STATIC WATER	LEVEL (FT. TIC): 9.8 WELL DEPTH (FT. TIC): 65.50			T. TIC): 65.50
WATER COLUMN (FT.): 55.70		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	6
WELL CASING/BOREHOLE VOLUME (GALS.): 81.8 FILTER PACK DIAMETER (IN.): NONE FILT				FILTER PACK LENGTH (FT.): NONE			
FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK				GE VOLUME (GA	L5.): 81.8		WATER LOSS DURING INSTALL (GALS.): 0
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 245.4 FIELD PERSONNEL: K Gerdes				EL: K Gerdes, J	Cook	• • • • • • • • • • • • • • • • • • •	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gai)	Temp. (C)	5pecific Conductivity (mS/cm)	оH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/12/16 11:35	21.20	0.4	40	15 79	5.050	6.50		0.85	29	0.0
11:40	21.25	0.4	47	15.0D	5.050	6.50	70.4	0.05	2.0	No Reading
11.40	21.35	0.4	42	12.00	5.040	0.49	-/8.4	0.84	2.9	NO Reading
11:45	21.50	0.4	44	15.78	5.044	6.48	-76.4	0.84	2.9	0.0
11:50	21.70	0.4	46	15.64	5.041	6.47	-74.7	0.84	2.8	No Reading
11:55	21.90	0.4	48	15.55	5.039	6.45	-72.4	0.84	2.8	0.0
12:00	22.00	0.4	50	15.72	5.040	6.45	-71.5	0.83	2.7	No Reading
	Break									
13:00	14.65	0.35	51.75	16.25	5.073	6.90	-23.9	3.36	10.6	0.0
13:05	15.40	0.35	53.5	16.55	5.122	6.39	-30.4	1.50	3.3	No Reading
13:10	16.20	0.35	55.25	15.66	5.114	6.25	-33.1	1.13	2.8	0.0
13:15	16.80	0.35	57	15.61	5.104	6.22	-34.0	1.04	3.0	No Reading
13:20	17.30	0.35	58.75	15.50	5.058	6.20	-31.7	1.01	2.6	0.0
13:25	17.70	0.35	60.5	15.73	5.026	6.20	-29.6	0.97	2.3	No Reading
13:30	18.10	0.35	62.25	15.70	5.013	6.18	-28.5	0.95	2.5	0.0
13:35	18.50	0.35	64	15.82	5.011	6.18	-28.6	0.93	2.3	No Reading
13:40	19.10	0.35	65.75	15.62	5.012	6.22	-31.6	0.92	2.7	0.0
13:45	19.70	0.35	67.5	15.78	5.016	6.17	-32.6	0.89	3.7	No Reading
13:50	20.10	0.35	69.25	15.59	5.022	6.18	-34.3	0.88	13.6	0.0
13:55	20.60	0.35	71	15.57	5.027	6.19	-36.7	0.87	2.5	No Reading
14:00	21.10	0.35	72.75	15.40	5.031	6,21	-38.5	0.87	2.5	0.0
14:05	21.50	0.35	74.5	15.58	5.034	6.22	-40.1	0.86	2.5	No Reading
14:10	21.80	0.35	76.25	15.65	5.042	6.24	-42.4	0.85	2.5	0.0
14:15	22.05	0.35	78	15.79	5.046	6.26	-44.0	0.85	2.5	No Reading
14:20	22.25	0.35	79.75	15.79	5.053	6.28	-45.1	0.84	2.5	0.0

TOTAL WATER PURGED (GALS): 250 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-5ite Treatment Plant

PAGE <u>3</u> of <u>3</u>

DATE: 7-12-16	WELL ID: MW-	3DR	STATIC WATER	LEVEL (FT. TIC):	9.8	WELL DEPTH (FT. TIC): 65.50		
WATER COLUMN (FT.): 55.70		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN): 6		
WELL CASING/BOREHOLE VOLU	ELL CASING/BOREHOLE VOLUME (GALS.): 81.8 FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.): NON					FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 81.8		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 245.4				FIELD PERSONN	IEL: K Gerdes, J	Cook	·	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/12/16 14:25	22.50	0.35	81.5	15.44	5.055	6.29	-45.4	0.84	2.6	No Reading
14:30	23.20	0.35	83.25	15.30	5.052	6.29	-45.6	0.84	2.8	0.0
14:35	24.60	0.35	85	15,33	5.051	6.30	-45.3	0.84	2.6	No Reading
14:35	Ston Pump									
				····						,
	-^-									
										· · · · ·
							-			
						·····				

TOTAL WATER PURGED (GALS): 250

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-31-16	WELL ID: MW	'-6S	STATIC WATER	LEVEL (FT. TIC):	5.65	WELL DEPTH (F	न. TIC): 15.03
WATER COLUMN (FT.):	9.38	SLUDGE THICK	(NESS (FT.): ~0.1		WELL CASING D	DIAMETER (IN):	2
WELL CASING/BOREHOL	E VOLUME (GAL5.): 1	.53		FILTER PACK DI	AMETER (IN.): 6	5	FILTER PACK LENGTH (FT.): 15.0
FILTER PACK WATER VO	LUME (GALS.): 3.06	CASING AND P	ILTER PACK PUR	GE VOLUME (GA	L5.): 4.59		TOTAL PURGE VOLUME (X 3): 13.8
FIELD PERSONNEL: J Coo	ok, K Gerdes						

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
12:54	Start									
13:00	6.70	0.20	· · · · · · · · · · · · · · · · · · ·	13.19	5.608	7.33	-103.0	3.02	1477.0	
13:10	7.35	0.20		13.97	5 470	7.05	-89.0	3.91	1487.7	
12:20	9.90	0.20	<u>ــــــــــــــــــــــــــــــــــــ</u>	13.77	£ 193	6.94	65.9	4.70	1292 5	
12.20	0.50	0.20		12.77	5.105	6.89	-03.0	4.12	1075 4	
13:30	9.00	0.25		13,44	5.122	0.80	-30.9	4.13	14/5.4	
13:40	9.05	0.25	10	13.01	5.223	6.76	-62.8	2.33	14/8.1	
13:50	9.05	0.25		12.72	3.092	7.17	-117.2	4.87	547.7	
	Stop Surging									
14:00	8.90	0.25	15	12.84	3.780	6.71	-76.2	0.40	99.4	
14:10	8.90	0.17		12.66	3.731	<del>6</del> .70	-75.3	0.27	24.7	
14:20	9.00	0.17		12.45	3.617	<del>6</del> .70	-74.7	0.28	17.4	
14:30	9.00	0.17	20	12.98	3.592	6.69	-74.6	0.22	16.0	
14:30	Stop Pump									
	·									
		•								
				· · · · · · · · · · · · · · · · · · ·						
•										
**										<u> </u>
								<b></b>		
· ·										
. '	·									

TOTAL WATER PURGED (GALS): 20

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 8-2-16	WELL ID: MW	-6D	STATIC WATER	LEVEL (FT. TIC);	5.5 V	WELL DEPTH (FT. TIC): 52.00			
WATER COLUMN (FT.):	46.50	SLUDGE THIC	CKNESS (FT.): 0.0		WELL CASING DI	IAMETER (IN): 1			
WELL CASING/BOREHO	OREHOLE VOLUME (GALS.): 1.9 FILTER PACK DIAMETER (IN.): 4 FILTER PACK LENGTH				FILTER PACK LENGTH (FT.): 16				
FILTER PACK WATER VC	UUME (GALS.): 2.5	CASING AND	FILTER PACK PUR	GE VOLUME (GA	LS.): 4.4	WATER LOSS DURING INSTALL (GALS.): NA			
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 13.2			13.2	FIELD PERSONNEL: K Gerdes, J Cook					

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	Hq	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8/2/16 11:00	Surge 1-inch dia	ameter pre-paci	ed screen with (	0.75-inch diame	ter Sample Pro r	,				
11:12	Start peristaltic	: pump - water is	s pumping clear							
11:25	6.95	~0.2	2.5	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
11:37	6.98	~0.2	5	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
12:02	6.98	~0.2	10	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
12:20	6.98	~0.2	13.5	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
12:20	Stop Pump									P
15:00	5.50	0.2	13.5	17.69	1.012	7.60	14.7	4.60	4.0	0.0
15:05	6.97	0.2	14.5	17.16	1.006	7.53	19.0	3.38	1.6	No Reading
15:10	6.97	0.2	15.5	16.80	1.010	7.42	22.4	2.45	4.0	0.0
15:10	Stop Pump									

TOTAL WATER PURGED (GALS): 15.5

WATER QUALITY METER: VSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from flow-through cell after surging.

PAGE 1____ of ____2___

.

			·							
DATE: 8-22-16		WELL ID: MW-	-85	STATIC WATER	R LEVEL (FT. TIC):	7.21	WELL DEPTH (	FT. TIC): 14.78		
WATER COLUM	IN (FT.): 7.57		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2		
WELL CASING/E	BOREHOLE VOLU	JME (GALS.): 1.	23		FILTER PACK D	IAMETER (IN.):	6	FILTER PACK LE	NGTH (FT.): 10	
FILTER PACK W	ATER VOLUME (	GALS.): 3.37	CASING AND F	ILTER PACK PUR	GE VOLUME (GA	ALS.): 4.6		WATER LOSS D	URING INSTALL	(GALS.): NA
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 1	3.8	FIELD PERSON	NEL: K Gerdes		•		
		<u>г</u>	1	1	Canal Ga		1	1		
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pH	ORP	DO	(NTU)	(PPM)
8/22/16 9:40	7.21	0.2	1	20.36	1.388	6.89	264.6	3.22	968.1	0.0
9:45	8.22	0.2	2	20.08	1.368	6.67	278.0	3.75	1169.5	No Reading
9:50	8.35	0.2	3	19.41	1.288	6.49	279.8	2.84	1361.2	0.0
9:55	8.15	0.2	4	19.32	1.321	6.43	276.4	3.57	1359.4	No Reading
10:00	8.41	0.2	5	18.95	1.398	6.46	274.3	3.12	1355.2	0.0
10:05	8.51	0.2	6	18.60	1.432	6.48	282.6	3.76	1351.7	No Reading
10:10	8.51	0.2	7	18.57	1.462	6.44	263.6	1.89	1351.2	0.0
10:15	8.30	0.2	8	18.55	1.450	6.51	262.4	3.17	1350.3	No Reading
10:20	8.41	0.2	9	18.S2	1.462	6.51	256.0	4.50	1338.2	0.0
10:25	8.45	0.2	10	18.36	1.459	6.52	258.8	4.00	1348.6	No Reading
10:30	8.35	0.2	11	18.53	1.443	6.52	257.2	4.30	1350.6	0.0
10:35	8.51	0.2	12	18.34	1.462	6.52	256.3	4.31	1349.0	No Reading
10:40	8.38	0.2	13	18.54	1.479	6.55	251.1	4.21	1350.2	0.0
10:45	8.30	0.2	14	18.56	1.453	6.61	239.3	No Reading*	1351.9	No Reading
10:50	8.37	0.2	15	18.59	1.472	6.59	248.6	No Reading*	1351.6	0.0
10:55	8.39	0.2	16	18.58	1.471	6.58	241.0	No Reading*	1351.0	No Reading
11:00	8.36	0.2	17	18.77	1.482	6.55	234.3	No Reading*	1352.5	0.0
11:05	8.22	0.2	18	18.78	1.452	6.61	234.6	No Reading*	1352.3	No Reading
11:10	8.40	0,2	19	18.65	1.474	6.54	246.3	No Reading*	1351.9	0.0
11:15	8.34	0.2	20	18.61	1.486	6,57	211.5	No Reading*	1351.6	No Reading
11:20	8.39	0.2	21	18.70	1.491	6.57	217.1	No Reading*	1351.9	0.0
11:25	8,36	0.2	27	18.66	1.496	6.57	778.6	No Reading*	1349.8	No Reading
11:30	8 35	0.2	23	18 40	1 500	6 5 8	719.9	No Reading*	1189.6	0.0
11:35	8 35	0.2	24	19 27	2 010	6.72	201.0	5 71	856 /	No Reading
0.111	0.30	Ų.2	4.44	13.31	2.010	0.75	201.5	5.71	030.4	noncoung

TOTAL WATER PURGED (GAL5): 30

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = Membrane came off DO probe, later repaired.

PAGE 2____ of _____

DATE: 8-22-16	WELL ID: MW	-85	STATIC WATER	LEVEL (FT. TIC): 7.21 WELL DEPTH (FT. TIC): 14.78				
WATER COLUMN (FT.): 7.57 SLUDGE			LUDGE THICKNESS (FT.): 0.0 WELL CASING D			DIAMETER (IN): 2		
WELL CASING/BOREHOLE VC		FILTER PACK DI	AMETER (IN.): 6	5	FILTER PACK LENGTH (FT.): 10			
FILTER PACK WATER VOLUME (GALS.): 3.37 CASING AND FILTER PACK PL				GE VOLUME (GA	LS.): 4.6		WATER LOSS DURING INSTALL (GALS.): NA	
REQUIRED PURGE VOLUME (	13.8	FIELD PERSONN	IEL: K Gerdes		, <u>, , , , , , , , , , , , , , , , , , </u>			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8/22/16 11:40	8.36	0.2	25	18.67	1.502	6.78	193.9	4.48	510.1	0.0
	Stop Surging									
11:45	8.30	0.2	26	18.57	1.502	6.59	190.6	1.76	101.7	No Reading
11:50	8.22	0.2	27	18.47	1.494	6.33	166.0	0.84	21.3	0.0
11:55	8.20	0.2	28	18.46	1.491	6.27	1\$4.5	0.73	15.6	No Reading
12:00	8.20	0.2	29	18.44	1.492	6.27	148.4	0.67	11.2	0.0
12:05	8.20	0.2	30	18.46	1.492	6.29	143.9	0.61	5.5	No Reading
12:05	Stop Pump									
										· ·
				······						
						<u> </u>	· ······			
	·									
			•							
									,	
									<u>.</u>	
l										

TOTAL WATER PURGED (GALS): 30 WATE

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = Membrane came off DO probe, to be repaired.

PAGE <u>1</u> of <u>1</u>

DATE: 3-17-16	•	WELL ID: MW-	23D	STATIC WATER LEVEL (FT. TIC): 9.48			WELL DEPTH (FT. TIC): 71.40		
WATER COLUMN (FT.): 61.92 SLUDGE THICKNESS (FT.): ~0.1 WELL CASING DIAMETER							DIAMETER (IN):	2	
WELL CASING/BOREHOLE VOLUME (GALS.): 10.1					FILTER PACK DIAMETER (IN.): 6 FILTER PACK LENGTH (FT.):			FILTER PACK LENGTH (FT.): 23.0	
FILTER PACK WATER VOLUME (GALS.): 7.6 CASING AND FILTER PAG				ILTER PACK PUR	GE VOLUME (GA	LS.): 17.7		TOTAL PURGE VOLUME (X 3): 53.1	
HELD PERSONNEL: J Cook								I	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:22	Start			- 7 - 8 - 7 - 7 - 7 - 7						
8:30	30.75	0.33		14.39	1.691	6.99	35.2	7.99	1225.5	
8.40	20.25	0.22		14 53	3 700	7 10	46.7	6.22	P54.7	
0.50	25.00	0.33		14.52	2.233	7.10		0.22	034.7	
8:50	35.80	0.33		14.69	2.569	7.07	-4/.9	5.39	913.8	
9:00	38.40	0.33		14.84	2.659	7.01	-46.4	5.46	1266.1	
9:10	42.35	0.33		15.05	2.759	7.01	-44.4	5.54	1248.1	
·	Stop Surging								ļ	
9:20	43.00	0.33		15.34	2.847	6.70	-23.8	1.07	386.0	
9:22			20							
<del>9</del> :30	44.35	0.25		15.40	2.852	6.60	-38.5	0.51	58.8	
9:40	44.50	0.25		15.35	2.882	6.58	-40.7	0.61	24.0	
9:50	44.70	0.25		15.49	2.876	6.60	-42.1	0.50	12.4	
10:00	44 70	0.25		15 54	2 013	6.59	-41.6	0.49	5.9	
10:10	45.20	0.25		15.00	2.020	5.50 5.50	72.0	0.43	14.5	
10.10	43.20	0.25		13.83	2.520	0.36	-30.4	0.45	14,3	
10:20	45.05	0.25		16.00	2.922	6.58	-34.7	0.43	11,5	
10:30	45.20	0.25		16.34	2.928	6.59	-34.5	0.59	21.6	
10:40	45.00	0.25	40	16.43	2.946	6.56	-30.9	0.58	9.5	
10:40	Stop Pump									
10:47	35.80									
No.										

TOTAL WATER PURGED (GAL5): 40

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-20-16, 7-21-16	WELL ID: MW	-245	STATIC WATER LEVEL (FT. TIC): 12.01 WELL DEPTH (FT. TIC): 19.69				न. TIC): 19.69
WATER COLUMN (FT.): 7.68	NESS (FT.): 0.0	WELL CASING DIAMETER (IN): 2			2		
WELL CASING/BOREHOLE V		FILTER PACK DIAMETER (IN.): 7 FILTER PACK			FILTER PACK LENGTH (FT.): 8.68		
FILTER PACK WATER VOLUM	ILTER PACK PUR	GE VOLUME (GA	L5.): 5.25		WATER LOSS DURING INSTALL (GALS.): NA		
REQUIRED PURGE VOLUME	5.75	FIELD PERSON	NEL: K Gerdes		1		

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gai)	Temp. (C)	5pecific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/20/16 11:45	14.61	0.4	0	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
11:50	14.20	0.4	4	15.86	1.366	6.30	-106.7	1.27	253.4	No Reading
11:55	13.90	0.25	5.25	15.70	1.366	6.29	-115.8	0.96	162.5	No Reading
12:00	13.72	0.25	6.5	16.67	1.350	6.33	-83.2	1.07	1205.5	No Reading
12:05	13.45	0.25	7.75	16.37	1.345	6.33	-89.3	1.01	1201.3	No Reading
12:10	13.23	0.25	9	15.13	1.359	6.32	-86.2	1.13	611.2	No Reading
12:15	13.09	0.25	10.25	15.51	1.351	6.32	-95.8	0.89	1197.2	No Reading
12:20	13.06	0.25	11.5	15.46	1.365	6.34	-86.2	1.19	889.7	No Reading
12:25	13.05	0.25	12.75	15.71	1.348	6.34	-88.6	1.06	1102.3	No Reading
	Stop Surging									
12:30	13.05	0.25	14	14.62	1.345	6.32	-91.9	0.96	421.0	No Reading
12:35	13.05	0.25	15.25	14.72	1.353	6.36	-77.0	0.96	236.2	No Reading
12:40	13.05	0.25	16.5	15.13	1.362	6.34	-90. <del>9</del>	0.88	84.1	No Reading
12:45	13.05	0.25	17.75	15.16	1.366	6.36	-95.1	0.82	32.4	No Reading
12:50	13.05	0.25	19	15.27	1.366	6.36	-96.6	0.80	<b>26.1</b>	No Reading
12:50	Stop Pump									
7/21/16 10:10	12.48	0.15	19	15.29	1.445	7.43	107.4	3.42	1203.1	0.0
10:15	12.80	0.15	19.75	15.50	1.449	6.82	-16.8	1.76	140.1	No Reading
10:20	12.80	0.15	20.5	15.58	1.447	6.59	-29.0	1.45	538.9	0.0
10:25	12.80	0.15	21.25	15.66	1.443	6.46	-35.8	1.31	606.3	No Reading
	Stop Surging									
10:30	12.80	0.15	22	15.71	1.450	6.37	-40.6	1.24	76.3	0.0
10:35	12.80	0.15	22.75	15.59	1.451	6.32	-44.0	1.20	40.3	No Reading
10:40	12.80	0.15	23.5	15.94	1.445	6.27	-46.9	1.15	31.8	0.0

TOTAL WATER PURGED (GALS): 25 WATER QUALITY METER: Y5i 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-20-16, 7-21-16	WELL ID: MW-24S STATI		STATIC WATER LEVEL (FT. TIC): 12.01 W		WELL DEPTH (FT. TIC): 19.69			
WATER COLUMN (FT.): 7.68 SLUDGE THICKNESS (F			NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	2	
WELL CASING/BOREHOLE VOLUME (GALS.): 1.25				FILTER PACK DIAMETER (IN.): 7 FILTER PACK LENGTH (FT.): 8			NGTH (FT.): 8.78	
FILTER PACK WATER VOLUME (GALS.): 4.0 CASING AND FILTER PACK PUL				GE VOLUME (GA	LS.): 5.25		WATER LOSS DI	URING INSTALL (GALS.): NA
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 15.75				FIELD PERSONN	EL: K Gerdes			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/21/16 10:45	12.80	0.15	24.25	16.19	1.453	6.24	-49.7	1.13	12.2	No Reading
10:50	12.80	0.15	25	16.12	1.449	6.22	-51.6	1.10	5.6	0.0
10:50	Stop Pump									
							•			
				· · · · · ·	1			-		
	<u>+</u> ,,					· · · ·	·			
	·····									
				•						
								:		
			-						l	

TOTAL WATER PURGED (GALS): 25 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI5S On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-22-16	WELL ID: MW	-24D	STATIC WATER LEVEL (FT. TIC): 11.45 WELL DEPTH (FT. TIC):			: 69.20		
WATER COLUMN (FT.): 57.75 SLUDGE THICKNESS (FT.): ~0.1 WE						WELL CASING DIAMETER (IN): 2		
WELL CASING/BOREHOLE VOL		FILTER PACK DI	AMETER (IN.): 6	; FILTE	R PACK LENGTH (FT.): 25.0			
FILTER PACK WATER VOLUME (GALS.): 7.9 CASING AND FILTER PAC			ILTER PACK PURC	GE VOLUME (GA	LS.): 17.3	τοτΑ	L PURGE VOLUME (X 3): 51.9	
FIELD PERSONNEL: J Cook		-1				I		

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pH	ORP	00	(NTU)	(PPM)
10:25	Start									
10:45	No Reading	0.6		13.46	4.337	7.23	-50.1	4.73	1481.7	0.0
10:55	32.10	0.5		14.06	4.129	6.68	-57.6	4.60	1480.5	
11:05	33.30	0.5		13.99	4.175	6.89	-50.Z	5.01	1082.0	
11:15	34.00	0.5		13.54	4.198	6.66	-36.9	4.49	1098.4	
11:25	37.30	0.5		13.71	4.194	6.52	-37.1	2.68	340.8	
11:35	38.75	0.5		13.75	4.176	6.56	-36.9	2.84	354.1	
	Stop Surging									
11:40			40							0.0
11:45	38.85	0.5		14.50	4.189	6.47	-32.5	0.19	129.0	
11:55	38.88	0.5		14.54	4.180	6.47	-28.5	0.17	94.7	
12:05	39.01	0.5		14.45	4.176	6.47	-26.1	0.21	94.9	
12:07	Reduce Flow		55							
12:15	33.85	0.4		14.35	4.196	6.45	-15.4	0.04	18.5	
12:25	32.80	0.4		14.30	4.176	6.38	-5.1	0.05	23.0	
12:35	No Reading	0.4	68	14.41	4.172	6.45	-10.1	0.07	25.2	0.0
12:35	Stop Pump									
				·····						
									1	
· · · · · · · · · · · · · · · · · · ·								A	1	

TOTAL WATER PURGED (GAL5): 68

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

.

PAGE 1_____ of _____

DATE: 6-22-16		WELL ID: MW-	-255	STATIC WATER	ATIC WATER LEVEL (FT. TIC): 10.36 WELL DEPTH (I			(FT. TIC): 18.51	FT. TIC): 18.51			
WATER COLUN	AN (FT.): 8.15		SLUDGE THICK	 NESS (FT.): 0.0		WELL CASING	i Diameter (IN):	2				
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	3	······································	FILTER PACK D	i IAMETER (IN.): 1	6	FILTER PACK L	ENGTH (FT.): 10.	.15		
FILTER PACK W	ATER VOLUME (	(GALS.): 3.4	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	TOTAL PURGE	iE VOLUME (X 3): 14.1					
FIELD PERSON	NEL: K Gerdes		I		<u> </u>							
		I	<u></u>	r								
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)		
10:20	11.50	0.25	0	17.64	0.507	6.56	115.9	5.71	1190.1	No Reading		
10:25	13.40	0.25	1.25	17.32	0.570	6.75	143.6	4.42	408.0	No Reading		
10:30	13.90	0.25	2.5	18.20	1.147	6.66	171.3	4.27	1393.2	No Reading		
10:35	13.80	0.25	3.75	17.18	1.190	6.56	188.1	4.24	1183.7	No Reading		
10:40	13.90	0.25	5	17.67	0.655	6.55	200.8	4.75	1184.7	No Reading		
10:45	14.00	0.25	6.25	17.72	1.250	6.48	210.8	4.41	1189.0	No Reading		
10:50	14.05	0.25	7.5	17.25	0.687	6.44	219.9	4.64	810.8	No Reading		
10:55	14.00	0.25	8.75	17.75	1.298	6.37	227.7	4.81	1188.8	No Reading		
11:00	14.00	0.25	10	17.62	0.782	6.39	236.3	5.00	1188.1	No Reading		
11:0S	14.00	0.25	11.25	17.83	0.682	6.38	242.6	4.87	1190.2	No Reading		
11:10	14.00	0.25	12.5	17.69	1.317	6.33	249.0	4.26	1189.2	No Reading		
	Stop Surging											
11:15	14.00	0.25	13.75	17.37	1.316	6.30	248.9	3.03	92.5	No Reading		
11:20	14.00	0.25	15	17.73	1.317	6.11	240.9	1.81	29.9	No Reading		
11:25	14.00	0.25	16.25	17.23	1.313	6.08	237.5	1.92	12.0	No Reading		
11:30	14.00	0.25	17.5	17.56	1.316	6.01	240.7	1.81	1.1	No Reading		
11:35	14.00	0.25	18.75	17.25	1.309	5.98	244.1	1.99	0.7	No Reading		
11:35	Stop Pump											
· · · · · · · · · · · · · · · · · · ·												

TOTAL WATER PURGED (GALS): 18.75

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 3-17-16, 3-21-16 WELL ID: MW-25D			STATIC WATER	TATIC WATER LEVEL (FT. TIC): 11.44 WE			(FT. TIC): 64.35
WATER COLUMN (FT.): 52.91	1 NESS (FT.): ~0.6	T.): ~0.6 WELL CASING DIAMETER (IN): 6					
WELL CASING/BOREHOLE VOLUME (GALS.): 77.8				FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (F			FILTER PACK LENGTH (FT.): NONE
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 77.8		TOTAL PURGE VOLUME (X 3): 234
FIELD PERSONNEL: J Cook		. <b></b>				····	- L

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	Hq	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
3/17/16 12:18	Start					<b>·</b>				
12:30	20.00	1.3		15.48	3.116	7.24	-130.1	5.05	> 1200	
12:40	24.70	1.15		15.14	2.865	7.00	-101.9	5.08	> 1200	
12:50	27.70	1.0		14.83	2.793	6.82	-86.8	5.55	> 1200	
13:00	30.20	0.85		14.70	2.687	6.80	-80.0	5.07	429.2	
13:10	32.20	0.7		14.81	2.622	6.85	-78.1	4.68	428.9	
13:13			55						-	
13:20	32.90	0.7		14.98	2.711	6.88	-77.0	3.88	316.7	
13:30	33.55	0.7		15.15	2.827	6.75	-73.4	3.57	353.7	
13:40	33.90	0.7		14.98	2.987	6.72	-66.7	3.77	348.6	
13:50	34.40	0.7		14.99	3.085	6.75	-61.1	3.75	137.0	
14:00	34.60	0.7		14.87	3.127	6.65	-68.5	3.69	148.4	
14:08			95							
14:10	34.65	0.7		14.92	3.126	6.62	-71.0	3.13	191.4	
14:20	34.75	0.7		14.78	3.156	6.64	-70.0	3.40	43.0	
14:30	34.85	0.7	110	14.61	3.200	6.65	-67.0	3.69	37.9	
	Stop Surging									
14:40	34.87	0.6		14.78	3.232	6.58	-66.1	3.13	19.0	
14:50	34.82	0.6		14.72	3.270	6.59	-65.0	3.45	12.8	
15:00	34.76	0.6	128	15.22	3.315	6.62	-63.1	3.43	11.1	
15:00	Stop Pump		-							
3/21/16 8:00	Re-start									
8:10	18.40	1.0		14.21	3.358	6.75	-149.2	0.36	11.3	
8:20	23.20	1.0		14.43	3.385	6.84	-166.4	0.29	7.8	

TOTAL WATER PURGED (GALS): 238 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

DATE: 3-17-16, 3-21-16 WELL ID: MW-25D		STATIC WATER LEVEL (FT. TIC): 11.44			WELL DEPTH (FT. TIC): 64.35				
WATER COLUMN (FT.): 52.91 SLUDGE THICKNESS (FT.): ~0.6					WELL CASING DIAMETER (IN): 6				
WELL CASING/BOREHOLE VOL		FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE				
FILTER PACK WATER VOLUME	LTER PACK PUR	JE VOLUME (GALS.): 77.8			TOTAL PURGE VOLUME (X 3): 234				
FIELD PERSONNEL: J Cook									

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbīdity (NTU)	OVA/PID (PPM)
3/21/16 8:30	26.70	1.0	158	14.40	3.432	6.83	-149.9	0.30	11.4	
8:40	29.40	0.9		14.55	3.454	6.80	-162.3	0.28	11.2	
8:50	31.30	0.8		14.45	3.444	6.71	-149.8	0.35	10.7	
9:00	32.50	0.8	183	14.55	3.433	6.67	-144.5	0.36	9.9	
9:10	33.30	0.7		14.60	3.423	6.65	-140.1	0.34	9.6	
9:20	33.80	0.7		14.09	1.629	7.24	-169.5	0.15	26.2	
9:30	34.15	0.7		14.80	3.274	6.68	-139.5	0.39	13.4	
9:40	34.35	0.7		14.88	3.324	6.61	-127.8	0.43	9.4	
9:50	34.45	0.7	218	14.90	3.361	6.58	-121.7	0.42	5.4	
10:00	34.60	0.67		14.91	3.360	6.56	-119.5	0.41	5.1	
10:10	34.60	0. <b>67</b>		14.85	3.366	6.56	-119.0	0.42	3.6	
10:20	34.65	0.67	238	No Reading	No Reading	No Reading	No Reading	No Reading	5.6	
10:20	Stop Pump									
									•	
						~~~~				
						:				
N										

TOTAL WATER PURGED (GAL5): 238

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant
PAGE _____ of _____

DATE: 6-22-16	WELL ID: MW-	285	STATIC WATER	LEVEL (FT. TIC):	VEL (FT. TIC): 11.96 WELL DEPTH (FT. TIC): 20.30				
WATER COLUMN (FT.): 8.34		SLUDGE THICK	NESS (FT.): 0.0	WELL CASING DIAMETER (IN): 2					
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): 7			FILTER PACK LENGTH (FT.): 8.85				
FILTER PACK WATER VOLUME (	LTER PACK PUR	GE VOLUME (GA	LS.): 5.5		TOTAL PURGE VOLUME (X 3): 16.5				
FIELD PERSONNEL: K Gerdes							· · · · ·		

	<u> </u>				Specific					
~	Water Level	Discharge	Volume	- (0)	Conductivity				Turbidity	OVA/PID
lime	(Ft. 11C)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рн	ORP		(NTU)	(17199)
14:15	12.05	0.3	0	19.24	3.176	6.19	-68.3	4.50	1204.7	No Reading
14:20	12.10	0.3	1.5	18.10	2.147	6.32	-76.1	4.18	1021.4	No Reading
14:25	12.10	0.3	3	18.11	1.869	6.37	-78.0	3.60	1191.3	No Reading
14:30	12.10	0.3	4.5	17.84	3.186	6.36	-76.4	6.27	1190.8	No Reading
14:35	12.10	0.3	6	17.94	1.660	6.34	-77.1	3.45	1190.8	No Reading
14:40	12.10	0.3	7.5	17.60	1.694	6.38	-74.7	3.77	1185.2	No Reading
14:45	12.10	0.3	9	17.80	1.685	6.35	-81.3	2.83	632.6	No Reading
14:50	Stop Surging									
14:50	12.10	0.3	10.5	16.47	3.179	6.30	-95.3	1.52	199.0	No Reading
14:55	12.10	0.3	12	16.46	3.176	6.29	-101.1	0.99	176.4	No Reading
15:00	12.10	0.3	13.5	16.49	3.175	6.30	-104.5	0.86	130.0	No Reading
15:05	12.10	0.3	15	16.55	3.178	6.30	-107.9	0.82	69.3	No Reading
15:10	12.10	0.3	16.5	16.09	3.176	6.30	-109.1	0.80	36.9	No Reading
15:15	12.10	0.3	18	16.14	3,171	6.30	-109.6	0.79	22.6	No Reading
15-20	12.10	0.3	19.5	15.96	3 175	6 31	.109.9	0.79	14.7	No Reading
45.30		0.0		10.00	5.275		200.0	0.70		
15;20	Stop Pump	,								
····										
		1								
	· · ·									
15										

TOTAL WATER PURGED (GALS): 19.5

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 3-31-16	WELL ID: MW-	31D	STATIC WATER	LEVEL (FT. TIC):	5.90	WELL DEPTH (	FT. TIC): 45.40	
WATER COLUMN (FT.): 39.50		SLUDGE THICK	NESS (FT.): ~0.8		WELL CASING D	NAMETER (IN):	6	
WELL CASING/BOREHOLE VOL	UME (GALS.): 58	E (GALS.): 58.1 FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.): N						
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 58.1		TOTAL PURGE VOLUME (X 3): 174.3	
FIELD PERSONNEL: J Cook, K G	erdes	•		]				

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8:35	Start									
8:50	6.20	1.22		13.39	1.853	7.71	-81.0	3.84	1428.6	
9:00	6.20	1.22		14.11	1.841	7 52	-104.4	2 35	1446.4	
9.10	6 15	1.27		13.86	2 039	7.41	-84 3	3 \$1	1389.0	
9:70	6.25	1 72	55	14 21	1 765	7.40	-107.4	1 23	1471.8	
9:30	6 30	1.83		13.64	2 129	7.70	-45.9	3.56	226.1	
9.40	6 35	1.03		12 79	2.155	7.20		3.50	264.8	
9.50	6.45	1.03	110	13.75	2.105	7.20	-00.7 E0 2	3.51	448.0	
5.50	Stop Surging	1.65	110	13,36	2,215	/.1/	-33.3	5.07	440.0	
10-00	Stop Surging	1.00			3.350	742	50.0	4.45		
10:00	0.05	1.85		13.02	2.258	7.13	-59.0	4.15	29.1	
10:10	6.65	1.85		13.56	2.267	7.17	-55.6	3.93	15.7	
10:20	6.25	1.83	165	13.50	2.265	7.16	-53.6	3.9Z	12.8	
	Reduce Flow									
10:30	6.20	1.0		13.76	2.275	7.19	-53.4	3.84	13.2	
10:40	6.15	1.0		13.54	2.262	7.15	-49.6	0.69	4.7	
10:50	6.15	1.0		13.55	2.255	7.05	-52.0	0.21	2.6	
11:00	6.15	1.0		13.54	2.251	7.05	-53.3	0.13	0.3	
11:10	6.15	1.0	220	13.50	2.248	7.05	-54.6	0.11	0.2	
11:15	Stop Pump							<u>.</u>		
vi										
•										

TOTAL WATER PURGED (GALS): 220

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE ______ of _____

DATE: 4-5-16	WELL ID: MW-	32D	2D STATIC WATER LEVEL (FT. TIC): 4.50 WELL DEPTH (FT. TIC): 57.00					
WATER COLUMN (FT.): 52.50 SLUDGE THICKNESS (FT.):			NESS (FT.): ~0.2	0.2 WELL CASING DIAMETER (IN): 6			6	
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE			
FILTER PACK WATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 77.2		TOTAL PURGE VOLUME (X 3): 232	
FIELD PERSONNEL: J Cook, M 5								

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH *	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
9:27	Start									
9:40	5.51	1.0		11.64	4.015	7.40	-69.3	3.13	> 1200	
0.50	5.51 6.55	1.0			2 060	7.43	107.0	E 25	>1200	
9:50	5.55	1.0	23	12.35	3.909	7.47	-103.0	3.35	1200	
10:00	5.85	1.45		12.42	4.282	9.16	-58.3	3.41	101.2	s
10:10	5.85	1.45		12.44	4.083	7.69	-69.5	3.72	12.7	
10:20	5.85	1.45		12.62	3.969	8.49	-30.3	2.42	332.4	
10:30	5.90	1.45		12.56	3.879	8.39	-11.6	2.56	30.6	
10:40	5.90	1.45		11.99	3.860	6.77	33.0	2.65	18.5	
	Stop Surging									
10:50	5.90	1.2	110	13.10	3.831	7.62	-21.7	1.09	49.6	0.0
11:00	5.55	1.2		13.05	3,792	8.13	-35.0	0.07	23.8	
11:10	5.55	12		13.05	3 754	8 58	-50.5	0.04	44.5	
11:20	5.55	4.2		12.07	2 726	0.55	67.0	0.04	49.4	
11:20	5.55	1.2		13.07	3.720	0.55	-07.0	0.04	73.7	
11:30	5.55	1.2		12.97	3.690	8.57	-70.1	0.02	24.0	
11:35			165							
11:40	5.45	1.1		13.00	3.674	8.52	-65.2	0.02	29.7	
11:50	5.45	1.1		13.03	3.652	8.34	-54.0	0.02	24.9	
12:00	5.45	1.1		13.02	3.641	8.25	-32.3	0.02	25.3	
12:10	5.45	1.1		13.04	3.631	8.29	-25.3	0.03	27.5	
12:20	5.45	1.1		13.05	3.621	8.25	-19,3	0.02	27.8	
12:25			220							
12:30	5,25	0.67		13.02	3.611	8.34	-21.5	0.03	26.8	
12:40	E 10	0.67	·	17.05	2 604	9.10	.12.4	0.03	18.3	
12:40	2.10	0.67		12.55	3.004	0.13	-12.4	0.03	10.5	
12:50	5.05 Stop Pump	0.67	240	12.94	3.601	8.18	-6.4	0.02	17.9	

TOTAL WATER PURGED (GAL5): 240 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = pH > 8 is above expected range, apparent problem with YSI pH probe.

PAGE _____ of _____

DATE: 6-23-16	WELL ID: MW	-335 STATIC WAT	ER LEVEL (FT. TIC):	14.80	WELL DEPTH (FT. TIC): 21.30			
WATER COLUMN (FT.):	6.5	SLUDGE THICKNESS (FT.): 0.	0	WELL CASING D	DIAMETER (IN):	2		
WELL CASING/BOREHO	E VOLUME (GALS.): 1	1	FILTER PACK D	IAMETER (IN.): 7	,	FILTER PACK LENGTH (FT.): 7.5		
FILTER PACK WATER VO	URGE VOLUME (G/	LS.): 4.59	•	TOTAL PURGE VOLUME (X 3): 13.77				
FIELD PERSONNEL: K Ge	erdes	•	·	-,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·		

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)
10:25	16.20	0.08	0	16.15	4.729	6.53	-107.7	3.81	30.4	0.0
10:30	17.10	0.08	0.4	16.24	8.823	6.88	-114.8	3.60	115.7	No Reading
10:35	17.40	0.08	0.8	18.92	0.300	6.97	-115.8	4.30	175.2	0.0
10:40	17.80	0.08	1.2	19.66	4.606	6.98	-113.4	4.25	139.1	No Reading
10:45	18.10	0.08	1.6	19.01	9.014	6.98	-110.8	4.67	112.3	0.0
10:50	18.20	0.08	2	19.52	9.000	7.09	-103.7	5.92	64.2	No Reading
10:55	18.20	0.08	2.4	18.95	8.536	7.04	-104.5	4.42	125.0	0.0
11:00	18.20	0.08	2.8	18.27	4.738	6.99	-94.2	5.41	151.8	No Reading
11:05	18.20	0.08	3.2	18.00	4.661	7.05	-94.8	6.11	164.0	0.0
11:10	18.25	0.08	3.6	17.83	4.486	7.10	-87.6	4.48	172.9	No Reading
11:15	18.25	0.08	4	18.05	7.528	7.12	-104.6	4.62	55.0	0.0
11:20	18.25	0.08	4.4	17.66	4.761	7.06	-97.6	6.20	48.8	No Reading
11:25	18.25	0.08	4.8	16.29	8.956	7.01	-89.8	6.54	235.5	0.0
11:30	18.25	0.08	5.2	17.61	8.770	7.06	-83.6	6.79	155.9	No Reading
11:35	18.50	0.08	5.6	17.79	9.037	7.01	-87.1	5.83	109.1	0.0
	Stop pump to al	low recharge								
12:45	15.15	0.08	5.6	17.75	9.227	7.01	-81.6	4.79	47.6	0.0
12:50	17.30	0.08	6	15.87	4.619	6.85	-88.1	4.93	76.2	No Reading
12:55	17.50	0.08	6.4	16.85	8.247	6.80	-91.9	4.99	120.4	0.0
13:00	17.70	0.08	6.8	18.31	4.812	6.87	-94.0	4.25	110.4	No Reading
13:05	17.80	0.08	7.2	18.12	8.424	6.88	-91.5	5.18	52.3	0.0
13:10	17.80	0.08	7.6	18.92	5.055	6.95	-90.3	5.67	22.8	No Reading
13:15	18.00	0.08	8	18.27	4.891	7.07	-81.8	6.61	4.3	0.0
	Stop Surging									

TOTAL WATER PURGED (GALS): 14.4 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2_____ of _____2____

DATE: 6-23-16	WELL ID: MW	-335	STATIC WATER	LEVEL (FT. TIC):	14.80	WELL DEPTH (FT. TIC): 21.30			
WATER COLUMN (FT.):	6.5	SLUDGE THICK	(NESS (FT.): 0.0	WELL CASING DIAMETER (IN): 2					
WELL CASING/BOREHO	LE VOLUME (GALS.): 1	1		FILTER PACK DI	AMETER (IN.): 7	7	FILTER PACK LENGTH (FT.): 7.5		
FILTER PACK WATER VOLUME (GALS.): 3.49 CASING AND FILTER			ILTER PACK PUR	GE VOLUME (GA	L5.): 4.59		TOTAL PURGE VOLUME (X 3): 13.77		
FIELD PERSONNEL: K Ge	erdes						I		

r	1	1	1	r	····	l .	1		T	<u>т</u>
1	here and sound	Distance			Specific					
Time	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Dime	(Ft. IIC)	(GPIN)	Purged (gal)	iemp. (C)	(mS/cm)	рн	ORP	DO	(NTU)	(PPM)
13:20	18.20	0.08	8.4	18.76	9.016	6.92	-89.9	3.74	120.4	No Reading
13:25	18.30	0.08	8.8	18.37	8.985	6.84	-91.4	2.75	29.2	0.0
13:30	18.40	0.08	9.2	18.45	8.992	6.84	-91.3	2.72	7.1	No Reading
13:35 ³	18.50	0.08	9.6	18.56	8.990	6.85	-92.0	2.53	0.5	0.0
13:40	18.50	0.08	10	20.11	8.964	6.89	-92.8	2.10	0.1	No Reading
13:45	18.40	0.08	10.4	18.45	8.983	6.86	-96.0	2.40	1.6	0.0
13:50	18.50	0.08	10.8	18.33	8.980	6.85	-93.8	2.41	3.1	No Reading
13:55	18.60	0.08	11.2	19,07	8.957	6.88	-98.6	1.93	2.2	0.0
14:00	18.60	0.08	11.6	20.01	8.929	6.8 <del>9</del>	-100.0	1.68	2.1	No Reading
14:05	18.60	0.08	12	19.46	8.937	6.89	-101.2	1.51	1.5	0.0
14:10	18.60	0.08	12.4	19.79	8.876	6.82	-99.2	1.56	3.5	No Reading
14:15	18.60	0.08	12.8	19.26	8.989	6.89	-104.3	1.46	21.0	0.0
	Flow stopped -	turn up controll	er to restart							
14:20	18.80	0.08	13.2	20.25	8.922	6.84	-103.0	1.65	46.7	0.0
14:25	18.70	0.08	13.6	20.91	9.014	6.84	-98.0	1.60	38.3	No Reading
14:30	18.70	0.08	14	20.59	8.970	6.84	-99.1	1.59	20.2	No Reading
14:35	18.70	0.08	14.4	19.93	8.96B	6.85	-97.8	1.52	15.6	No Reading
14:35	Stop Pump									
					ŀ					
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
	1									
· · · · · · · · · · · · · · · · · · ·	1.									

TOTAL WATER PURGED (GAL5): 14.4

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 3-30-16 to 4-7-16	WELL ID: MW-	34D	STATIC WATER	LEVEL (FT. TIC):	10.65	WELL DEPTH (FT. TIC): 48.85		
WATER COLUMN (FT.): 38.25	.): 38.25 SLUDGE THICKNESS (FT.): ~0.67 WELL CASING DIAMETER (IN): 6					6		
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): NONE FILTER F			FILTER PACK LENGTH (FT.): NONE			
FILTER PACK WATER VOLUME (	LTER PACK PUR	GE VOLUME (GA	LS.): 56.2		TOTAL PURGE VOLUME (X 3): 169			
FIELD PERSONNEL: J Cook, K Gerdes								

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pН	ORP	DO	(NTU)	(PPM)
3/30/16 13:07	Start. YSI Inope	erable. Awaiting	YSI Replacemer	nt. Use LaMott	e Meter for Turb	idity.				
13:20	20.00		```						> 1000	
13:30	23.25								> 1000	
13-30	Stop Pump to A	Alternate Surge	10							
13.35		covery.	13							
15:08	22.05	Re-start					ļ			
15:15	28.00				ļ			ļ	837.0	
15:20	31.50									
15:22	33.00	Stop Pump	30							
3/31/16 7:44	13.90	Re-start								
7:50	18.60			11.28	3.984	6.39	-102.1	2.37	514.3	
8:00	27.00			12.33	3.925	6.65	-116.3	3.65	117.3	
8:01	27.60	Stop Pump	55							
14:52	17.93	Re-start								
15:00	24.15			13.55	4.387	6.82	-118.2	3.92	153.7	
15:10	31.50			13.26	4.256	6.67	-104.7	3.31	28.3	
15:14	33,00	Stop Pump	75							
4/4/16 9:43	10.60	Re-start								
9:50	17.00			11.23	. 3.989	6.17	-59.5	5.28	76.2	
10:00	24.50			11.91	4.199	6.77	-128.9	4.31	45.5	
10:10	30.50			12.00	4 217	6.84	-135.7	3.96	38.9	
10:13	32.00	Ston Pumn	110		7124.7	0.01	10017			
A/5/16 7:50	10.60	Do.ctart								
4/3/10/139	10.00	Re-start								
8:10	20.60			10.59	3.931	6.14	-19.7	7.41	30.7	
8:20	27.20			11.56	4.067	6.70	-113,8	3.78	8.9	

TOTAL WATER PURGED (GALS): 170 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>2</u> of <u>2</u>

DATE: 3-30-16 to 4-7-16	ATE: 3-30-16 to 4-7-16 WELL ID: MW-34D STA				10.65	WELL DEPTH (F	/ELL DEPTH (FT. TIC): 48.85		
WATER COLUMN (FT.): 38.25		NESS (FT.): ~0.67	7	WELL CASING D	NAMETER (IN):	6 .			
WELL CASING/BOREHOLE VOLU	JME (GALS.): 56	5. <b>2</b>		FILTER PACK DI	AMETER (IN.): N	NONE	FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 56.2		TOTAL PURGE VOLUME (X 3): 169	۰.	
FIELD PERSONNEL: J Cook, K G	erdes								

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
4/5/16 8:30	31.80			11.50	4.114	6.78	-119.6	2.98	11.4	
8:33	33.00	Stop Pump	145							
4/7/16 8:10	10.50	Re-start								
8:20	13.40	1.0		13.73	4.929	6.85	-145.3	0.31	28.1	
8:30	16.90	0.5		13.67	4.938	6.86	-157.0	0.24	6.9	
8:40	19.20	0.25		13.69	4.945	6.87	-160.9	0.18	4.5	
8:50	20.70	0.25		13.79	4.953	6.87	-163.3	0.17	4.9	
9:00	21.60	0.1		13.84	4.958	6.87	-163.1	0.16	5.4	
9:10	22.00	0.1		13.89	4.961	6.87	-163.6	0.15	6.6	
9:20	22.20	0.1		13.97	4.963	6.87	-162.8	0.15	6.2	
9:30	22.30	0.1		13.99	4.966	6.87	-161.4	0.14	7.2	
9:40	22.30	325 mi/min		14.10	4.968	6.86	-160.4	0.14	7.3	
9:50	22.30	325 ml/min		14.04	4.972	6.86	-158.5	0.14	7.5	
10:00	22.35	325 ml/min		14.47	4.977	6.85	-161.7	0.14	7.6	
10:10	22.40	325 ml/min	170	14.46	4.985	6.84	-161.3	0.14	6.7	
<b>10</b> :10	Stop Pump									
			,							

TOTAL WATER PURGED (GALS): 170

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 1____ of ____ 5____

DATE: 8-1-16 to	8-15-16	WELL ID: MW	-395	STATIC WATER	R LEVEL (FT. TIC):	FT. TIC): 4.32 WELL DEPTH (FT. TIC): 14.00					
WATER COLUM	IN (FT.): 9.68		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	6		FILTER PACK D	AMETER (IN.): 3	7	FILTER PACK LE	ENGTH (FT.): 8.1	r -	
FILTER PACK W	ATER VOLUME (	GALS.): 3.65	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 5.25		WATER LOSS D	URING INSTALL	(GALS.): NA	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 1	5.75	FIELD PERSONNEL: K Gerdes, R DeMott						
			1		Encolfie	1	ł	1		1	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
8/1/16 14:25	4.32	0.2	0	18.98	0.338	7.52	56.3	5.83	1265.0	0.0	
14:30	7.50	0.2	1	19.63	0.314	6.48	-12.0	4.14	1268.0	No Reading	
14:35	8.20	0.2	2	19.19	0.305	6.28	-11.5	3.54	1264.0	0.0	
14:40	8.50	0.2	3	18.99	0.313	6.18	-10.3	4.51	No Reading		
14:45	9.20	0.2	4	19.34	0.317	6.15	-10.3	3.72	0.0		
14:50	9.50	0.2	5	18.92	0.354	6.13	-8.4	4.51	No Reading		
14:55	9.60	0.2	6	18.74	0.327	6.07	-6.1	4.71	0.0		
15:00	9.75	0.2	7	18.85	0.345	6.10	-7.5	5.05	1261.0	No Reading	
15:05	10.75	0.2	8	18.33	0.357	6.16	-10.1	5.38	1258.0	0.0	
15:10	11.30	0.15	8.75	18.61	0.327	6.20	-9.8	6.47	1259.0	No Reading	
15:15	11.40	0.15	9.5	18.48	0.727	6.21	-8.3	6.19	1258.0	0.0	
15:20	10.90	0.15	10.25	18.95	0.871	6.25	-8.6	6.20	1262.0	No Reading	
15:25	11.20	0.15	11	18.34	0.882	6.29	-8.7	6.29	1253.0	0.0	
15:30	Well Dry										
8/2/16 8:40	6.15	0.2	11	17.43	0.969	6.49	250.2	6.95	1207.0	0.0	
8:45	6.60	0.2	12	18.17	0.843	6.04	221.2	4.84	1214.0	No Reading	
8:50	6.80	0.2	13	18.43	0.754	6.06	117.6	4.67	1216.0	0.0	
8:55	6.90	0.2	14	18.19	0.795	6.01	84.3	3.80	1214.0	No Reading	
9:00	7.25	0.2	15	18.0 <del>9</del>	0.856	6.04	65.2	4.05	1213.0	0.0	
<del>9</del> :05	7.30	0.2	16	17.92	0.902	6.09	49.9	3.53	1212.0	No Reading	
9:10	7.20	0.2	17	17.36	0.977	6.13	38.8	3.77	1206.0	0.0	
9:15	7.10	0.2	18	17.31	1.003	6.21	30.8	3.76	1206.0	No Reading	
<del>9</del> :20	7.20	0.2	19	17.04	1.064	6.25	24.0	3.68	1203.0	0.0	
9:25	7.50	0.2	20	17.18	1.081	6.30	18.0	3.25	1103.0	No Reading	

TOTAL WATER PURGED (GALS): 79.5 WATER QUALITY I

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 5

DATE: 8-1-16 t	o 8-15-16	WELL ID: MW-	-395	STATIC WATER	WATER LEVEL (FT. TIC): 4.32 WELL DEPTH (FT. TIC): 14.00					
WATER COLUN	IN (FT.): 9.68	•	SLUDGE THICK	NESS (FT.): D.O		WELL CASING D	DIAMETER (IN):	2		
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	6		FILTER PACK D	AMETER (IN.): 7	7	FILTER PACK L	ENGTH (FT.): 8.1	L
FILTER PACK W	ATER VOLUME (	GALS.): 3.65	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	ALS.): 5.25		WATER LOSS D	URING INSTALI.	(GALS.): NA
	GE VOLUME (3X	VOLUME AND	LOS5) (GALS.): 1	5.75	FIELD PERSON					
	1		1	1		T		1	······	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8/2/16 9:30	7.30	0.2	21	17.21	1.053	6.34	14.1	3.82	1205.0	0.0
9:35	6.50	0.2	22	17.80	1.164	6.31	8.7	2.96	1210.0	No Reading
9:40	6.30	0.2	23	17.31	1.174	6.36	2.6	3.20	1206.0	0.0
9:4S	6.45	0.2	24	17.16	1.158	6.40	-0.7	3.36	1205.0	No Reading
9:50	6.50	0.2	_25	17.04	17.04 1.180 6.42 -6.1 3.93 12					0.0
9:55	6.20	0.2	26	17.53	1.214	6.46	-12.4	3.00	1208.0	No Reading
10:00	6.40	0.2	27	16.83	1.198	6.50	-18.5	2.83	1201.0	0.0
10:05	6.45	0.2	28	18.16	1.228	6.52	-23.2	2.60	1213.0	No Reading
10:10	6.45	0.2	29	17.99	1.212	6.53	-23.9	3.45	1212.0	0.0
10:15	6.30	0.2	30	17.31	1.202	6.57	-24.8	4.25	1108.0	No Reading
10:20	6.25	0.2	31	17.52	1,233	6.56	-25.3	3.93	550.6	0.0
10:25	6.30	0.2	32	17.44	1.207	6.58	-25.7	3.63	382.2	No Reading
	Stop Surging								<u> </u>	
10:30	6.30	0.2	33	17.59	1.192	6.58	-24.1	2.04	389.8	0.0
10:35	6.25	0.2	34	17.64	1.206	6.56	-25.3	1.56	336.2	No Reading
10:40	6.25	0.2	35	17.44	1.195	6.57	-27.5	1.42	327.4	0.0
10:45	6.25	0.2	36	17.45	1.195	6.56	-28.4	1.29	221.2	No Reading
10:50	6.25	0.2	37	17.43	1.192	6.56	-29.0	1.28	211.6	0.0
10:55	6.25	0.2	38	17.48	1.019	6.54	-12.4	1.30	148.0	No Reading
11:00	6.25	0.2	39 ⁻	17.94	1.028	6.50	-14 <b>.1</b>	1.28	212.6	0.0
11:05	6.25	0.2	40	17.87	1.110	6.46	-17.6	1.29	211.5	No Reading
11:10	6.25	0.2	41	17.64	1.20 <del>9</del>	6.52	-22.9	1.24	172.3	0.0
11:15	6.25	0.2	42	17.87	1.189	6.55	-26.1	1.19	202.3	No Reading
11:20	6.25	0.2	43	17.78	1.166	6.57	-24.3	1.15	317.0	0.0

TOTAL WATER PURGED (GALS): 79.5 WATER O

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-5ite Treatment Plant

PAGE <u>3</u> of <u>5</u>

911.7

1131.0

550.0

450.7

215.0

132.5

439.0

**20**6.0

144.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

DATE: 8-1-16 t	o <b>8-15-16</b>	WELL ID: MW	-395	STATIC WATER	LEVEL (FT. TIC):	4.32	WELL DEPTH (	FT. TIC): 14.00			
WATER COLUN	IN (FT.): 9.68		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	.6		FILTER PACK D	AMETER (IN.):	7	FILTER PACK LENGTH (FT.): 8.1			
FILTER PACK W	ATER VOLUME (	GALS.); 3.65	CASING AND F	ILTER PACK PUR	URGE VOLUME (GALS.): 5.25 WATER LOSS DURING INSTALL (G						
REQUIRED PUR	GE VOLUME (3)		LOSS) (GALS.): 1	5.75	FIELD PERSONI	NEL: K Gerdes, F	R DeMott	I		·····	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	5pecific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
8/2/16 11:25	6.25	0.2	44	17.87	1.131	6.54	-21.5	1.15	301.1	No Reading	
11:30	6.25	0.2	45	17.83	1.084	6.40	-16.7	0.99	1209.7	0.0	
11:35	6.25	0.2	46	17.72	1.052	6.42	-12.8	1.08	496.5	No Reading	
	Stop Pump		. <u> </u>					<u> </u>			
8/15/16 12:06	5.52	NA	46	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	1.5	
12:16	7.01	0.25	47	18.29	0.479	5.83	43.2	1.64	1198.3	1.0	
12:20	7.44	0.2		18.21	0.540	5.83	40.6	1.47	580.0	0.5	
12:25	8.29	0.2		18.45	0.663	5.87	36.2	1.32	S06.0	0.0	
12:30	9.25	0.2		18.53	0.727	5.92	35.1	1.27	499.4	0.0	
12:35	Surge Well										
12:40	10.21	0.2	51	18.56	0.923	5.82	37.2	3.20	2000.0	0.0	
12:45	10.01	0.15		18.51	1.290	6.20	21.4	3.18	524.1	0.0	
12:50	10.05	0.15		18.33	1.342	6.23	15.0	3.00	457.9	0.0	
12:55	10.00	0.15	53.25	18.34	1.363	6.30	4.7	2.62	942.0	0.0	

1.392

1.375

1.484

1.470

1.498

1.517

1.488

1.533

1.557

6.32

6.34

6.38

6.39

6.41

6.42

6.44

6.44

6.46

1.7

-2.5

-5.1

-7.0

-9.7

-11.9

-12.0

-13.7

-15.7

2.54

2.51

2.98

2.72

2.55

2.51

3.00

2.54

2,29

TOTAL WATER PURGED (GALS): 79.5

9.70

9.60

9.40

9.30

9.60

9.78

9.74

9.52

9,51

9.41

0.2

0.15

0.15

0.2

0.2

0.15

0.15

0.15

0.15

Cleaned out flow-through cell

13:00

13:05

13:10

13:15

13:20

13:25

13:30

13:35

13:40

13:45

WATER QUALITY METER: Y5I 6920

18.35

18.04

18.09

18.12

18.09

18.19

18.34

18.23

18.45

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging.

54.25

55.75

57.75

PAGE <u>4</u> of <u>5</u>

.

DATE: 8-1-16 to 8-15-16	ATE: 8-1-16 to 8-15-16 WELL ID: MW-395 ST/				4.32	WELL DEPTH (F	T. TIC): 14.00
WATER COLUMN (FT.): 9.68		NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2	
WELL CASING/BOREHOLE VOI	.UME (GALS.): 1.	5		FILTER PACK DI	AMETER (IN.): 7	,	FILTER PACK LENGTH (FT.): 8.1
FILTER PACK WATER VOLUME	(GALS.): 3.65	CASING AND FI	ILTER PACK PURC	GE VOLUME (GA	LS.): 5.25		WATER LOSS DURING INSTALL (GALS.): NA
REQUIRED PURGE VOLUME (3	X VOLUME AND	LO5S) (GALS.): 1	5.75	FIELD PERSONN	EL: K Gerdes, R	DeMott	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turi (N	bidity TU)*	OVA/PID (PPM)
8/15/16 13:50	9.34	0.15		18.34	1.471	6.47	-3.1	2.18	937.0		0.0
13:55	9.19	0.15		18.05	1.529	6.42	-4.4	2.77	602.0		0.0
14:00	9.02	0.15		18.02	1.555	6.43	-7.1	2.52	413.0		0.0
14:05	8.88	0.15		18.09	1,567	6.44	-8.9	2.42	314.0		0.0
14:10	8.62	0.15		18.18	1.579	6.45	-11.3	2.40	171.1		0.0
14:15	8.80	0.15		18.05	1.515	6.46	-11.9	2.53	402.3		0.0
14:20	8.85	0.15		18.06	1.577	6.44	-13.1	2.27	141.2		0.0
14:25	8.95	0.15		18.14	1.583	6.45	-15.0	2.17	122.7		0.0
14:30	8.96	0.15		18.11	1.588	6.46	-16.5	2.17	130.6		0.0
14:35	Flush flow-thro	ugh cell									
14:40	9.15	0.15		18.03	1.564	6.45	-12.6	2.51	177.5		0.0
14:45	8.83	0.15		17.98	1.599	6.44	-14.1	2.18	121.5		0.0
14:50	8.80	0.15		18.01	1.601	6.46	-15.5	2.27	209.1		0.0
14:55	8.79	0.15		17.98	1.592	6.46	-15.3	2.33	200.2		0.0
15:00	8.79	0.15		17.85	1.552	6.47	-15.2	2.31	309.4		0.0
15:05	8.77	0.15		17.84	1.598	6.47	-15.8	2.08	157.3	59.0	0.0
15:10	8.77	0.15		17.91	1.587	6.48	-15.8	2.13	121.2	50.7	0.0
15:15	8.78	0.15		18.02	1.595	6.48	-16.0	2.13	120.3	57.0	0.0
15:20	8.79	0.15		17.94	1.609	6.49	-17.0	2.10	106.1	51.8	0.0
15:25	8.81	0.15		17.97	1.613	6.52	-17.3	2.28	142.1	68.5	0.0
15:30	8.80	0.15		17.78	1.598	6.53	-16.6	2.31	174.1	98.7	0.0
15:35	8.80	0.15		17.74	1.619	6.54	-17.7	2.07	145.3	73.5	0.0
15:40	8.81	0.15		17.78	1.614	6.55	-17.9	2.15	236.1	94.9	0.0
15:45	8.80	0.15		17.69	1.584	6.56	-18.5	2.21	187.2	83.7	0.0

TOTAL WATER PURGED (GALS): 79.5 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = Results in second turbidity column collected from LaMotte 2020 turbidity meter.

PAGE <u>5</u> of <u>5</u>

DATE: 8-1-16 to 8-15-16	ATE: 8-1-16 to 8-15-16 WELL ID: MW-395 ST.			LEVEL (FT. TIC):	4.32 W	/ELL DEPTH (FT. TIC): 14.00		
WATER COLUMN (FT.): 9.68	SLUDGE TH	ICKNESS (FT.): 0.0		WELL CASING DIA	METER (IN): 2			
WELL CASING/BOREHOLE VO	LUME (GALS.): 1	.6	·.	FILTER PACK D	AMETER (IN.): 7	FILTER PACK LENGTH (FT.): 8.1		
FILTER PACK WATER VOLUM	E (GALS.): 3.65	CASING AN	D FILTER PACK PUR	GE VOLUME (GA	.15.): 5.25	WATER LOSS DURING INSTALL (GALS.): NA		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 15.75				FIELD PERSONNEL: K Gerdes, R DeMott				

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gai)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turt (NT	oidity 'U)*	OVA/PID (PPM)
8/15/16 15:50	8.80	0.15	79.5	17.77	1.602	6.55	-17.6	2.13	193.2	79.4	0.0
15:50	Stop Pump										
					-						
	· · · · · · · · · · · · · · · · · · ·										
·											
								· · · · · · · · · · · · · · · · · · ·			
								-			
											· · · · · · · · · · · · · · · · · · ·
· · ·						·····					
<u>l</u>								· · · · ·	المعصما		

TOTAL WATER PURGED (GALS): 79.5

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = Results in second turbidity column collected from LaMotte 2020 turbidity meter.

.

PAGE <u>1</u> of <u>2</u>

DATE: 8-2-16		WELL ID: MW	-39D	STATIC WATER LEVEL (FT. TIC): 4.80 WELL DEPTH (FT. TIC): 50.00						
WATER COLUM	N (FT.): 45.20		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	6		
WELL CASING/		JME (GALS.): 60	5.5		FILTER PACK D	AMETER (IN.): I	NONE	FILTER PACK LE	NGTH (FT.): NO	NE
FILTER PACK W	ATER VOLUME	GALS.}: NONE	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 66.5		WATER LOSS D	URING INSTALL	(GALS.): NA
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 2	:00	FIELD PERSON	NEL: K Gerdes, J	Cook			
Г			 I	1	<u>}</u>		·r	1	····	1
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PIO
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
8/2/16 11:50	4.80	1.65	8.25	15.50	0.683	6.85	-14.8	6.75	236.1	0.0
11:55	5.90	1.65	16.5	15.35	0.917	6.81	-26.9	3.33	1247.0	No Reading
12:00	. 5.90	1.65	24.75	15.27	0.955	6.94	-53.3	3.29	1250.0	0.0
12:05	5.90	1.65	33	15.13	0.981	7.04	-63.4	2.77	1227.0	No Reading
12:10	5.90	1.65	41.25	15.41	0.976	7.07	-61.1	2.72	1218.0	0.0
12:15	5.90	1.65	49.5	15.33	0.979	7.11	-70.3	2.97	1230.0	No Reading
12:20	5.90	1.65	57.75	15.46	0.979	7.13	-68.8	2.43	1169.0	0.0
	Break									
12:30	5.95	1.65	66	15.60	0.974	7.23	-47.3	6.30	1167.0	No Reading
12:35	6.00	1.65	74.25	15.45	0.988	7.21	-47.5	4.82	286.4	0.0
12:40	6.00	1.65	82.5	15.30	1.000	7.20	-46.9	3.72	213.9	No Reading
12:45	6.05	1.65	90.75	15.29	1.005	7.21	-45.4	4.84	247.2	0.0
12:50	6.05	1.65	99	15.40	1.004	7.22	-43.9	4.99	166.7	No Reading
12:55	6.05	1.65	107.25	16.03	1.008	7.37	-25.8	6.14	130.7	0.0
13:00	6.05	1.65	115.5	15.39	1,007	7.32	-26.3	4.85	117.8	No Reading
13:05	6.05	1.65	123.75	15.44	1.008	7.28	-26.5	4.00	319.0	0.0
	Stop Surging									
13:10	6.05	1.65	132	15.13	1.009	7.24	-27.2	2.29	78.9	No Reading
13:15	6.05	1.65	140.25	15.07	1.010	7.23	-27.7	2.06	75.2	0.0
13:20	5.90	1.65	148.5	15.07	1.009	7.20	-30.0	1.62	85.7	No Reading
13:25	5.85	1.65	156.75	15.06	1.011	7.20	-31.7	1.53	85.8	0.0
13:30	5.60	1.65	165	15.17	1.010	7.20	-33.0	1.50	72.7	No Reading
13:35	5.50	1.65	173.25	15.09	1.013	7.20	-34.2	1.46	68.8	0.0
13:40	5.40	1.65	181.5	15.15	1.015	7.20	-35.3	1.42	69.3	No Reading

TOTAL WATER PURGED (GALS): 255.75 WATER

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI55 On-5ite Treatment Plant

PAGE <u>2</u> of <u>2</u>

DATE: 8-2-16		WELL ID: MW-	-39D	STATIC WATER	LEVEL (FT. TIC):	4.80	WELL DEPTH (	FT. TIC): 50.00			
WATER COLUM	IN (FT.): 45.20		SLUDGE THICK	NESS (FT.): 0.0	,	WELL CASING D	I DIAMETER (IN):	6			
WELL CASING/E	OREHOLE VOLU	JME (GALS.): 66	5.5		FILTER PACK D	AMETER (IN.): 1	NONE	FILTER PACK L	ENGTH (F	T.): NO	NE
FILTER PACK W	ATER VOLUME (	GALS.): NONE	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 66.5		WATER LOSS D		NSTALL	(GALS.): NA
REQUIRED PUR	GE VOLUME (3X		LOSS) (GALS.): 2	00	FIELD PERSON	NEL: K Gerdes, J	Cook	L			
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turb (NT	idity U)*	OVA/PID (PPM)
8/2/16 13:45	5.30	1.65	189.75	15.10	1.015	7.20	-36.2	1.39	72.1	32.6	0.0
13:50	5.30	1.65	198	15.16	1.015	7.20	-37.2	1.37	62.8	31.7	No Reading
13:55	5.25	1.65	206.25	15.13	1.015	7.21	-38.2	1.36	65.4	31.7	0.0
14:00	5.25	1.65	214.5	15.08	1.014	7.21	-38.8	1.35	60.1	31.7	No Reading
14:05	5.20	1.65	222.75	15.19	1.014	7.22	-39.4	1.34	52.2	29.8	0.0
14:10	5.20	1.65	231	15.16	1.014	7.22	-40.2	1.34	52.7	30.0	No Reading
14:15	5.20	1.65	239.25	15.22	1.015	7.22	-40.7	1.34	56.4	31.7	0,0
14:20	5.20	1.65	247.5	15.28	1.016	7.23	-41.1	1.34	46.2	27.8	No Reading
14:25	5.15	1.65	255.75	15.32	1.017	7.23	-41.2	1.34	41.9	25.3	0.0
14:25	Stop Pump			-1640 T							
	. <u>.</u>										
		255 75	WATER OUNUT		320						
	ER EQUIPMENT	: Grundfos Subi	mersible				***				

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging. * = Results in second turbidity column collected from LaMotte 2020 turbidity meter.

PAGE _____ of _____

DATE: 7-18-16 to 7-20-16	TE: 7-18-16 to 7-20-16 WELL ID: MW-43SR			L (FT. TIC):	6.10	WELL DEPTH (FT. TIC): 10.32
WATER COLUMN (FT.): 4.22	SLUDGE TH	CKNESS (FT.): 0.0		WELL CASING DI	AMETER (IN): 2	
VELL CASING/BOREHOLE VOLUME (GALS.): 0.7				ER PACK DI	AMETER (IN.): 8	FILTER PACK LENGTH (FT.): 6.6
FILTER PACK WATER VOLUME (GALS.); 4.0 CASING AND FILTER PACK				DLUME (GA	LS.): 4.7	WATER LOSS DURING INSTALL (GALS.): 20
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 74.1			: 74.1 FIEL	FIELD PERSONNEL: K.Gerdes, J Cook		

Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/15/16			60						•	
	Initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
6/28/16	Well Dry									
7/18/16 12:35	6.10	0.1	0	24.71	1.381	7.97	279.6	4.66	214.4	0.0
12:40	7.75	0.1	0.S	24.22	1.291	7.59	293.4	2.93	96.6	No Reading
12:45	8.05	0.1	1	24.71	1.289	7.38	300.0	2.63	81.9	0.0
	Stop Surging									
12:50	8.60	0.1	1.5	23.70	1.276	7.21	302.0	2.48	89.3	No Reading
12:55	9.20	0.1	2	23.53	1.267	7.09	302.7	2.25	106.7	0.0
13:00	9.35	0.1	2.5	23.73	1.288	7.05	304.1	2.36	90.2	No Reading
	Well Dry									
	Switch to perist	altic pump								
15:00	7.82	0.15	3.25	23.24	1.336	7.47	160.8	5.32	90.1	0.0
15:05	9.05	0.15	4	22.77	1,302	7.20	173.0	5.66	14.2	No Reading
15:10	10.20	0.15	4.75	22,24	1.296	7.06	194.1	4.35	16.2	0.0
	Well Dry									
7/19/16 9:00	5.90	0.1	4.75	20.43	1.336	7.45	112.8	6.55	5.7	0.0
9:05	7.95	0.1	5.25	21.09	1.307	7.21	141.6	6.79	11.4	No Reading
9:10	8.80	0.1	5.75	20.60	1.295	7.13	163.8	7.22	0.6	0.0
9:15	9.40	0.1	6.25	20.45	1.300	7.08	180.5	6.86	0.2	No Reading
9:20	9.90	0.1	6.75	20.29	1.306	7.04	190.2	6.37	1.0	0.0
9:25	`>10.00	0.1	7.25	20.35	1.305	7.06	193.4	6.20	6.9	No Reading
	Well Dry									

TOTAL WATER PURGED (GALS): 75

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible/Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

DATE: 7-18-16	to 7-20-16	WELL ID: MW-	435R	STATIC WATER	LEVEL (FT. TIC):	6.10	WELL DEPTH (	FT. TIC): 10.32			
WATER COLUM	IN (FT.): 4.22	•	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING E	DIAMETER (IN):	2			
WELL CASING/	BOREHOLE VOL	JME (GALS.): 0.	7		FILTER PACK DI	AMETER (IN.): 8	8	FILTER PACK L	ENGTH (FT.): 6.6	i	
FILTER PACK W	ATER VOLUME	(GALS.): 4.0	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	ALS.): 4.7 WATER LOSS DURING INSTALL (GALS.): 20					
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 7	4.1	FIELD PERSON	IEL: K Gerdes, J	Cook				
		Ŧ	]		Specific			1		1	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
7/19/16 10:35	8.37	0.1	7.25	22.26	1.383	7.54	75.9	6.75	50.2	0.0	
10:40	9.45	0.1	7.75	22.04	1.309	7.20	125.8	7.27	1.8	No Reading	
10:45	9.75	0.1	8.25	22.56	1.307	7.16	146.2	6.86	1.3	0.0	
10:50	10.20	0.1	8.75	22.28	1.307	7.13	157.7	6.16	4.6	No Reading	
	Well Dry										
14:30	6.73	0.15	8.75	24.96	1.381	7.30	191.1	5.23	30.5	0.0	
14:35	8.25	0.15	9.5	21.54	1.323	7.01	227.9	7.83	22.2	No Reading	
14:40	9.15	0.15	10.25	21.48	1.318	7.02	238.7	8.11	7.4	0.0	
14:45	10.15	0.15	11	21.02	1.309	7.01	247.2	7.15	9.8	No Reading	
	Well Dry										
7/20/16 8:05	6.43	0.1	11	20.00	1.329	6.35	255.9	8.53	11.8	0.0	
8:10	7.50	0.1	11.5	19.87	1.325	6.22	262.5	8.11	4.9	No Reading	
8:15	8.60	0.1	12	19.98	1.322	6.45	257.9	9.07	8.4	0.0	
8:20	9.70	0.1	12.5	19.27	1.322	6.64	258.1	9.10	7.6	No Reading	
8:25	10.20	0.1	13	19.22	1.323	6.70	258.7	8.87	12.0	0.0	
	Well Dry										
14:10	6.65	0.1	13	25.04	1.422	7.31	125.4	8.27	8.6	0.0	
14:15	7.95	0.1	13.5	22.52	1.335	7.08	153.8	8.94	10.4	No Reading	
14:20	8.80	0.1	14	22.65	1.333	7.07	175.0	9.14	13.3	0.0	
14:25	9.50	0.1	14.5	22.16	1.322	7.06	188.9	9.31	9.5	No Reading	
14:30	10.10	0.1	15	22.23	1.326	7.05	195.1	8.57	9.8	0.0	
14:30	Stop Pump										
-											

TOTAL WATER PURGED (GALS): 75

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible/Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-27-16	WELL ID: MW-	43D	STATIC WATER	LEVEL (FT. TIC):	7.98	WELL DEPTH (FT. TIC): 50.75			
WATER COLUMN (FT.): 42.77	•	SLUDGE THICK	NESS (FT.): 0.0	h	WELL CASING D	DIAMETER (IN):	6		
WELL CASING/BOREHOLE VOL	JME (GAL5.): 62			FILTER PACK DI	AMETER (IN.): 1	NONE	FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME	(GALS,): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 62.8	<u>, , , , , , , , , , , , , , , , , ,</u>	TOTAL PURGE VOLUME (X 3): 188.5		
FIELD PERSONNEL: K Gerdes									

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
10:40	8.00	0.6	C	16.29	3.132	6.45	-91.4	5.53	915.1	0.2
10:45	8.65	0.6	3	15.50	3.056	7.02	-130.8	3.07	939.7	0.0
10:50	9.00	0.6	6	15.39	3.019	7.17	-127.2	3.63	800.4	No Reading
10:55	9.05	0.6	9	15.21	3.033	7.33	-124.0	3.31	757,6	0.0
11:00	9.10	0.6	12	15.32	3.028	7.44	-138.1	2.82	389.9	No Reading
11:05	9.15	0.6	15	15.21	1.58 <del>9</del>	7.50	-128.3	2.96	777.0	. 0.0
11:10	9.20	0.6	18	15.30	3.011	7.55	-124.5	2.95	615.8	No Reading
11:15	9.20	0.6	21	15.29	3.015	7.56	-130.4	2.96	730.4	0.0
11:20	9.20	0.6	24	15.33	3.008	7.57	-129.0	4.03	569.3	No Reading
11:25	9.20	0.6	27	15.20	2.997	7.59	-131.6	2.90	699.1	0.0
11:30	9.20	0.6	30	15.45	2.939	7.59	-118.7	3.14	491.6	No Reading
11:35	9.20	0.6	33	15.26	2.913	7.57	-108.6	2.75	286.7	0.0
11:40	9.20	0.6	36	15.19	1.481	7.54	-100.3	3.42	270.7	No Reading
11:45	9.20	0.6	39	15.1 <del>6</del>	2.680	7.50	-94.1	3.52	204.7	0.0
11:50	9.20	0.6	42	15.18	2.646	7.45	-91.1	4.17	30.0	No Reading
11:5S	9.20	0.6	45	15.27	2.523	7.40	-89.8	3.29	264.8	0.0
12:00	9.20	0.6	48	15.17	2.417	7.35	-83.1	3.69	150.2	No Reading
	Stop Surging an	d Break								
12:30	8.30	0.8	48	15.57	2.382	7.32	-84.3	3.13	98.0	0.0
12:35	9.50	0.8	52	14.93	2.215	7.20	-70.5	1.86	33.8	No Reading
12:40	9.55	0.8	56	14.82	2.205	7.12	-75.1	1.10	149.4	0.0
12:45	9.65	0.8	60	14.70	2.179	7.08	-75.5	0.92	39.0	No Reading
12:50	9.70	0.8	64	14.72	2.087	7.04	-71.1	0.88	18.2	0.0
12:55	9.75	0.8	68	14.71	2.080	7.01	-70.7	0.86	16.1	No Reading

TOTAL WATER PURGED (GALS): 200 WATER QUALITY METER: Y5i 6920

PUMP AND OTHER EQUIPMENT: Grundfos 5ubmersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-27-16	WELL ID: MW-	43D	STATIC WATER	LEVEL (FT. TIC):	7.98	WELL DEPTH (F	-T. TIC): 50.75
WATER COLUMN (FT.): 42.77	• · · ·	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	6
WELL CASING/BOREHOLE VOL	JME (GALS.): 62	8		FILTER PACK DI	AMETER (IN.): N		FILTER PACK LENGTH (FT.): NONE
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND F	ILTER PACK PURC	GE VOLUME (GA	L5.): 62.8		TOTAL PURGE VOLUME (X 3): 188.5
FIELD PERSONNEL: K Gerdes							•

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
13:00	9.75	0.8	72	14.68	2.082	6.99	-71.5	0.85	20.8	0.0
13:05	9.75	0.8	76	14.70	2.082	6.99	-72.1	0.84	12.6	No Reading
13:10	9.75	0.8	80	14.73	2.082	7.02	-69.5	0.84	20.2	0.0
13:15	9.75	0.8	84	14.61	2.059	7.04	-59.1	0.93	20.0	No Reading
13:20	9.75	0.8	88	14.63	2.047	6.96	-57.9	0.90	19.5	0.0
13:25	9.80	0.8	92	14.60	2.046	6.93	-57.1	0.91	17.7	No Reading
13:30	9.80	0.8	96	14.68	2.042	6.89	-57.0	0.89	18.0	0.0
13:35	9.80	0.8	100	14.62	1.975	6.84	-51.6	0.90	17.1	No Reading
13:40	9.80	0.8	104	14.65	1.974	6.84	-50.3	0.87	14.7	0.0
13:45	9.80	0.8	108	14.63	1.981	6.83	-50.1	0.86	15.4	No Reading
13:50	9.80	0.8	112	14.67	1.981	6.83	-49.6	0.85	17.3	0.0
13:55	9.80	0.8	116	14.62	1.975	6.83	-47.4	0.84	19.6	No Reading
14:00	9.80	0.8	120	14.60	1.96B	6.82	-45.4	0.84	16.4	0.0
14:05	9.80	0.8	124	14.60	1.959	6.81	-42.6	0.83	10.7	No Reading
14:10	9.80	0.8	128	14.57	1.951	6.81	-40.6	0.83	6.8	0.0
14:15	9.80	0.8	132	14.58	1.946	6.81	-39.2	0.83	6.4	No Reading
14:20	9.80	0.8	136	14.62	1.939	6.81	-37.4	0.82	2.6	0.0
14:25	9.80	0.8	140	14.62	1.940	6.80	-36.9	0.82	1.7	No Reading
14:30	9.80	0.8	144	14.58	1.940	6.79	-36.0	0.82	3.1	0.0
14:35	9.80	0.8	148	14.60	1.941	6.79	-35.6	0.82	0.5	No Reading
14:40	9.80	0.8	152	14.57	1.938	6.79	- <b>34.9</b>	0.82	0.5	0.0
14:45	9,80	0.8	156	14.63	1.935	6.78	-34.3	0.82	0.2	No Reading
14:50	9.80	0.8	160	14.62	1.934	6.77	-33.7	0.81	0.0	0.0
14:55	9.80	0.8	164	14.67	1. <b>93</b> 4	6.77	-33.2	0.81	0.1	No Reading

TOTAL WATER PURGED (GALS): 200 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>3</u> of <u>3</u>

DATE: 6-27-16	WELL ID: MW-	43D STATIC WATER	LEVEL (FT. TIC): 7.98	. (FT. TIC): 7.98 WELL DEPTH (FT. TIC): 50.75				
WATER COLUMN (FT.):	42.77	SLUDGE THICKNESS (FT.): 0.0	WELL CASI	IG DIAMETER	IN): 6			
WELL CASING/BOREHO	CASING/BOREHOLE VOLUME (GALS.): 62.8 FILTER PACK LENGTH (F							
FILTER PACK WATER VO	DLUME (GALS.): NONE	CASING AND FILTER PACK PURG	E VOLUME (GALS.): 62.8		TOTAL PURGE VOLUME (X 3): 188.5			
FIELD PERSONNEL: K G	erdes	·	· · · · · · · · · · · · · · · · · · ·					

Time	Water Level (Ft. TJC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
15:00	9.80	0.8	168	14.63	1.932	6.77	-32.9	0.81	0.3	0.0
15:05	9.80	0.8	172	14.66	1.931	6.77	-32.3	0.81	0.2	No Reading
15:10	9.80	0.8	176	14.69	1.930	6.76	-32.1	0.81	0.1	0.0
15:15	9.80	0.8	180	14.64	1.931	6.75	-31.6	0.81	0.1	No Reading
15:20	9.80	0.8	184	14.59	1.929	6.74	-30.8	0.81	0.3	0.0
15:25	9.80	0.8	188	14.68	1.928	6.75	-30.7	0.81	0.1	No Reading
15:30	9.80	0.8	192	14.64	1.930	6.75	-30.4	0.81	0.0	0.0
15:35	9.80	0.8	196	14.65	1.928	6.74	-30.0	0.81	0.2	No Reading
15:40	9.80	0.8	200	14.69	1.926	6.75	-29.6	0.81	0.0	No Reading
15:40	Stop Pump									
				-						
								·····		
									<u> </u>	
									· · · · ·	
										<b></b>
			-							
	-									
	-									i

TOTAL WATER PURGED (GALS): 200

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of ____

DATE: 7-11-16 to 7-13-16	WELL ID: MW	-44S	STATIC WATER	LEVEL (FT. TIC):	7.04	WELL DEPTH (F	T. TIC): 13.20
VATER COLUMN (FT.): 6.16 SLUDGE THICKNESS (FT.)				\$ (FT.): 0.0 WELL CASING DIAMETER (IN)		DIAMETER (IN):	2
WELL CASING/BOREHOLE VO	UME (GALS.): 1.	0		FILTER PACK DI	AMETER (IN.): 8	3	FILTER PACK LENGTH (FT.): 8
FILTER PACK WATER VOLUME	ILTER PACK PUR	GE VOLUME (GA	LS.): 5.9		WATER LOSS DURING INSTALL (GALS.): 20		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 77.7				FIELD PERSONNEL: K Gerdes, J Cook			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/20/16			60							
	Initial driller de	velopment by si	arging/overpum	ping.						
<u>.</u>	No visible sedin	nent at complet	ion of developm	ent.			-			
7/11/16 14:20	7.04	0.15	0	17.59	2.394	7.54	16.3	6.87	272.6	0.0
14:25	8.15	0.15	0.75	17.79	2.087	7.36	-47.6	7.31	8.9	No Reading
14:30	9.00	0.15	1.5	17.57	2.093	7.01	-8.0	6.11	4.8	0.0
14:35	9.60	0.15	2.25	17.18	2.120	6.87	-32.1	6.00	1.3	No Reading
	Stop Surging									
14:40	10.25	0.15	3	17.24	2.147	6.88	-28.2	4.10	0.7	0.0
14:45	10.90	0.15	3.75	16.38	2.182	6.70	-30.6	2.20	7.8	No Reading
14:50	11.65	0.15	4.5	16.33	2.257	6.65	-31.7	1.74	0.2	0.0
14:55	12.25	0.15	5.25	16.14	2.348	6.63	-47.6	1.41	1.1	No Reading
15:00	13.00	0.15	6	16.06	2.351	6.62	-58.9	1.40	14.8	0.0
	Well Dry									
7/12/16 8:55	7.06	0.2	7	16.60	2.488	7.24	-2.2	5.04	8.7	0.0
9:00	8.75	0.2	8	16.99	2.308	7.00	12.2	4.73	0.7	No Reading
9:05	9.50	0.2	9	16.76	2.209	6.89	21.9	5.36	7.9	0.0
9:10	10.50	0.Z	10	16.53	2.225	6.81	19.4	5.23	0.0	No Reading
9:15	11.70	0.2	11	16.15	2.323	6.73	5.3	4.32	2.2	0.0
<del>9</del> :20	13.20	0.2	12	15. <del>9</del> 2	2.406	6.69	-38.6	<b>2</b> .29	38.9	No Reading
	Well Dry									
15:05	6.93	0.2	13	18.34	2.567	7.19	-11.9	5.95	196.3	0.0
15:10	8.40	0.2	14	16.46	2.485	7.04	-23.7	5.09	61.0	No Reading
15:15	9.35	0.2	15	17.10	2.300	6.84	-14.9	5.63	38.4	0.0

TOTAL WATER PURGED (GALS): 80.25 WATER QU

25 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

DATE: 7-11-16 to 7-13-16	WELL ID: MW	-44S	STATIC WATER	LEVEL (FT. TIC):	7.04	WELL DEPTH (F	T. TIC): 13.20
WATER COLUMN (FT.): 6.16		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	2
WELL CASING/BOREHOLE VOL	UME (GALS.): 1	0		FILTER PACK DI	AMETER (IN.): 8	i	FILTER PACK LENGTH (FT.): 8
FILTER PACK WATER VOLUME	(GALS.): 4.9	CASING AND F	ILTER PACK PURG	SE VOLUME (GA	LS.): 5.9		WATER LOSS DURING INSTALL (GALS.): 20
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 77.7 FIELD F				FIELD PERSONN	EL: K Gerdes, J	Cook	<b>.</b>

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
7/12/16 15:20	10.50	0.2	16	16.48	2.203	6.76	-1.0	5.11	79.9	No Reading
15:25	11.90	0.2	17	16.11	2.315	6.66	2.5	5.23	14.3	0.0
15:30	13.00	0.2	18	15.92	2.406	6.59	-24.8	3.08	141.5	No Reading
÷.	Well Dry									
7/13/16 8:40	7.02	0.15	18	16.16	2.424	7.15	-27.8	4.83	142.9	0.0
8:45	8.90	0.15	18.75	17.00	2.317	7.00	-12,4	5.56	8.9	No Reading
8:50	9.40	0.15	19.5	16.81	2.253	6.92	-8.8	5.86	9.4	0.0
8:55	9.80	0.15	20.25	16.64	2.249	6.8 <del>9</del>	-9.5	5.89	3.9	No Reading
8:55	Stop Pump									
					*					
			······································					······································	····	

TOTAL WATER PURGED (GALS): 80.25

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Peristaltic Pump

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 7-20-16	WELL ID: MW-	45D	STATIC WATER	LEVEL (FT. TIC):	13.79	WELL DEPTH (FT. TIC): 68.00		
WATER COLUMN (FT.): 54.21		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	6	
WELL CASING/BOREHOLE VOLU	JME (GALS.): 79	.6		FILTER PACK DI	AMETER (IN.): I	NONE	FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME (	GALS.): NONE	CASING AND FI	ILTER PACK PUR	GE VOLUME (GA	LS.): 79.6		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3)	VOLUME AND	.055) (GALS.): 2	38.8	FIELD PERSONN	IEL: K Gerdes		·	

Time	Water Level	Discharge (GPM)	Volume Purged (gal)	Temp (C)	Specific Conductivity (mS/cm)	nH	ORP	DÓ	Turbidity	OVA/PID (PPM)
6/21/36	(i.e. ney	(0.11)	165	Temp. (c)	, (iiis) ciiij	- PI1	URP			(,
0/21/10			. /			·			<u> </u>	
	initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/20/16 9:45	13.79	1.0	0	15.01	No Reading	6.79	251.8	6.44	2.0	0.0
9:50	15.55	1.0	5	14.75	7.421	· 5.97	0.6	2.33	0.2	No Reading
9:55	17.10	1.0	10	14.66	7.575	5.71	-24.2	1.72	0.1	0.0
10:00	18.30	1.0	15	14.75	7.669	5.56	-33.5	1.48	0.2	No Reading
10:05	19.40	1.0	20	14.76	7.868	5.40	-37.2	1.34	0.5	0.0
10:10	20.50	1.0	25	14.78	8.073	5.31	-36.0	1.28	0.6	No Reading
	Stop Surging									
10:15	Pump Died					_				
10:40	Restart Pump									
10:40	14.10	1.0	25	14.68	8.151	5.52	28.6	4.48	3.1	0.0
10:45	15.30	1.0	30	14.65	8.135	5.17	34.6	2.60	1.0	No Reading
10:50	16.60	1.0	35	14.76	8.096	4.97	30.3	1.70	0.6	0.0
10:55	17.55	1.0	40	14. <b>79</b>	8.067	4.89	23.8	1.44	0.3	No Reading
11:00	18.15	1.0	45	14.79	8.019	4.84	18.7	1.32	0.3	0.0
11:05	18.55	1.0	50	14.89	7.964	4.7 <del>9</del>	15.1	1.25	0.1	No Reading
11:10	18.85	1.0	55	14.81	7.915	4.75	12.3	1.20	0.2	0.0
11:15	19.15	1.0	60	14.78	7.849	4.72	9.1	1.17	0.3	No Reading
11:20	19.50	1.0	65	14.78	7.934	4.69	6.3	1.14	0.8	0.0
11:25	19.80	1.0	70	14.78	7.902	4.69	4.2	1.12	0.3	No Reading .
11:30	20.25	1.0	75	14.72	7.862	4.70	1.3	1.10	0.4	0.0
11:35	20.65	1.0	80	14 74	7 841	4 77	-7.8	1 //9	0.0	No Reading
11.25	Stop Pump		~~		71014	-17 6		2.00	010	

TOTAL WATER PURGED (GALS): 245 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 6-30-16		WELL ID: MW	-465	STATIC WATER	LEVEL (FT. TIC):	10.87	WELL DEPTH (	FT. TIC): 19.55			
WATER COLUM	IN (FT.): 8.68	· .	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING	DIAMETER (IN):	2	······································		
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	4		FILTER PACK D	IAMETER (IN.): 1	B	FILTER PACK L	ENGTH (FT.): 9		
FILTER PACK W	ATER VOLUME (	GALS.): 5.5	CASING AND F	LTER PACK PUR	GE VOLUME (GA	l.S.): 6.9		WATER LOSS D	URING INSTALL	(GALS.): 30	
	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 1	10.7	FIELD PERSON	NEL: K Gerdes					
	1	1	T	1	·		r	<b></b>	· · ·	1	
Time	Water Level	Discharge (GPM)	Volume Purged (gai)	Temp (C)	Conductivity	nH	ORP	00	Turbidity (NTU)	OVA/PID (PPM)	
6/8/15			00						(		
0/8/10	Initial drillor do	valanmant hvic	urging (overnum								
	Me visible codir	veropinent by s	ion of developm	ping.							
6/20/16 9·16	10.97	0.15		16.72	2 160	6.08	65	E 76	A42.6	0.0	
0/30/10 8:15	10.87	0.15		10.72	2.109	0.08	0.5	5.75	443.0	0.0	
8:20	12.50	0.15	0.75	17.09	2,224	6.35	-59.9	4.47	1196.3	0.0	
8:25	12.60	0.15	1.5	18.06	2.345	6.33	-54.6	4.72	1208.3	No Reading_	
8:30	12.70	0.15	2.25	<u>17.46</u>	2.294	.6.34	-58.8	4.29	1199.2	0.0	
8:35	12.80	0.15	3	17.27	2.369	6.30	-51.9	4.39	1198.5	No Reading	
8:40	12.90	0.15	3.75	17.81	2.356	6.30	-54.1	4.42	1202.6	0.0	
8:45	13.00	0.15	4.5	18.15	2.274	6.30	-56.4	4.51	1205.4	No Reading	
8:50	13.00	0.15	5.25	18.33	2.343	6.31	-60.6	4.52	1206.9	0.0	
8:55	13.00	0.15	6	18.09	2.303	6.29	-59.1	4.05	1205.5	No Reading	
9:00	13.05	0.15	6.75	17.26	2.317	6.29	-59.4	4.09	1197.6	0.0	
9:05	13.05	0.15	7.5	17.89	2.311	6.25	-61.8	4.51	1202.9	No Reading	
9:10	13.05	0.15	8.25	18.49	2.278	6.25	-64.2	4.35	1207.5	0.0	
9:15	13.05	0.15	9	18.68	2,211	6.26	-63.0	4.37	1209.1	No Reading	
9:20	13.05	0.15	9.75	19.50	2.298	6.28	-65.9	4.43	1215.9	0.0	
9:25	13.05	0.15	10.5	19.19	2.303	6.25	-65.3	3.80	1213.9	No Reading	
9:30	13.05	0.15	11.25	18.84	2.315	6.23	-61.7	3.64	1210.8	0.0	
9:35	13.05	0.15	12	18.52	2.294	6.25	-61.3	4.15	1207.0	No Reading	
9:40	13.05	0.15	12.75	18.23	2.257	6.21	-56.5	3.84	1206.9	0.0	
9:45	13.05	0.15	13.5	17.96	2.252	6.22	-57.8	4.69	1202.9	No Reading	
9:50	13.05	0.15	14.25	19.26	2.390	6.23	-44.2	5.55	1215.1	0.0	
9:55	13.05	0.15	15	19.53	2.253	6.26	-63.3	4.61	1217.0	No Reading	

TOTAL WATER PURGED (GAL5): 114.75

WATER QUALITY METER: Y5I 6920

.

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>2</u> of <u>2</u>

DATE: 6-30-16		WELL ID: MW-	-465	STATIC WATER	LEVEL (FT. TIC):	10.87	WELL DEPTH (	FT. TIC): 19.55		
WATER COLUN	1N (FT.): 8.68		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2	r.	
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	4		FILTER PACK D	AMETER (IN.): 8	<b>B</b> .	FILTER PACK L	ENGTH (FT.): 9	
FILTER PACK W	ATER VOLUME (	GALS.): 5.5	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 6.9		WATER LOSS D	URING INSTALL	(GALS.): 30
	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 1	10.7	FIELD PERSON	IEL: K Gerdes				
	1	1	1	1	C-adfa		4	1	1	
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	pН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
10:00	13.05	0.15	15.75	19.46	2.251	6.26	-60.3	4.82	1216.2	0.0
10:05	13.05	0.15	16.5	18.88	2.158	6.14	-47.8	5.31	1133.2	No Reading
10:10	13.05	0.15	17.25	19.15	2.171	6.09	-38.4	5.51	1026.0	0.0
10:15	13.05	0.15	18	18.73	2.198	6.22	-63.3	4.32	432.1	No Reading
10:20	13.05	0.15	18.75	17.82	2.194	6.21	-62.7	4.20	217.5	0.0
	Stop Surging									
10:25	13.05	0.15	19.5	17.73	2.233	6.18	-58.3	3.14	56.0	No Reading
10:30	13.05	0.15	20.25	18.60	2.232	6.12	-71.2	1.45	40.3	0.0
10:35	13.05	0.15	21	19.96	2.219	6.13	-77.7	1.15	33.9	No Reading
10:40	13.05	0.15	21.75	19.89	2.246	6.14	-80.4	1.01	29.7	0.0
10:45	13.05	0.15	22.5	19.71	2.244	6.13	-82.3	0.96	24.8	No Reading
10:50	13.05	0.15	23.25	19.55	2.223	6.14	-83.6	0.91	17.1	0.0
10:55	13.05	0.15	24	18.64	2.151	6.14	-83.9	0.90	11.5	No Reading
11:00	13.05	0.15	24.75	18.13	2.190	6.13	-84.8	0.88	1.7	No Reading
11:00	Stop Pump				<u></u>					
<u></u>										
17										

TOTAL WATER PURGED (GALS): 114.75

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 7-5-16	WELL ID: MW-	46D	STATIC WATER	LEVEL (FT. TIC):	13.13	WELL DEPTH (FT. TIC): 63.00		
WATER COLUMN (FT.): 49.87		SLUDGE THICK	NESS (FT.): 0.0	-	WELL CASING D	IAMETER (IN):	6	
WELL CASING/BOREHOLE VOLU	JME (GALS.): 72	.9		FILTER PACK DI	AMETER (IN.): N	IONE	FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND F	LTER PACK PUR	GE VOLUME (GA	LS.): 72.9		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3)		.OSS) (GALS.): 2	18.7	FIELD PERSONN	EL: K Gerdes			

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)
6/16/16			165							
	Initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/5/16 10:50	13.30	0.6	0	16.08	3.342	7.38	-43.4	4.82	91.5	0.0
10:55	14.30	0.6	3	16.05	3.271	6.91	-76.4	3.73	136.2	0.0
11:00	14.45	0.6	6 .	15.99	3.294	6.85	-81.0	3.56	124.4	0.0
11:05	14.50	0.6	9	15.93	3.294	6.87	-82.3	3.65	89.5	0.0
11:10	14.50	0.6	12	16.08	3.301	6.81	-84.0	3.28	64.1	0.0
11:15	14.55	0.6	15	15.85	3.302	6.79	-87.8	2.71	105.4	0.0
11:20	14.55	0.6	18	15.58	3.301	6.80	-91.1	3.39	75.8	0.0
11:25	14.60	0.6	21	15.40	3.304	6.77	-94.6	2.88	56.6	0.0
11:30	14.60	0.6	<b>2</b> 4	15.31	3.295	6.76	-96.7	2.88	55.7	0.0
11:35	14.60	0.6	27	15.46	3.310	6.82	-93.0	3.51	71.1	No Reading
11:40	14.60	0.6	30	15.51	3.306	6.78	-97.2	2.94	70.5	0.0
11:45	14.60	0.6	33	15.46	3.280	6.78	-94.7	3.40	63.7	No Reading
	Stop Surging									
11:50	14.60	0.6	36	15.23	3.270	6.68	-102.6	1,12	17.2	0.0
11:55	14.60	0.6	39	15.26	3.272	6.67	-107.9	0.97	9.7	No Reading
12:00	14.60	0.6	42	15.09	3.275	6.67	-112.1	0.90	9.8	0.0
12:05	14.60	0.6	45	15.12	3.278	6.65	-114.0	0.87	6.6	No Reading
12:10	14.60	0.6	48	15.15	3.283	6.66	-115.2	0.85	9.3	0.0
12:15	14.60	0.6	51	15.13	3.286	6.66	-115.9	0.85	2.0	No Reading
12:20	14.60	0.6	54	15.12	3.286	6.65	-116.2	0.84	1.8	0.0
12:25	14.60	0.6	57	15.03	3.285	6.65	-116.3	0.84	1.2	0.0
12:25	Ston Rumn			10103	51200	0102	-220.5		A.L.	0.0

TOTAL WATER PURGED (GALS): 222 WATER

): 222 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>_

DATE: 7-18-16	WELL ID: MW	-4 <b>7</b> \$	STATIC WATER	LEVEL (FT. TIC):	6.95	WELL DEPT	H (FT. TIC): 14.64
WATER COLUMN (FT.):	7.69	SLUDGE TH	ICKNESS (FT.): 0.0	-	WELL CASING D	IAMETER (II	N): 2
WELL CASING/BOREHO	LE VOLUME (GALS.): 1.	25		FILTER PACK DI	AMETER (IN.): 8		FILTER PACK LENGTH (FT.): 9
FILTER PACK WATER VO	DLUME (GAL5.): 5.5	CASING AN	D FILTER PACK PURC	GE VOLUME (GA	LS.): 6.75		WATER LOSS DURING INSTALL (GALS.): 30
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 110.25 FIELD PERSONNEL: K Gerdes, J Cook							

		Bishana		6 	Specific				Turkiday	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
E IA A IA E			05							
0/14/10	ļ		95	}						
	Initial driller de	velopment by su	urging/overpum	ping.						
·	No visible sedin	nent at complet	ion of developm	ent.			·		· · · · ·	
6/28/16	Well Dry						<u> </u>			0.0
7/18/16 13:10	6.95	0.3	0	19.26	2.340	6.83	316.0	3.12	238.8	0.0
13:15	7.25	0.3	1.5	18.46	2.414	6.60	133.8	1.76	167.5	No Reading
	Stop Surging									
13:20	7.90	0.3	3	18.23	2.522	6.47	-1.8	1.33	63.4	0.0
13:25	7.90	0.3	4.5	18.16	2.614	6.36	-37.2	1.11	11.2	No Reading
13:30	7.90	0.3	6	18.31	2.638	6.33	-45.3	1.06	4.1	0.0
13:35	7.90	Ó.3	7.5	18.35	2.656	6.31	-52.5	1.01	1.1	No Reading
13:40	7.90	0.3	9	18.33	2.667	6.29	-57.3	0.98	0.7	0.0
13:45	7.90	0.3	10.5	18.31	2.682	6.27	-60.9	0.95	0.6	No Reading
13:50	7.90	0.3	12	18.22	2.687	6.25	-63.1	0.93	0.1	0.0
13:55	7.90	0.3	13.5	18.26	2.691	6.22	-64.7	0.91	0.0	No Reading
14:00	7.90	0.3	15	18.38	2.701	6.21	-65.7	0.90	0.4	0.0
14:05	7.90	0.3	16.5	18.27	2.704	6.17	-66.1	0.8 <del>9</del>	0.7	No Reading
14:10	7.90	0.3	18	18.21	2.707	6.16	-66.2	0.90	1.1	0.0
14:10	Stop Pump									

TOTAL WATER PURGED (GALS): 113

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 6-28-16	WELL ID: MW	47D	STATIC WATER	LEVEL (FT. TIC):	7.76	WELL DEPTH (FT. TIC): 68.60		
WATER COLUMN (FT.): 60.84	•	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	6	
WELL CASING/BOREHOLE VOI	UME (GALS.): 89	.4		FILTER PACK DI	AMETER (IN.): N	IONE	FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME	(GALS.): NONE	CASING AND F	ILTER PACK PUR	GE VOLUME (GAI	LS.): 89.4		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3	X VOLUME AND	LOSS) (GALS.): 2	268.1	FIELD PERSONN	EL: K Gerdes			

Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
6/20/16			165							
	Initial driller de	velopment by s	urging/overpum;	ping.						
	No visible sedim	ient at complet	ion of developm	ent.						
6/28/16 9:00	7.76	0.5	0	15.37	11.94	6.46	-61.9	3.77	68.5	0.2
9:05	9.50	0.5	2.5	14.86	11.76	6.83	-99.1	3.83	47.6	0.0
9:10	10.15	0.5	5	15.21	11.35	6.96	-101.9	4.14	1300.0	No Reading
9:15	10.25	0.5	7.5	15.01	11.44	6.98	-103.4	3.80	1052.0	0.0
9:20	10.35	0.5	10	14.98	11.29	6.98	-106.2	3.19	1296.0	No Reading
9:25	10.35	0.5	12.5	14.95	11.46	7.01	-102.1	3.82	755.2	0.0
9:30	10.40	0.5	15	15.01	11.36	7.02	-103.3	3.52	446.2	No Reading
9:35	10.45	0.5	17.5	15.17	11.29	7.02	-98.7	4.11	175.4	0.0
9:40	10.45	0.5	20	14.95	11.24	7.01	-99.3	3.48	179.2	No Reading
9:45	10.45	0.5	22.5	15.28	11.37	7.04	-84.5	4.41	93.5	0.0
	Stop Surging									
9:50	10.45	0.5	25	14.80	11.06	7.03	-84.9	2.67	70.7	0.0
9:55	10.45	0.5	27.5	14.75	11.00	6.89	-91.9	1.22	38.9	No Reading
10:00	10.45	0.5	30	14.74	10.93	6.85	-91.8	1.02	22.9	0.0
	Increase Flow Ra	ate								
10:05	11.10	0.8	34	14.53	10.97	6.81	-88.6	0.93	5.8	0.0
10:10	11.50	0.8	38	14.50	10.92	6.78	-85.5	0.91	1.0	No Reading
10:15	11.70	0.8	42	14.50	10.88	6.76	-83.0	0.89	0.7	0.0
10:20	11.85	0.8	46	14.52	10.87	6.76	-82.7	0.88	0.6	No Reading
10:25	11.90	0.8	50	14.53	10.84	6.76	-82.8	0.86	0.2	0.0
10:30	11.95	0.8	54	14.53	10.80	6.76	-82.5	0.86	0.3	No Reading

TOTAL WATER PURGED (GALS): 275 WATER QU

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

DATE: 6-28-16	WELL ID: MW-	47D	STATIC WATER	LEVEL (FT. TIC):	7.76	WELL DEPTH (FT. TIC): 68.60		
WATER COLUMN (FT.): 60.84		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	MAMETER (IN):	6	
WELL CASING/BOREHOLE VOLU	JME (GALS.): 89	.4		FILTER PACK DI	AMETER (IN.): N	NONE	FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME (	GALS.): NONE	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 89.4		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3X	VOLUME AND I	.OSS) (GALS.): 2	68.1	FIELD PERSONN	IEL: K Gerdes			

					Specific					
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)
10:35	11.95	0.8	58	14.51	10.76	6.76	-82.7	0.85	0.5	0.0
-										
10:40	12.00	0.8	62	14.47	10.77	6.76	-81.9	0.84	0.3	No Reading
10:45	12.00	0.8	66	14.4 <del>9</del>	10.73	6.75	-79.9	0.84	0.4	0.0
10:50	12.00	0.8	70	14.53	10.70	6.74	-77.7	0.83	0.1	No Reading
10:55	12.00	0.8	74	14.49	10.74	6.73	-76.8	0.83	0.0	0.0
11:00	12.00	0.8	78	14.52	10.70	6.72	-75.0	0.83	0.0	No Reading
11:05	12.00	0.8	82	14.51	10.68	6.72	-73.5	0.82	0.0	0.0
11:10	12.00	0.8	86	14.44	10.71	6.72	-72.4	0.82	0.1	No Reading
11:15	12.00	0.8	90	14.47	10.67	.6.71	-70.7	0.82	0.0	0.0
11:20	12.00	0.8	94	14.49	10.67	6.71	-70.4	0.82	0.0	No Reading
11:25	12.00	0.8	98	14.47	10.69	6.71	-69.7	0.81	0.0	0.0
11:30	12.00	0.8	102	14.47	10.66	6.71	-69.3	0.81	0.0	No Reading
11:35	12.00	0.8	106	14.47	10.67	6.70	-68.9	0.81	0.0	0.0
11:40	12.00	0.8	110	14.50	10.63	6.70	-68.3	0.81	0.0	No Reading
11:40	Stop Pump								· · · · · · · · · · · · · · · · · · ·	
									·	
						-				
· · · · · ·										

TOTAL WATER PURGED (GALS): 275

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

COMMENTS: Surge with pump. YSI readings collected from cup during surging and from flow-through cell after surging.

ng.

PAGE <u>1</u> of <u>2</u>

DATE: 6-29-16	WELL ID: MW	-48S	STATIC WATER	LEVEL (FT. TIC):	12.87	WELL DEPTH (FT. TIC): 20.31			
WATER COLUMN (FT.): 7.44		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN): 2			
WELL CASING/BOREHOLE VOL	2		FILTER PACK DI	FILTER PACK LENGTH (FT.): 10					
FILTER PACK WATER VOLUME (GALS.): 6.12 CASING AND FILTER PACK P				GE VOLUME (GA	L5.): 7.32	WATER LOSS DURING INSTALL (GALS.): 30			
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 112			.12	FIELD PERSONNEL: K Gerdes					

					Specific					
_	Water Level	Discharge	Volume		Conductivity		1	_	Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
6/14/16			90				· ·			
	initial driller de	velopment by si	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
6/29/16 9:30	13.00	0.35	0	16 37	1 261	6.05	108.2	5.04	938.6	0.1
0.35	12.10	0.25	1 75	15.05	1 355	6.53	200.2	3.67	1202.2	0.0
5.55	13.10	0.35	1.73	13.90	1.250	0.52	¢1./	3.62	1302.2	0.0
9:40	13.20	0.35	3.5	14.97	1.262	6.69	93.2	3.79	309.3	No Reading
9:45	13.10	0.35	5.25	15.34	1.256	6.74	98.6	3.50	1297.9	0.0
9:50	13.15	0.35	7	15.24	1.259	6.79	103.0	3.36	1296.6	No Reading
9:55	13.15	0.35	8.75	15.14	1.260	6.81	108.3	3.20	1295.1	0.0
10:00	13.15	0.35	10.5	15.41	1.25B	6.83	114.0	3.31	1298.1	No Reading
10:05	13.15	0.35	12.25	15.01	1.260	6.86	99.5	3.31	1292.3	0.0
10:10	13.15	0.35	14	15.03	1.261	6.85	119.5	3.40	1293.9	No Reading
10:15	13.15	0.35	15.75	15.17	1,258	6.85	127.6	3.08	1296.5	0.0
10:20	13.10	0.35	17.5	15 35	1 263	6.84	133.3	3.91	1798.0	No Reading
10:25	12 10	0.25	10.75	15.00	1 350	6.63	142.0	5.02	673.1	
10.20	13.10	0.35	13.23	15.55	1.250	0.05	142.0	5.04	072.1	0.0
10:30	13.10	0.35	21	15.56	1.261	6.85	138.3	5.03	531.3	No Reading
	Stop Surging									
10:35	13.10	0.35	22.75	14.84	1.257	6.94	139.9	3.45	405.8	0.0
10:40	13.10	0.35	24.5	14.90	1.254	6.80	149.4	1.42	219.4	No Reading
10:45	13.10	0.35	26.25	14.92	1.255	6.80	157.0	1.30	154.9	0.0
10:50	13.10	0.35	28	15.01	1.255	6.76	158.9	1.20	131.2	No Reading
10:55	13.10	0.35	29.75	15.23	1.254	6.80	163.7	1.19	98.6	0.0
11:00	13.10	0.35	31.5	15.40	1.255	6.77	163.9	1.15	65.3	No Reading
11:05	13.10	0.35	33.25	15.31	1.254	6.77	165.5	1.06	38.1	0.0

TOTAL WATER PURGED (GALS): 126.75 WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _ 2 _ of _ 2 ____

DATE: 6-29-16	WELL ID: MW-	485	STATIC WATER	LEVEL (FT. TIC):	12.87	WELL DEPTH (FT. TIC): 20.31		
WATER COLUMN (FT.): 7.44		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2	
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): 8 FILTER PACK LENGTH (FT.			FILTER PACK LENGTH (FT.): 10			
FILTER PACK WATER VOLUME (GALS.): 6.12 CASING AND FILTER PACK			LTER PACK PUR	GE VOLUME (GA	LS.): 7.32		WATER LOSS DURING INSTALL (GALS.): 30	
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 112			FIELD PERSONN	IEL: K Gerdes	**			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
11:10	13.10	0.35	35	15.18	1.254	6.76	167.6	1.03	17.8	No Reading
11:15	13.10	0.35	36.75	15.26	1.254	6.75	168.8	1.01	6.6	0.0
11:15	Stop Pump									
								]		
	· ·				1					
m						· ,				
							<u>;</u>			
							·			
										· · · · ·
				<b>.</b> .						
		-				- -				<u> </u>
	·····									
									·	
·										
. <u> </u>		-								

TOTAL WATER PURGED (GALS): 126.75 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

DATE: 6-29-16	WELL ID: MW-	48D	STATIC WATER	R LEVEL (FT. TIC): 13.64 WELL DEPTH (FT. TIC): 40				
WATER COLUMN (FT.): 26.36		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN): 6		
WELL CASING/BOREHOLE VOLUME (GALS.): 38.7				FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE	
FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK PI			LTER PACK PUR	GE VOLUME (GA	LS.): 38.7		WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 116.1				FIELD PERSONNEL: K Gerdes				

					Specific					
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	DO	(NTU)	(PPM)
6/20/16			165							
	Initial driller de	velopment by si	urging/overpum	ping.						
· .	No vîsible sedin	nent at complet	ion of developm	ent.						
6/30/16 12:30	12.95	0.6	0	16 70	2 004	7.61	30.0	6.05	107.8	0.7
0/25/10 13:50	13.65	0.0	0	10.75	3.334	7.01	-20.0	0.05	107.8	0.7
13:35	14.60	0.6	3	16.34	3.956	7.21	-51.3	4.04	91.8	0.2
13:40	14.70	0.6	6	15.65	3.896	7.07	-52.9	4.00	258.0	0.2
13:45	14.80	0.6	9	15.72	3.834	7.01	-58.6	3.69	181.3	0.1
13:50	14.90	0.6	12	15.58	3.746	6.99	-51.7	3.52	68.1	0.0
13:55	14.95	0.6	15	15.16	3.614	6.98	-41.4	3.90	58.5	0.0
	Stop Surging									
										• • •
14:00	15.00	0.6	18	15.11	3.592	6.91	-25.7	1.39	22.5	0.0
14:05	15.00	0.6	21	15.09	3.581	6.88	-20.4	1.13	10.6	0.0
14:10	15.00	0.6	24	15.05	3.572	6.84	-15.5	1.03	0.5	No Reading
14:10	Stop Pump									
				·····						
·										-

TOTAL WATER PURGED (GALS): 189 WA

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 7-11-16	WELL ID: MW-	-515	STATIC WATER	LEVEL (FT. TIC):	13.62	WELL DEPTH (FT. TIC): 18.80			
WATER COLUMN (FT.):	5.18	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	NG DIAMETER (IN): 2			
WELL CASING/BOREHO		FILTER PACK DIAMETER (IN.): 6 FILT			FILTER PACK LENGTH (FT.): 5.18				
FILTER PACK WATER VOLUME (GALS.): 1.7 CASING AND FILTER PACK P				GE VOLUME (GA	LS.): 2.55		WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 7.65				FIELD PERSONN	EL: K Gerdes		• • • • • • • • • • • • • • • • • • • •		

					Specific					
Timo	Water Level	Discharge (CDM)	Volume Purged (gol)	Toma (C)	Conductivity		090	<b>DO</b>	Turbidity	OVA/PID
Time	(FL 10)	(GEN)	Fuigeu (gai)	remp. (c)	(ms/cm/	hu			(110)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
7/7/16			8.5							
	Initial driller de	velopment by si	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
7/11/16 9:10	13.62	0.05	0	16.47	5.337	5.81	233.1	9.08	466.1	0.0
9:15	14.10	0.05	0.25	16.09	4.583	5.75	228.2	9.10	208.1	No Reading
9:20	14.50	0.05	0.5	16.95	4.469	5.80	226.2	8.95	1173.1	0.0
9:25	14.80	0.05	0.75	17.88	4.170	5.96	222.9	9.13	1180.5	No Reading
9:30	15.10	0.05	1	18.98	4.220	5.96	223.8	8.96	817.3	0.0
9:35	15.50	0.05	1.25	18.44	4.172	S.97	223.6	9.13	180.0	No Reading
	Stop Surging									
9:40	15.90	0.05	1.5	18.88	4.279	6.02	224.4	8.89	118.0	No Reading
9:45	16.20	0.05	1.75	19.81	4.572	6.11	227.1	8.53	66.4	0.0
9:50	16.50	0.05	2	19.84	4.581	5.86	230.4	8.01	56.5	No Reading
9:55	16.70	0.05	2.25	19.90	4.612	5.76	232.4	7.82	42.2	0.0
10:00	16.80	0.05	2.5	20.12	4.716	5.72	233.6	7.55	30.4	No Reading
10:05	17.00	0.05	2.75	20.49	4.889	5.67	236.3	7.41	37.3	0.0
10:10	17.10	0.05	3	20.75	4.891	5.63	237.6	7.25	26.9	No Reading
10:15	17.20	0.05	3.25	21.26	4.900	5.61	238.5	7.10	28.8	0.0
10:20	17.30	0.05	3.5	21.69	4.875	5.60	239.0	6.73	44.2	No Reading
10:25	17.35	0.05	3.75	21.86	4.814	5.67	237.6	7.13	39.7	. 0.0
10:25	Stop Pump									
			-							
						-				

TOTAL WATER PURGED (GALS): 12.25 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 6-30-16	WELL ID: MW	-51D	STATIC WATER	LEVEL (FT. TIC):	14.1	WELL DEPTH (FT. TIC): 53.81			
WATER COLUMN (FT.): 39	.71	SLUDGE THICK	NESS (FT.): 0.0	0.0 WELL CASING DIAMETER (IN): 6					
WELL CASING/BOREHOLE VOLUME (GALS.): 58.3				FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE		
FILTER PACK WATER VOLUME (GALS.): SB.3 CASING AND FILTER PACK PUR			ILTER PACK PUR	GE VOLUME (GA	LS.): NONE		WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 175			.75	FIELD PERSONNEL: K Gerdes, J Cook					

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	pН	ORP	DO	(NTU)	(PPM)
6/30/16			165							
	initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedin	nent at complet	ion of developm	ent.						
6/30/16 12:45	17.55	0.3	0	15.47	0.818	6.80	89.7	7.80	663.0	0.0
12:50	18.20	0.3	1.5	15.55	0.817	6.82	97.9	7.94	451.6	No Reading
12:55	18.65	0.3	3	15.48	0.815	6.87	103.6	8.02	224.7	0.0
	Stop Surging					·				
13:00	18.90	0.3	4.5	15.52	0.817	6.89	107.1	8.04	78.2	No Reading
13:05	19.20	0.3	6	15.59	0.817	6.93	112.0	7.98	47.0	0.0
13:10	19.10	0.3	7.5	16.10	0.818	6.94	116.6	7.76	39.4	No Reading
13:15	19.10	0.3	9	16.17	0.817	6.96	116.7	8.05	35.8	0.0
13:20	19.00	0.3	10.5	16.29	0.818	6.97	115.1	7.50	28.7	No Reading
13:25	18.90	0.3	12	16.20	0.817	6.96	115.3	7.23	24.0	0.0
13:30	18.80	0.3	13.5	16.17	0.817	6.96	115.6	7.17	22.3	No Reading
13:35	18.70	0.3	15	16.10	0.817	6.96	116.6	<del>6</del> .86	19.9	0.0
13:40	18.65	0.3	16.5	16.02	0.817	6.96	118.1	6.64	13.6	No Reading
13:45	18.65	0.3	18	16.02	0.817	6.93	120.8	6.43	15.7	0.0
13:50	18.60	0.3	19.5	16.00	0.817	6.91	122.2	6.33	15.3	No Reading
13:50	Stop Pump									

TOTAL WATER PURGED (GALS): 184.5

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 9-6-16	WELL ID: MW-	5 <b>2</b> S	STATIC WATER	WATER LEVEL (FT. TIC): 6.00 WELL DEPTH (FT. TIC): 11.00			
WATER COLUMN (FT.): 5.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	2
WELL CASING/BOREHOLE VOLUME (GALS.): 0.8				FILTER PACK DIAMETER (IN.): 8 FILTER PAC			FILTER PACK LENGTH (FT.): 5
FILTER PACK WATER VOLUME (GALS.): 3.3 CASING AND FILTER PACK F				GE VOLUME (GA	LS.): 4.1		WATER LOSS DURING INSTALL (GALS.): 0
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 12.3				FIELD PERSONN	EL: M Sieger		

	Water Level	Disebassa	Volumo		Specific			ļ	Turkidite	
Time	(Ft. TiC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рН	ORP	00	(NTU)	(PPM)
9/1/16			110			•				
	Initial driller de	velopment by s	urging/overpum	ping.						
-	No visible sedin	nent at complet	ion of developm	ent.						
9/6/16 11:50	5.70	0.14		26.73	2.110	7.06	98.5	3.94	1531.1	0.0
11:55	5.70	0.14		25.73	2.162	6.99	113.2	3.83	900.8	0.0
12:00	5.70	0.14		25.95	2.244	7.10	112.7	3.95	284.5	0.0
12:05	5.80	0.14		26.13	2.247	7.10	118.5	4.04	1524.4	0.0
12:10	5.80	0.14		26.02	2.297	7.09	111.8	4.23	1\$17.0	0.0
12:15	5.80	0.14		25.47	2.417	7.09	114.3	3.52	421.3	0.0
12:20	5.80	· 0.14		25.23	2.449	6.88	118.7	2.94	191.5	0.0
12:25	5.80	0.14		25.06	2.432	6.85	124.7	2.76	37.1	0.0
12:30	5.80	0.14		25.51	2.231	6.97	114.3	3.33	1516.9	0.0
12:35	5.80	0.14		25.14	2.358	6.86	119.7	3.60	1512.9	0.0
12:40	5.80	0.14		25.01	2.436	6.93	120.3	3.39	1511.6	0.0
12:45	5.80	0.14		25.05	2.459	6.91	113.6	3.40	1520.1	0.0
12:50	5.80	0.14		25.17	2.438	6.74	131.8	3.59	683.1	0.0
12:55	5.80	0.14		25.22	2.325	6.83	127.6	2.86	1513.8	0.0
	Stop Surging									
13:00	5.80	0.14		25.70	2.396	6.70	149.7	2.71	1150.6	0.0
13:05	5.80	0.14		25.92	2.436	6.91	137.3	1.96	41.1	0.0
13:10	S.80	0.14		25.99	2.414	6.84	137.8	1.34	38.1	0.0
13:15	5.80	0.14		26.77	2.416	6.73	133.9	1.01	11.4	0.0
13:20	5.80	0.14		26.10	2.373	6.71	128.4	1.02	8.9	0.0
13:25	5.80	0.14		26.50	2.379	6.71	126.0	0.98	6.0	0.0

TOTAL WATER PURGED (GALS): 125 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2 of 2

1

DATE: 9-6-16	WELL ID: MW-	525	STATIC WATER	LEVEL (FT. TIC):	6.00	WELL DEPTH (FT. TIC): 11.00		
WATER COLUMN (FT.): 5.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	G DIAMETER (IN): 2		
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): 8			FILTER PACK LENGTH (FT.): 5			
FILTER PACK WATER VOLUME (GALS.): 3.3 CASING AND FILTER PACK PUR				GE VOLUME (GALS.): 4.1 WATER LOSS DURING INSTALL (GALS			WATER LOSS DURING INSTALL (GALS.): 0	
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 12.3				FIELD PERSONN	EL: M Sieger			

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
9/6/16 13:30	5.80	0.14		26.46	2.342	6.71	124.2	1.03	4.4	0.0	
13:35	5.80	0.14		26.43	2.374	6.70	122.5	0.98	1.7	0.0	
13:40	5.80	0.14	15	26.81	2.365	6.69	121.8	0.97	1.3	0.0	
13:40	Stop Pump										
1						1					
			1		· · · ·		ļ				
										1	
		1 									
	8				}						
.:					· · ·						
							•			e	
	a										
		· · · ·									
						•	<u></u>				
		•									
					i 						
TOTAL WATER PURGED (GALS): 125		WATER QUALITY METER: YSI 6920									

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

DATE: 9-6-16	WELL ID: MW-52D		STATIC WATER LEVEL (FT. TIC):		6.00 WELL DEPTH (F		FT. TIC): 62.00	
WATER COLUMN (FT.): 56.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	NAMETER (IN):	6	
WELL CASING/BOREHOLE VOLU		FILTER PACK DIAMETER (IN.): NONE			FILTER PACK LENGTH (FT.): NONE			
FILTER PACK WATER VOLUME	LTER PACK PUR	GE VOĻUME (GA	LS.): 82.3		WATER LOSS DURING INSTALL (GALS.): 0			
REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 246.9				FIELD PERSONN	EL: M Sieger		· · · · · · · · ·	

Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Specific Conductivity (mS/cm)	рH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
9/1/16			220							
	Initial driller development by surging/overpumping.								·	
	No visible sediment at completion of development.									
9/6/16 9:50	3.70	0.27		17.65	1.143	6.88	-5.0	2.64	653.1	0.0
9:55	4.25	0.27		17.19	1.130	6.93	-34.1	2.71	370.1	0.0
10:00	4.25	0.27		17.29	1.114	7.02	-36.2	2.62	121.3	0.0
10:05	4.2S	0.27		18.18	1.111	7.20	-30.2	3.06	54.0	0.0
10:10	4.25	0.27		17.88	1.090	7.15	-22,4	1.97	13.0	0.0
10:15	4.25	0.27		17.93	1.090	7.14	-23.7	1.67	12.1	0.0
10:20	4.25	0.27		17.52	1.092	( 7.18	-16.3	2.51	7.5	0.0
10:25	4.25	0.27		17.63	1.091	7.19	-9.4	2.50	3.0	0.0
10:30	4.25	0.27		17.68	1.091	7.19	-10.5	1.93	3.2	0.0
10:35	4.25	0.27		18.32	1.090	7.22	-22.5	0.70	77.1	0.0
10:40	4.25	0.27		18.20	1.089	7.20	-25.0	0.65	75.4	0.0
	Stop Surging									
10:45	4.25	0.27		18.32	1.090	7.16	-28.1	0.58	46.4	0.0
10:50	4.25	0.27		18.26	1.088	7.19	-23.7	0.56	20.6	0.0
10:55	4.2S	0.27		17.93	1.086	7.20	-9.0	0.53	5.6	0.0
11:00	4.25	0.27		17.92	1.086	7.20	-8.6	0.53	5.5	0.0
11:05	4.25	0.27		17.80	1.085	7.21	-3.2	0.52	3.2	0.0
11:10	4.25	0.27		17.81	1.085	7.21	-0.4	0.49	2.9	0.0
11:15	4.25	0.27		17.82	1.085	7.21	-0.1	0.50	3.3	0.0
11:20	4.25	0.27		17.83	1.085	7.21	2.1	0.50	1.3	0.0
11:25	4.25	0.27		17.82	1.085	7.21	3.4	0.49	1.2	0.0

TOTAL WATER PURGED (GALS): 247 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant
PAGE <u>2</u> of <u>2</u>

DATE: 9-6-16	WELL ID: MW-	52D	STATIC WATER	LEVEL (FT. TIC):	6.00	WELL DEPTH (F	T. TIC): 62.00
WATER COLUMN (FT.): 56.00	<u> </u>	SLUDGE THICKI	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	6
WELL CASING/BOREHOLE VOLU	JME (GALS.): 82	.3		FILTER PACK DI	AMETER (IN.): N	IONE	FILTER PACK LENGTH (FT.): NONE
FILTER PACK WATER VOLUME (	LTER PACK PUR	GE VOLUME (GA	LS.): 82.3		WATER LOSS DURING INSTALL (GALS.): 0		
REQUIRED PURGE VOLUME (3X	VOLUME AND I	.OSS) (GALS.): 2	46.9	FIELD PERSONN	EL: M Sieger		· · · · · · · · · · · · · · · · · · ·

	Water Level	Discharge	Volume		Specific Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
9/6/16 11:30	4.25	0.27	27	17.91	1.086	7.21	S.4	0.51	0.8	0.0
11:30	Stop Pump				,					
						ĺ				
							-		•	
										-
		,								
							ĺ			
•					· · ·					
										<b>.</b>
										~
		i								<u>^</u>
										<u></u>
···.									· · · ·	
							· · · · · · · · · · · · · · · · · · ·			

TOTAL WATER PURGED (GALS): 247 WATER

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE <u>1</u> of <u>1</u>

DATE: 8-1-16	TE: 8-1-16 WELL ID: MW-535				4.65	WELL DEPTH (F	T. TIC): 17.00
WATER COLUMN (FT.): 12.35		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	IAMETER (IN):	2
WELL CASING/BOREHOLE VOLU	JME (GALS.): 2.0	)		FILTER PACK DI	AMETER (IN.): 8		FILTER PACK LENGTH (FT.): 10
FILTER PACK WATER VOLUME (	GALS.): 6.0	CASING AND FI	LTER PACK PURG	GE VOLUME (GA	LS.): 8.0		WATER LOSS DURING INSTALL (GALS.): 20
REQUIRED PURGE VOLUME (3X	VOLUME AND I	.05S) (GALS.): 8	4	FIELD PERSONN	IEL: K Gerdes		

		Discharge	Mahama		Specific				Turkidar	01/4/010
Time	(Ft. TIC)	(GPM)	volume Purged (gal)	Temp. (C)	(mS/cm)	bH	ORP	ро	(NTU)	(PPM)
7/75/40	( ¹ · · · · · · · · · · · · · · · · · · ·	(,	450			F··				
//20/10			150						<u> </u>	
	Initial driller de	velopment by s	urging/overpum	ping.	-		ļ			
·	No visible sedin	nent at complet	ion of developm	ent.						
8/1/16 9:50	4.70	0.15	0	19.42	2.408	6.11	198.2	6.10	1249.0	No Reading
9:55	4.70	0.15	0.75	19.13	2.281	6.14	92.0	4.54	573.5	0.0
10:00	4.70	0.15	1.5	19.46	2.005	6.34	1.9	4.30	1267.0	No Reading
10:05	4.70	0.15	2.25	19.61	2.038	6.39	-19.4	4.33	864.1	0.0
10:10	4.70 ·	0.15	3	19.81	1.992	6.44	-32.5	4.30	557.0	No Reading
10:15	4.70	0.15	3.75	20.04	1.958	5.48	-39.2	4.44	323.3	0.0
	Stop Surging									
10:20	4.70	0.15	4.5	20.16	1.949	6.48	-43.2	2.03	164.7	No Reading
10:25	4.70	0.15	5.25	20.15	1.937	6.51	-53.8	1.31	118.4	0.0
10:30	4.70	0.15	6	20.01	1.906	6.53	-61.0	1.15	70.6	No Reading
10:35	4.70	0.15	6.75	19.92	1.893	6.54	-66.7	1.07	44.2	0.0
10:40	4.70	0.15	7.5	19.95	1.878	6.55	-70.5	1.03	30.6	No Reading
10:45	4.70	0.15	8.25	19.95	1.881	6.56	-73.7	1.01	21.7	0.0
10:50	4.70	0.15	9	19.94	1.863	6.57	-76.4	0.98	14.3	No Reading
10:55	4.70	0.15	9.75	19.97	1.851	6.58	-78.7	0.96	9.5	0.0
10:55	Stop Pump									
				_						

TOTAL WATER PURGED (GAL5): 159.75

WATER QUALITY METER: YSI 5920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE _____ of _____

.

WELL DEPTH (FT. TIC): 62.00

WELL CASING DIAMETER (IN): 6

STATIC WATER LEVEL (FT. TIC): 4.35

SLUDGE THICKNESS (FT.): 0.0

WELL CASING/BOREHOLE VOLUME (GALS.): 84.7 FILTER PACK DIAMETER (IN.): NONE FILTER PACK LENGTH (FT.): NONE WATER LOSS DURING INSTALL (GALS.): 0 FILTER PACK WATER VOLUME (GALS.): NONE CASING AND FILTER PACK PURGE VOLUME (GALS.): 84.7 REQUIRED PURGE VOLUME (3X VOLUME AND LOSS) (GALS.): 254.1 FIELD PERSONNEL: K Gerdes Specific OVA/PID Discharge Conductivity Water Level Volume Turbidity Time (Ft. TIC) (GPM) (mS/cm) ORP DO (NTU) (PPM) Purged (gal) Temp. (C) pН 7/26/16 250 Initial driller development by surging/overpumping. No visible sediment at completion of development. 0.15 8/1/16 11:15 4.40 0 20.51 0.793 7.06 -20.1 4.81 54.5 0.3 11:20 4.40 0.15 0.75 0.827 930.4 0.0 19.05 7.01 -45.5 4.60 No Reading 11:25 4.40 0.15 0.812 7.08 -54.5 3.90 661.9 1.5 18.35 11:30 4.40 0.15 2.25 18.42 0.799 7.12 -59.6 3.79 509.3 0.0 11:35 397.6 No Reading 4.40 0.15 з 18.28 0.789 7.16 -61.0 4.01 Stop Surging 0.0 11:40 0.15 3.75 0.783 310.1 4.40 18.09 7.18 -64.4 1.56 11:45 4.40 0.15 4.5 0.782 7.19 -69.1 283.4 No Reading 18.30 1.28 0.0 11:50 4.40 0.15 5.25 0.781 7.20 -74.9 236.7 18.71 1.16 0.779 192.6 11:55 4.40 0.15 6 18.75 7.22 -79.5 1.10 No Reading 0.777 155.0 0.0 12:00 4.40 0.15 6.75 18.79 7.23 -82.9 1.06 12:05 4.40 0.15 7.5 18.78 0.776 7.24 -84.8 1.04 109.6 No Reading 0.0 12:10 4.40 0.15 8.25 18.76 0.773 7.24 -85.4 1.03 75.2 12:15 4.40 0.15 19.07 0.772 7.24 -85.0 1.01 50.1 No Reading 9 12:20 4.40 0.15 9.75 19.23 0.773 7.25 -84.3 1.01 39.0 0.0 12:25 4.40 0.15 No Reading 10.5 19.31 0.773 7.25 -83.2 1.00 28.5 12:30 4.40 0.0 0.15 11.25 18.62 0.770 7.25 -81.6 0.99 21.6 12:35 4.40 0.15 12 18.61 0.765 7.25 0.98 15.9 No Reading -80.2 12:40 4.40 0.15 12.75 18.70 0.770 7.25 -78.9 0.98 12.8 0.0 12:45 4.40 0.15 13.5 19.24 0.763 7.24 -77.9 0.98 6.2 No Reading 12:45 Stop Pump

TOTAL WATER PURGED (GAL5): 263.5

DATE: 8-1-16

WATER COLUMN (FT.): 57.65

WELL ID: MW-53D

WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MI5S On-Site Treatment Plant

PAGE <u>1</u> of <u>2</u>

,

DATE: 8-4-16		WELL ID: MW	-545	STATIC WATER	LEVEL (FT. TIC):	3.22	WELL DEPTH (	FT. TIC): 11.00		
WATER COLUM	1N (FT.): 7.78		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING E	DIAMETER (IN):	2	· · · ·	, <u></u> , <u></u>
WELL CASING/	BOREHOLE VOLU	JME (GALS.): 1.	3		FILTER PACK D	IAMETER (IN.): 8	3	FILTER PACK L	ENGTH (FT.): 8.5	; ;
FILTER PACK W	ATER VOLUME (	GALS.): 5.2	CASING AND F	LTER PACK PUR	GE VOLUME (GA	ALS.): 6.5		WATER LOSS D	URING INSTALL	(GALS.): 0
REQUIRED PUR	GE VOLUME (3)	VOLUME AND	LOSS) (GALS.): 1	.9.5		NEL: K Gerdes				
<u></u>		ł	1	1	l			1	1	T
Time	Water Level (Ft. TIC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	рН	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)
8/1/16			110							
	initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedir	nent at complet	ion of developm	ent.						
8/4/16 8:45	3.20	0.2	0	18.64	0.519	7.20	76.7	7.70	1197.0	0.0
8:50	3.45	0.2	1	18.53	0.510	6.82	105.1	5.64	1196.0	No Reading
8:55	3.50	0.2	2	19.03	0.512	6.82	119.1	5.00	1200.0	0.0
9:00	3.60	0.2	3	18.71	0.510	6.87	127.4	5.45	1198.0	No Reading
9:05	3.60	0.2	4	18.72	0.511	6.90	135.4	5.04	1198.0	0.0
9:10	3.65	0.2	5	18.48	0.513	6.92	139.8	4.70	1196.0	No Reading
<del>9</del> :15	3.65	0.2	6	18.42	0.511	6.92	144.6	4.65	1194.0	0.0
9:20	3.65	0.2	7	18.64	0.511	6.92	148.1	3.98	661.9	No Reading
9:25	3.65	0.2	8	18.38	0.512	6.92	151.6	4.09	1194.0	0.0
9:30	3.65	0.2	9	18.44	0.511	6.94	155.6	4.73	781.0	No Reading
9:35	3.65	0.2	10	18.66	0.511	6.94	158.5	4.61	464.1	0.0
	Stop Surging							•		
9:40	3.65	0.2	11	18.51	0.504	7.02	165.4	3.18	539.4	No Reading
9:45	3.65	0.2	12	18.61	0.506	7.01	170.1	2.37	474.2	0.0
9:50	3.65	0.2	13	18.45	0.506	6.98	173.8	2.18	392.7	No Reading
9:55	3.65	0.2	14	18.42	0.509	6.94	173.1	1.93	315.4	0.0
10:00	3.65	0.2	15	18.41	0.508	6.92	174.2	1.72	277.8	No Reading
10:05	3.65	0.2	16	18.37	0.503	6.93	174.7	1.59	244.2	0.0
10:10	3.65	0.2	17	18.43	0.500	6.90	174.9	1.57	114.3	No Reading
10:15	3.65	0.2	18	18.62	0.500	6.89	174.1	1.50	106.8	0.0
10:20	3.65	0.2	19	18.58	0.502	6.90	174.3	1.49	96.1	No Reading

TOTAL WATER PURGED (GALS): 136 WATER QUALITY METER: YSI 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

PAGE 2_____ of _____

DATE: 8-4-16		WELL ID: MW-	-545	STATIC WATER	LEVEL (FT. TIC):	3.22	WELL DEPTH (	FT. TIC): 11.00			
WATER COLUM	N (FT.): 7.78	I	SLUDGE THICK	NESS (FT.): 0.0		WELL CASING D	DIAMETER (IN):	2			
WELL CASING/		JME (GALS.): 1.	3		FILTER PACK DI	AMETER (IN.): 8	8	FILTER PACK LE			
FILTER PACK W	ATER VOLUME (	GALS.): S.2	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 6.5		WATER LOSS D	URING INSTALL	(GALS.): 0	
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	LOSS) (GALS.): 1	9.5	FIELD PERSONN	IEL: K Gerdes		<u> </u>			
[				l	Specific	r	1	1	1		
Time	Water Level (Ft. TiC)	Discharge (GPM)	Volume Purged (gal)	Temp. (C)	Conductivity (mS/cm)	pH	ORP	DO	Turbidity (NTU)	OVA/PID (PPM)	
8/4/16 10:25	3.65	0.2	20	18.17	0.505	6.90	176.8	1.48	76.0	0.0	
10:30	3.65	0.2	21	18.71	0.464	6.89	177.5	1.45	60.8	No Reading	
10:35	3.65	0.2	22	18.71	0.457	6.88	178.8	1.46	64.9	0.0	
10:40	3.65	0.2	23	18.62	0.447	6.88	180.3	1.44	56.4	No Reading	
10:45	3.65	0.2	24	18.67	0.508	6.88	181.2	1.40	32.2	0.0	
10:50	3.65	0.2	25	18.63	0.507	6.87	182.2	1.37	17.5	No Reading	
10:55	<u>3.65</u> 0.2 26 18.50 0.508 5.87 183.0 1.30 8.7 0.0										
10:55	Stop Pump										
								-			
						4					
							<u>,</u> ,,,				
		480									
TOTAL WATER P	UKGED (GALS):	136	WATER QUALIT	Y METER: YSI 69	120						
		: Grundfos Subi	nersible								

PAGE <u>1</u> of <u>1</u>

DATE: 8-4-16		WELL ID: MW-	54D	STATIC WATER	LEVEL (FT. TIC):	0.00	WELL DEPTH (I	FT. TIC): 79.00		
WATER COLUN	IN (FT.): 79.00		SLUDGE THICK	NESS (FT.): 0.0		WELL CASING E	) DIAMETER (IN):	2		
WELL CASING/I	BOREHOLE VOLU	JME (GALS.): 12	.9		FILTER PACK DI	AMETER (IN.): 6	5	FILTER PACK LE	ENGTH (FT.): 25	
FILTER PACK W	ATER VOLUME (	GAL5.): 9.2	CASING AND FI	LTER PACK PUR	GE VOLUME (GA	LS.): 22.1		WATER LOSS D	URING INSTALL	(GALS.): 0
REQUIRED PUR	GE VOLUME (3X	VOLUME AND	OSS) (GALS.): 6	6.3	FIELD PERSONN	EL: K Gerdes				
			1			I	I	T	<del>_</del>	
	Water Level	Discharge	Volume		Conductivity				Turbidity	OVA/PID
Time	(Ft. TIC)	(GPM)	Purged (gal)	Temp. (C)	(mS/cm)	рH	ORP	DO	(NTU)	(PPM)
8/1/16			55							
	Initial driller de	velopment by s	urging/overpum	ping.						
	No visible sedir	nent at complet	ion of developm	ent.						
8/4/16 11:55	0.00	0.15	0	18.35	0.513	7.56	195.2	7.80	1194.0	0.0
12:00	4.15	0.15	0.75	17.70	0.512	7.56	209.6	7.44	966.8	No Reading
12:05	6.15	0.15	1.5	17.63	0.510	7.59	211.2	7.75	581.8	0.0
12:10	7.25	0,15	2.25	17.49	0.512	7.63	215,4	7.75	388.7	No Reading
12:15	8.40	0.15	3	17.35	0.513	7.66	219.0	7.92	341.7	0.0
	Stop Surging									
12:20	9.80	0.15	3.75	17.41	0.524	7.70	222.6	. 7.46	289.8	No Reading
12:25	10.55	0.15	4.5	16.89	0.512	7.70	224.0	6.62	121.5	0.0
12:30	11.30	0.15	5.25	17.27	0.513	7.71	224.4	6.54	75.6	No Reading
12:35	11.70	0.15	6	16.94	0.510	7.80	222.8	6.51	54.1	0.0
12:40	12.50	0.15	6.75	16.69	0.509	7.76	224.0	6.42	44.0	No Reading
12:45	13.30	0.15	7.5	16.81	0.511	7.76	223.9	6.38	36.8	0.0
12:50	13.90	0.15	8.25	16.92	0.511	7.77	223.2	6.33	32.2	No Reading
12:55	14.80	0.15	9	16.67	0.511	7.77	224.1	6.29	29.2	0.0
13:00	15.75	0.15	9.75	16.62	0.512	7.77	179.1	6.27	22.0	No Reading
13:05	16.00	0.15	10.5	16.75	0.512	7.78	142.9	6.25	18.9	0.0
13:10	15.10	0.15	11.25	17.08	0.513	7.79	137.6	6.20	18.4	No Reading
13:15	16.10	0.15	12	17.02	0.513	7.80	146.1	6.14	14.7	0.0
13:20	16.10	0.15	12.75	17.04	0.513	7.81	154.4	6.07	11.2	No Reading
13:25	16.10 0.15 13.5			17.09	0.514	7.81	162.0	6.06	9.3	0.0
13:30	Stop Pump		14.25							

TOTAL WATER PURGED (GALS): 69.25

WATER QUALITY METER: Y5I 6920

PUMP AND OTHER EQUIPMENT: Grundfos Submersible

DEVELOPMENT WATER DISPOSAL: MISS On-Site Treatment Plant

APPENDIX D Well Sampling Purge Data Forms

# **APPENDIX D**

# PURGE DATA FORMS FOR LTM WELLS AND SURFACE WATER ENVIRONMENTAL DATA

# PURGE DATA FORMS FOR LTM WELLS

### LOW FLOW SAMPLING DATA SHEET

								DA	ia she	5 .					SHEE	TOF
SITE: DATE: WEATHEI	2		Maywoo 8-8-1 sunny,	501 6 79°	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		CONSULTIN	G FIRM;	CB+I P.Hedma	n, J.(	<u>_</u>			
MONITOR	t Wi RMI	ELL T #:	#: <u>1338</u>	W255	R WE WELLI	LL DEPTH: DIAMETER:	<u>13.0</u> 2	Dinches	p., 14.8	STIC	SCREEN	ED/OPEN I	NTERVAL:	7.4-1	2.4,14.	P65
id/fid R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI			PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>12.</u> IR BEFORE	0 ft below PUMP INST	THE (10	-0- 645 -6.2/ ft 1	elow TOC		
	SUPERATING		р (рН 1	H Inits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	DOX NTIAL IV)	DISS OX1 (m	OLVED (GEN 19/1)	TURE (N	SIDITY TU)	TEMPEI (degra	RATURE *	PUMPING RATE	DEPTH TO WATER (ft below
тіме 945	đ	3 ,	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	(mi/min)	TOC)
950	x		6.62		3.206		-58.2		9.74		60.7		18.45		200	6.42
155	X		6.60		3.233		-61.0		9.09		62.4		18.72		165	6.39
δ	X		6.60	· .	3.261		-63.9		9.04		38.4		18.85		165	6.38
005	×		6.59		3.278		-62.6		9.40		69.3		18.93		165	6.38
010	N		6.59		3.287		-59.0		9.34		51.7		19.13		165	6.38
015	X		6.58		3.265		-59.8		1.41		41.1		19.26		165	6.38
020	X		6.57		3.265	· .	-64.5		1.28		32.0		(8.08		165	638
025	X		6.56		3.250	-	- 65.6		1.19		25.3		17.35		165	6.38
030	X		6.55		3.255		- 66.0		1.11		14.9		17.58		165	6.38
035	X		6.55		3.255		-67.6		1.02		16.0	, .	17.83		165	6.38
OMMEN	ITS	1	128-09	00.00												



### LOW FLOW SAMPLING DATA SHEET

							: -	DA	TA SHEI	ET					SHEE	T 2 OF 2
SITE: DATE: WEATHEI	- R:		Maywe 8-8	-16					CONSULTIN FIELD PERS	g firm: ONNEL:	· · · · · · · · · · · · · · · · · · ·				······································	
MONITOR	t WE RMI	ELL T #:	# <u>133</u>	30255	C WELL	LL DEPTH: DIAMETER:		inches			SCREEN	ED/OPEN I	NTERVAL:			
PID/FID R	D/FID READINGS (ppm): BACKGROUND:PUMP INTAKE DEPTH:ft below TOC BENEATH OUTER CAP:DEPTH TO WATER BEFORE PUMP INSTALLATION :ft below TOC BENEATH INNER CAP:															
	RGING	0     SPECIFIC       1     pH     CONDUCTIVITY       1     (pH units)     (mS/cm)       2     READING     CHANGE*			RE POTE (t	DOX INTIAL IIV)	DISS OX1 (m	DLVED 'GEN g/l)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below		
TIME	ž	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1045		X	6.55							· · ·			1,7.0			6.38(fin
						·	-							×,	a a	
· .											· .			· · ·		
-	<u> </u>										 					
	-															
4 					<u> </u>			2.					<u> </u>		-	· · · · · · · · · · · · · · · · · · ·
		-							· · ·					·		
		╞					<i>(</i> 4									
	+	·   .			·	.										
COMMEN	ITS:	:	· · · · ·		•	·.·	<u> </u>	<u>.</u>	<u> </u>	· · · · ·				- <b>I</b> - · · ·	· · · · · · · · · · · · · · · · · · ·	1

### LOW FLOW SAMPLING DATA SHEET

SHEET ____OF

SITE:		Maxwo			· ···	•••••		CONSULTIN	G FIRM:	CB+I					
DATE:		3-8-	16					FIELD PERS	ONNEL:	PHEDM	an J.	Caok			
WEATHE	R:	Sunny	<u>1, 83</u>	0									,		,
MONITON	RMIT #	# 838	W2509	VIELL I	LL DEPTH: DIAMETER:	58.6	g); 5° inches	1,870	TIC	SCREEN	ED/OPEN II	NTERVAL:	<u>33-</u> 34,87	58 <del>4</del> . - 54.8	Pbs 7'TIC
PID/FID R	ID/FID READINGS (ppm): BACKGROUND: BENEATH OUTER CAP: BENEATH INNER CAP: BENEATH IN														
	g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g <thg< th="">     g     g     g     g<th>PUMPING RATE</th><th>DEPTH TO WATER (ft below</th></thg<>													PUMPING RATE	DEPTH TO WATER (ft below
TIME	D R	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
111-8	X		NA		NA		NA		NÄ		NA		NA		-
1125	X	6.63		4.717		-47.7		1.21		-3.1		15.57		235	10.10
1130	X	6.62		4.719		-49.9		0.95		- 3.8		15,35		235	10.28
1135	X	6,62		4.739		-53.4	· -,	0.85		-4.1		15.41	· · · · · · · · · · · · · · · · · · ·	235	10.40
1140	×	6.62		4.734	5 A	-54.2		0.84		-3.9		15.34		235	10.51
1145	*	6.63		4.723		-56.1		0.75		- 3.8		16.44		165	10.57
1150	X	6.65		4.777		-57.6		0.67		- 1.0		17.57		165	10.58
1155	X	6.65		4.807		-57.1	·.	0.64		1.3		17.60		165	10.59
1200	×	6.65		4.805		-57.6		0.63		0.9		18,38		165	10.59
1205	×	6,65		4.827		-56.3		0.60		0.9		18.53		165	10,59
1210	×	6.64		4.854		55.6		0.58		1.0		18.69		165	10.59
commen 121	<del>пs:</del> 5 :	samphi	5		· · · · · · · · · · · · · · · · · · ·	AMPLE	15. 12	B -09	000	·	•	₽ī	to final	;10,67	+'

10

### LOW FLOW SAMPLING DATA SHEET

1 OF 2

SHEET

SITE:		Mayu	bood	· · · · ·		· · ·		CONSULTIN	G FIRM:	CB1 I				· · · · · · · · · · · · · · · · · · ·	
DATE:		8-9	<u>8-16</u> 94	0		•	I	FIELD PERS	ONNEL:	P. Helm	$m, \Delta$	Cook	1		
HOWTOD			$\frac{m_{1}}{2.26}$		I DEDTH.	20118	-	19 02 10		SCREEN	ED/OPEN U		10.4	3-20,4	R. J.K.
WELL PER	MIT #	#: <u>/////</u>	282	WELL	DIAMETER:	20.43	inches	11.030	<b>d</b> , .	JUNEDI		1	9.03	- 19.0	3' 681
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	Ø	<u></u>	PUMF	INTAKE D	етн: <u>17</u>	43ft below	TIC (5	ll ch	ph	PPO	
	BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATIONH below TOC BENEATH INNER CAP: //.95'														
	O     SPECIFIC     REDOX     DISSOLVED       OZ     PH     CONDUCTIVITY     POTENTIAL     OXYGEN     TURBIDITY     TEMPERATURE														
	<b>IDLIN</b>	P (pHu	H units)	CONDU (mS	CTIVITY (cm)	POTE (m	NTIAL IV)	OXY (m	GEN g/i)	TURE (N	IIDITY TU)	TEMPEI (degro	RATURE Bes C)	PUMPING Rate	WATER (ft below
TIME -	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1302	X		NA		NA		NA		NA		NA		NA	175	-
1310	X	6.51		3.113		-42.6		1.49		241.6		19.65		175	11.95'
1315	X	6.52		3.096		-43.5		1.42		181.3		19.63		175	11.95
1320	X	6.53		3.092		-47.6		1.43		138.4		19.71		175	11.95'
1325	X	6.54		3.094		-48.7		1.42		115.9		20.08		175	11.95
1330	X	6.55		3.109		-49.8		1.44	-	104.8		19.53		175	11,95'
1335	X	6.54		3.093		-50.4		1.43		81.7		19.27		175	11.951
1340	$\checkmark$	6.53		3.095	-	- 52.4		1.33		开.4		19.16		175	11.95
1345	X	6.53		3.097		- 52.8		1.26		65.0		18,70		175	11.95
1350	×	6.51		3.092		-54.6		1.21		57.3		18.49		175	11.951
1355	X	6.50		3.091		55.8		1.17		52.7		18.39		175	11.951
COMMEN	TS:					· · ·				٤.			· .		
						. •		50	MPZE	10:12	2B-0	90002	2		-

### LOW FLOW SAMPLING DATA SHEET

						1									Shee	I OF
SITE:		٨	100 WOO	d					CONSULTIN	G FIRM:					······································	
DATE:	· •		3-	8-16			· · · · · ·	.	FIELD PERS	ONNEL:				<u>\</u>		
WEATHE	R:							<u> </u>			•		;	/		
MONITOR	t WI	ELL	# MW	285	WE	LL DEPTH:	a ta da a				SCREEN	ED/OPEN II	NTERVAL:		~	
WELL PE	RMI	T #	1-1		WELL	DIAMETER:		inches					X.			
	EA	الطاد							ан. С				<u>\</u>		· · ·	
		/II.4.	aa (hhiii):	BACKGRO		• <u>•</u>		PUM	INTAKE D	EPTH:	It below	TOC			•	· .
	; .			BENEATH		r:		VEFI		r defore	FUMP INSI	ALLAHUN	i <u> </u>			
	SPECIFIC REDOX DISSOLVED															
	5 Ž	N	. P	Ĥ	CONDU	СПИТҮ	POTE	NTIAL	OXY	GEN	TURE	IDITY	TEMPEI	RATURE		DEPTH TO
·	RG	MPL	(pH i	units)	(mS	/cm)	(11	iv)	(m	g/l)	(N	ru) / .	(degre	ees C)	RATE	(ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1400	X		6.50	NA	3.091	NA	-55.7	NA	1.11	NA	44.8	NA	18.37	NA	175	-11.95
1405	X		6.49	· · ·	3.093		-56.4		1.07		41.4		18.39		175	11, 95
1410	X		6.48		3.090		-58.1		0.99		34.9		17.99		175	11.95
1415	X		6.48		3.092		-59.4		0.95		27.9		17.94		175	11.95
1420	X		6.48		3.093	:	-59.4		0,93		26.7		17.82	_	175	11.95
1425		X													(FINAL)	11.95
													-			
			· . ·						•							
										· .						
COMMEN	ITS															
· .						-			1						·	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 my for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Ľ

Low Flow Purging and Sampling Guidance Page 15 of 18

-----

### LOW FLOW SAMPLING DATA SHEET

								DA	FA SHE	ET	۰.				SHEE	гОГ
SITE: DATE:	-		Mayo	18/16					CONSULTIN	IG FIRM:	C/B KG	81 1MS			······································	
VEATHE	R:		S/	nny ~	- 70 ^{sr}		. /							38,80	-58.80	'bp
IONITOI VELL PE	R WE	:LL r #:	# <u>BRP</u>	2.5	WELL	LL DEPTH: DIAMETER:	2	28,80 inches	hop. 6	0.9371	(, SCREEN	ed/open II	NTERVAL:	40,93	- 60 9	S'TK
id/Fid f	EAD		GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CA INNER CAF	P: 0		PUMI DEPT	INTAKE D H TO WATE	EPTH: <u>S</u> R BEFORE	ft below PUMP INST	TOCTIC.	<u>2.25</u> ft	below TOC		
•	RGING	MPLING	p (pH (	H units)	SPE CONDU (mS	CIFIC CTIVITY i/cm)	RE POTE (1	DOX INTIAL nv)	DISS OX1 (m	OLVED (GEN 19/1)	TURE (N	SIDITY TV)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	3	SÅ	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
015	K		5.93	NA	16.84	NA	-28.0		4.42		912.1		20.10		150	10,1
020	R		5.98		16-83		-20.3		3.92		908.7		20.53		150	11.4
25	X		6.02		16.75		-12.1		3.58		925.8		20.48		150	11.7
0 30	X		6.03		16-73		-4.6		3.32		923.9		19.96		150	12-1
035	X		6.02		16.68		1.7		3.62		916.2		19.90		150	12.6
540	K		6.01		16.75		7.1		3.47		214.4		19.60		150	12.9
045	K		601		16.70	·	9.8		3.61		847.7		19.35	·	150	13.25
250	K		6.02		16-67		12.4		2.94		742.0		19.43		150	13.6
055	X		6.02		16-64	, ,	13.4		3.20		619.1		19.55		150	138
100	X		601	-	16.66		15:0		2.99		499.8		19.78		150	14.05
/	r N	the second s						-1					1	1		

Low Flow Purging and Sampling Guidance Page 15 of 18

## LOW FLOW SAMPLING DATA SHEET

SHEET 2 OF 4

SITE:			Maywoo	d				(	CONSULTIN	G FIRM:	CB	٤(			:	
DATE:	_		8/8	116	7-5	·	·		FIELD PERS	SONNEL:	KG/	MS				
WEATHER	<u>لا</u>		svan	× ~	<u>70°                                    </u>											
MONITOR	WE	LL	# <u>BRP</u>	25	WE	LL DEPTH:	_ <u>51 ft</u>				SCREEN	ED/OPEN IN	TERVAL:			<u> </u>
WELL PER		F #:						Inches		-					· ·	
PID/FID R	EAD	INC	GS (ppm):	BACKGRO	UND:	<u> </u>		PUMP	P INTAKE D	EPTH:	ft below	TOC				
				BENEATH	OUTER CAP	יי	<u> </u>	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	:ft	below TOC/		· · · ·
· · · · · · · · ·	1			DEREATH	CDEC				DISC		<del> </del>					
	<b>D</b> N	Ĕ	p	н	CONDU	CTIVITY	POTE	NTIAL	OXI	GEN	TURB	IDITY	TEMPE	RATURE	PUMPING	DEPTH TO WATER
	DRU DRU	A	(pH ı	inits)	(mS	(cm)	(m	nv)	(m	ig/l)	(N1	ru)	(degn	ees C)	RATE	(ft below
TIME	ā	3	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mVmm)	TOC)
11/0	X		6.00	NA	16.73	NA	13.6	NA	2.38	NA	380.0	NA	20.33	NA	150	-14.45
1115	K		6.00		16.74		11.5		2.18		301.3		20.58		150	14.55
1120	Х		6.00		16.70		8.1		2.07		242.2		21,16	· · ·	150	14.75
1125	X	_	6.60		16.73		7.6		2.07		223.2		21,21		100	14.75
1130	X		6.00		16.71		4.3		1,81		216.2		21.20		150	14.80
1135	χ		6.00		16.70		0.8	· \.	2.03		196.2		21.08		150	#1480
1140	x	_	6.00		16,74		-3.3		1.75		187.3		21.21		150	14.80
1145	X		6.00		16.68		-4.2		1.94		182.4		21.30		150	14.85
1150	X		6.00		16.67		-5.0		1.96		158.8		21.63	·	1820	14.85
1155	λ		6.00		4.78		-10.1		2.34		132.0		21.62		180	14.85
12:00	X		6.00		16,70	3 	-70		1.83		122.3		22.34		150	15.00
COMMEN	TS:	11	53 Clea	ured out	Flow Ce	ell of Sed	liment.			2014 - C. M.						

NEW JEKSEY DEPARTMENTAL OF ENVIRONMENTAL AND ADDRESS LOW Flow Purging and Sampling Guidance Page 15 of 18

### LOW FLOW SAMPLING DATA SHEET

SHEET 3 OF 4

NΞ.

SITE: DATE: WEATHE	 R:	Mayuxs 8/2 Surr	22 3/16 14 00's					CONSULTIN FIELD PERS	G FIRM: _( ONNEL: _}	CBAT CG/MS				······································	
MONITO	RMIT	L# <u>B2</u> 2	25	WELL I	LL DEPTH: NAMETER:	5114	inches			SCREEN	ed/open in	ITERVAL:			
PID/FID R	EADI	NGS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI	?;		PUMI DEPT	P INTAKE DI TH TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION :	ft	below TOC		
	RGING	pH (	xH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISSC OXY (m	)LVED 'GEN g/l)	TURB (N	IDITY FU)LeMotte	TEMPEI (degn	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	Z	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	-	READING	CHANGE*	(ml/min)	TOC)
1205	x	6.03	NA	16.64	NA	-6.2	NA	1.43	NA	148.0	NA	22.48	NA	180	15:00
1210	X	6.03		16.66		-11.6		1.43		130.2	-	21.85		150.	15,00
1215	x	6.03		16.56		-12.7		1.57		116.6		21.88		150	15.05
1220	*	6.03		16.57		-12.9		1.61		98.8		22.80		150	15.05
1225	X	6.03		16.56	x 1	-13.0		1.68		102.4		21.50		150	15.10
12.30	x	6.02		14.47		-15.3		1.92		94.2		21.06		150	15.15
12.35	X	6.01		1		-15.0		2.11		93.8		20.81		150	15.25
1240	×	6.00		16.39		-15.6		1.94		87.6		2044		150	15.35
17.45	X	6.00		16.34		-14.0		92.77		84.2		20.58		150	15:45
1250	×	5.97		16.28		- 13.1		2.72		78.1		21.17		180	15.55
12.55	×	5.97		16.30		-14.1		2.70	;	75.3	40.3	21.01		150	15:55
COMME	ITS:	Checking	g Turbin	dity wi	thi the	e LaMot	te metr	er			· .			-	

Low Flow Purging and Sampling Guidance Page 15 of 18

# LOW FLOW SAMPLING

SHEET 4 OF 4 CONSULTING FIRM: CBAT SITE: Maywood Q-2-16 FIELD PERSONNEL: 4(2/10) DATE: Sunny 80's WEATHER: SCREENED/OPEN INTERVAL: MONITOR WELL # BRDZS WELL DEPTH: 5 WELL PERMIT #: WELL DIAMETER: inches 7 PID/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: ft below TOC DEPTH TO WATER BEFORE PUMP INSTALLATION : _____ ft below TOC **BENEATH OUTER CAP: BENEATH INNER CAP:** SPECIFIC REDOX DISSOLVED **DEPTH TO** SAMPLING PURGING POTENTIAL OXYGEN TURBIDITY TEMPERATURE CONDUCTIVITY ъH PUMPING WATER (NTU)/aMote (degrees C) (pH units) (mS/cm) (mg/l) (mv) RATE (ft below and the second CHANGE* READING CHANGE* (ml/min) TOC) TIME READING CHANGE* READING CHANGE* READING CHANGE* READING READING NA NA. NA NA NA 215.60 2.14 150 437 -16.5 625 20.89 596 16.35 1300 X 15.65 2.94 5.96 67.7 43.9 120 20.84 1305 X 16.36 -17.O 15.60 16.39 49.4 150 2.92 20.86 1310 X 5.94 -16.1 66.9 5,94 1315 2.89 20.83 15.60 16.39 66.6 44.1 150 X 16.6 16.37 64.3 2.87 20.85 5.94 42.2 150 15.60 1320 -16.Z X 1325 · · 9.25 . COMMENTS: Checking Turbidity with Lamothe Meter and YSE. Collect saugle 128-090004.



### LOW FLOW SAMPLING DATA SHEET

	••														SMEE	
SITE:	•		Maya	road		· · · · · · · · · · · · · · · · · · ·		· · ·	CONSULTI	NG FIRM:	CB	1				,
DATE:			<u> </u>	19/16				· .	FIELD PER	SONNEL:	KO	MS .				
WEATHE	R:		SU	may G	-0 S					-					•	
MONITO	R WI	ELL T#	# <u>BRP</u>	29	WELL	LL DEPTH; DIAMETER:	52.91	16, 51.46 inches	OBES		SCREEN	(ED/OPEN I	NTERVAL:	27.40	- <u>51.40</u> - 52.9	FE BSS
PID/FID F	EAI	DIN	GS (ppm):	BACKGRO	DUND: OUTER CA	0 P: 0	· · ·	PUM	P INTAKE D	EPTH: <u>47.</u> ER BEFORE	1_ft below PUMP INST	TOC ALLATION	: <u>8,00</u> ff	below TOC	70(1)	0
				BENEATH	INNER CAL	<u>, 0</u>			· · · · · · · · · · · ·					·		r
	RGING	<b>DNITHW</b>	pH	pH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (n	DOX NTIAL nv)	DISS OX (n	OLVED YGEN ng/I)	TURI (N	BIDITY ITU)	TEMPE (degi	RATURE [*] ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	8	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0840	K		6.42	NA	11.79	NA	-26.2	NA	0.67	NA	3.2	NA	18.09	NA	300	8.05
0845	x		6.45	·	11.87		-26.8	··· .	0.56		3.2		17.92		300	8.35
0850	x		6.48		11.97	· .· ·	-27.8		0.44	-	3.0		17.99		300	8.50
0855	X	<u> </u>	6.50		11.87		-28.1		0.45		2.5		17.75		300	8.58
0900	×		6.51		11.86		-28.2		0.45		2.7	•	17.01		300	8.69
0905	×		6.52		11.83		-28.0		0.40		2.4		18.55		225	8.80
0910	¥		6.53		11.84		- 27.8		0.41		2.3		18.61		225	8.80
0915	æ		6.53		11.83		-27.6	ļ	0.40		2.4		18.66		225	ලු.පු
0920	X		6.54		11.83		-27.5	•	0.40		2.3		18.70	-	225	8.85
0925	×		6.53		11.84		-27.6	•	0.41		Z.2		18.73		225	8.85
0930		X													Final	8.85
COMME	ITS:	<b>I</b> .	Final 6	40 Dru	0= 3.85											



SHEE

| S.      | DAY 80'S                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIELD PERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IONNEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XG/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L#: 6   |                                                                             | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 115 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #:      | nw43D                                                                       | WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :LL DEPTH:<br>DIAMETER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f_{TIC}$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.40 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / .د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SCREEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ED/OPEN II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTERVAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>20.40-</u><br>72.8- | - 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VITIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NGS (pp | ^{m):} BACKG<br>BENEA<br>BENEA                                      | ROUND:<br>FH OUTER CAI<br>TH INNER CAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PUMI<br>DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P INT <b>AKE</b> D<br>TH TO WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ертн: <u>44</u><br>R Before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>·8</u> ft below<br>PUMP INST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T <b>∳</b> C<br>ALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : <u>7.95</u> ft 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | below TOC              | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>ب</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | pH<br>(pH units)                                                            | SPEC<br>CONDU<br>(mS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIFIC<br>CTIVITY<br>i/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REI<br>POTE<br>(11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOX<br>NTIAL<br>IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Disse<br>OX1<br>(m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DLVED<br>(GEN<br>19/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TURE<br>(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NDITY<br>TU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEMPEI<br>(degra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RATURE *               | PUMPING<br>RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEPTH TO<br>WATER<br>(ft below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| READ    | NG CHANGE                                                                   | * READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHANGE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHANGE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHANGE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHANGE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHANGE*                | (mi/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.1     | 4 NA                                                                        | 2.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>NA</b>              | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 5                                                                           | 2.536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 14                                                                          | 2.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 2                                                                           | 2.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 2                                                                           | 2.534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | s .                                                                         | 2.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 2                                                                           | 2.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.      | × ·                                                                         | 2.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -41.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~.<br>~.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 0                                                                           | 2.521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -40.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.0     | 0                                                                           | 2.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | | | | | | | | | | | | | | | |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | READI<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0 | IGS (ppm):         BACKG           BENEAT         BENEAT           BENEAT         BENEAT           pH         (pH units)           READING         CHANGE           8.14         NA           8.05         8.04           8.02         8.02           8.02         8.02           8.02         8.02           8.02         8.02           8.02         8.02           8.02         8.02           8.02         8.02           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00           8.00         8.00 | NGS (ppm):         BACKGROUND:           BENEATH OUTER CAN         BENEATH OUTER CAN           BENEATH INNER CAN         SPE           pH         CONDU           (pH units)         (ms           READING         CHANGE*           8.14         NA           2.5360           8.05         2.5360           8.02         2.524           8.02         2.524           8.02         2.530           8.02         2.530           8.02         2.530           8.02         2.520           8.01         2.520           8.02         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521           8.00         2.521 | VGS (ppm):       BACKGROUND:       O         BENEATH OUTER CAP:       O         BENEATH INNER CAP:       O         PH       SPECIFIC         (pH units)       (mS/cm)         READING       CHANGE*         READING       CHANGE*         8.14       NA         2.536       NA         8.05       2.536         8.02       2.524         8.02       2.524         8.02       2.530         8.02       2.530         8.02       2.530         8.02       2.519         8.01       2.521         8.00       2.521         8.00       2.520         8.00       2.520         8.01       2.520         8.02       2.519         8.01       2.520         8.00       2.521         8.00       2.521 | IGS (ppm):       BACKGROUND:       O         BENEATH OUTER CAP:       O         SPECIFIC       READING         BENEATH INNER CAP:       O         O         PH       CONDUCTIVITY       POTE         (pH units)       CONDUCTIVITY       POTE         (pH units)       CONDUCTIVITY       POTE         READING       CHANGE*       READING       CHANGE*         READING       CHANGE*       READING         8.04       2.5520       NA       -9.2         8.05       2.5530       -10.2         8.04       2.5530       -10.2         8.05       2.5530       -32.3         8.02       2.5530       -32.3         8.02       2.5519       -41.4         8.01       2.5521       -41.4         8.00       2.5519       -41.4         8.00       2.5519 <th cols<="" td=""><td>VGS (ppm):BACKGROUND:$\bigcirc$$\bigcirc$PUMIBENEATH OUTER CAP:$\bigcirc$$\bigcirc$DEPTBENEATH INNER CAP:$\bigcirc$$\bigcirc$DEPTpHCONDUCTIVITYPOTENTIAL<br/>(mS/cm)REDOX<br/>POTENTIAL<br/>(mV)READINGCHANGE*READINGCHANGE*8.14NA2.5%$\sim$$\sim$8.052.5%$\sim$$\sim$$\sim$8.042.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.012.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$<td>VGS (ppm):         BACKGROUND:         $\bigcirc$ $\bigcirc$         PUMP INTAKE D           BENEATH OUTER CAP:         $\bigcirc$ $\bigcirc$         DEPTH TO WATE           BENEATH INNER CAP:         $\bigcirc$ $\bigcirc$         DISS           pH         CONDUCTIVITY         POTENTIAL         0X1           (pH units)         (mS/cm)         (mv)         (mv)           READING         CHANGE*         READING         CHANGE*         READING           8.14         NA         2.560         $-10.2$ $0.82$           8.05         2.530         $-10.2$ $0.82$           8.04         2.524         $-14.6$ $0.73$           8.02         2.524         $-29.4$ $0.62$           8.02         2.530         $-32.3$ $0.87$           8.02         2.530         $-32.3$ $0.60$           8.02         2.530         $-32.3$ $0.63$           8.02         2.519         $-40.2$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.519         $-41.4$ $0.63$ <td>NGS (ppm):BACKGROUND:OPUMP INTAKE DEPTH: $\frac{44}{24}$BENEATH OUTER CAP:OPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREBENEATH INNER CAP:ODISSOLVED<br/>OXYGENpHCONDUCTIVITYPOTENTIAL<br/>OXYGEN(my)IDISSOLVED<br/>OXYGEN(pH units)CONDUCTIVITY<br/>(mS/cm)PUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREOPUMP INTAKE DEPTH: $\frac{44}{24}$DISSOLVEDOXYGEN(my)DISSOLVEDOXYGEN(my)IDISSOLVEDOXYGEN(my)READING CHANGE*READING CHANGE*READING CHANGE*POLYGENOOO<th <="" colspan="2" td=""><td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td></th></td></td></td></th> | <td>VGS (ppm):BACKGROUND:$\bigcirc$$\bigcirc$PUMIBENEATH OUTER CAP:$\bigcirc$$\bigcirc$DEPTBENEATH INNER CAP:$\bigcirc$$\bigcirc$DEPTpHCONDUCTIVITYPOTENTIAL<br/>(mS/cm)REDOX<br/>POTENTIAL<br/>(mV)READINGCHANGE*READINGCHANGE*8.14NA2.5%$\sim$$\sim$8.052.5%$\sim$$\sim$$\sim$8.042.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.022.5%$\sim$$\sim$$\sim$8.012.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$8.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$9.002.5%$\sim$$\sim$$\sim$<td>VGS (ppm):         BACKGROUND:         $\bigcirc$ $\bigcirc$         PUMP INTAKE D           BENEATH OUTER CAP:         $\bigcirc$ $\bigcirc$         DEPTH TO WATE           BENEATH INNER CAP:         $\bigcirc$ $\bigcirc$         DISS           pH         CONDUCTIVITY         POTENTIAL         0X1           (pH units)         (mS/cm)         (mv)         (mv)           READING         CHANGE*         READING         CHANGE*         READING           8.14         NA         2.560         $-10.2$ $0.82$           8.05         2.530         $-10.2$ $0.82$           8.04         2.524         $-14.6$ $0.73$           8.02         2.524         $-29.4$ $0.62$           8.02         2.530         $-32.3$ $0.87$           8.02         2.530         $-32.3$ $0.60$           8.02         2.530         $-32.3$ $0.63$           8.02         2.519         $-40.2$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.519         $-41.4$ $0.63$ <td>NGS (ppm):BACKGROUND:OPUMP INTAKE DEPTH: $\frac{44}{24}$BENEATH OUTER CAP:OPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREBENEATH INNER CAP:ODISSOLVED<br/>OXYGENpHCONDUCTIVITYPOTENTIAL<br/>OXYGEN(my)IDISSOLVED<br/>OXYGEN(pH units)CONDUCTIVITY<br/>(mS/cm)PUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREOPUMP INTAKE DEPTH: $\frac{44}{24}$DISSOLVEDOXYGEN(my)DISSOLVEDOXYGEN(my)IDISSOLVEDOXYGEN(my)READING CHANGE*READING CHANGE*READING CHANGE*POLYGENOOO<th <="" colspan="2" td=""><td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td></th></td></td></td> | VGS (ppm):BACKGROUND: $\bigcirc$ $\bigcirc$ PUMIBENEATH OUTER CAP: $\bigcirc$ $\bigcirc$ DEPTBENEATH INNER CAP: $\bigcirc$ $\bigcirc$ DEPTpHCONDUCTIVITYPOTENTIAL<br>(mS/cm)REDOX<br>POTENTIAL<br>(mV)READINGCHANGE*READINGCHANGE*8.14NA2.5% $\sim$ $\sim$ 8.052.5% $\sim$ $\sim$ $\sim$ 8.042.5% $\sim$ $\sim$ $\sim$ 8.022.5% $\sim$ $\sim$ $\sim$ 8.012.5% $\sim$ $\sim$ $\sim$ 8.002.5% $\sim$ $\sim$ $\sim$ 9.002.5% $\sim$ $\sim$ $\sim$ <td>VGS (ppm):         BACKGROUND:         $\bigcirc$ $\bigcirc$         PUMP INTAKE D           BENEATH OUTER CAP:         $\bigcirc$ $\bigcirc$         DEPTH TO WATE           BENEATH INNER CAP:         $\bigcirc$ $\bigcirc$         DISS           pH         CONDUCTIVITY         POTENTIAL         0X1           (pH units)         (mS/cm)         (mv)         (mv)           READING         CHANGE*         READING         CHANGE*         READING           8.14         NA         2.560         $-10.2$ $0.82$           8.05         2.530         $-10.2$ $0.82$           8.04         2.524         $-14.6$ $0.73$           8.02         2.524         $-29.4$ $0.62$           8.02         2.530         $-32.3$ $0.87$           8.02         2.530         $-32.3$ $0.60$           8.02         2.530         $-32.3$ $0.63$           8.02         2.519         $-40.2$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.521         $-40.3$ $0.63$           8.00         2.519         $-41.4$ $0.63$ <td>NGS (ppm):BACKGROUND:OPUMP INTAKE DEPTH: $\frac{44}{24}$BENEATH OUTER CAP:OPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREBENEATH INNER CAP:ODISSOLVED<br/>OXYGENpHCONDUCTIVITYPOTENTIAL<br/>OXYGEN(my)IDISSOLVED<br/>OXYGEN(pH units)CONDUCTIVITY<br/>(mS/cm)PUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREOPUMP INTAKE DEPTH: $\frac{44}{24}$DISSOLVEDOXYGEN(my)DISSOLVEDOXYGEN(my)IDISSOLVEDOXYGEN(my)READING CHANGE*READING CHANGE*READING CHANGE*POLYGENOOO<th <="" colspan="2" td=""><td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td></th></td></td> | VGS (ppm):         BACKGROUND: $\bigcirc$ $\bigcirc$ PUMP INTAKE D           BENEATH OUTER CAP: $\bigcirc$ $\bigcirc$ DEPTH TO WATE           BENEATH INNER CAP: $\bigcirc$ $\bigcirc$ DISS           pH         CONDUCTIVITY         POTENTIAL         0X1           (pH units)         (mS/cm)         (mv)         (mv)           READING         CHANGE*         READING         CHANGE*         READING           8.14         NA         2.560 $-10.2$ $0.82$ 8.05         2.530 $-10.2$ $0.82$ 8.04         2.524 $-14.6$ $0.73$ 8.02         2.524 $-29.4$ $0.62$ 8.02         2.530 $-32.3$ $0.87$ 8.02         2.530 $-32.3$ $0.60$ 8.02         2.530 $-32.3$ $0.63$ 8.02         2.519 $-40.2$ $0.63$ 8.00         2.521 $-40.3$ $0.63$ 8.00         2.521 $-40.3$ $0.63$ 8.00         2.519 $-41.4$ $0.63$ <td>NGS (ppm):BACKGROUND:OPUMP INTAKE DEPTH: $\frac{44}{24}$BENEATH OUTER CAP:OPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREBENEATH INNER CAP:ODISSOLVED<br/>OXYGENpHCONDUCTIVITYPOTENTIAL<br/>OXYGEN(my)IDISSOLVED<br/>OXYGEN(pH units)CONDUCTIVITY<br/>(mS/cm)PUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREPUMP INTAKE DEPTH: $\frac{44}{24}$DEPTH TO WATER BEFOREOPUMP INTAKE DEPTH: $\frac{44}{24}$DISSOLVEDOXYGEN(my)DISSOLVEDOXYGEN(my)IDISSOLVEDOXYGEN(my)READING CHANGE*READING CHANGE*READING CHANGE*POLYGENOOO<th <="" colspan="2" td=""><td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td></th></td> | NGS (ppm):BACKGROUND:OPUMP INTAKE DEPTH: $\frac{44}{24}$ BENEATH OUTER CAP:OPUMP INTAKE DEPTH: $\frac{44}{24}$ DEPTH TO WATER BEFOREBENEATH INNER CAP:ODISSOLVED<br>OXYGENpHCONDUCTIVITYPOTENTIAL<br>OXYGEN(my)IDISSOLVED<br>OXYGEN(pH units)CONDUCTIVITY<br>(mS/cm)PUMP INTAKE DEPTH: $\frac{44}{24}$ DEPTH TO WATER BEFOREPUMP INTAKE DEPTH: $\frac{44}{24}$ DEPTH TO WATER BEFOREOPUMP INTAKE DEPTH: $\frac{44}{24}$ DISSOLVEDOXYGEN(my)DISSOLVEDOXYGEN(my)IDISSOLVEDOXYGEN(my)READING CHANGE*READING CHANGE*READING CHANGE*POLYGENOOO <th <="" colspan="2" td=""><td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td></th> | <td>IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63<th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th></td> |                        | IGS (ppm):BACKGROUND:Definition of the problemBENEATH OUTER CAP:OPUMP INTAKE DEPTH: $4'4.8$ ft belowDEPTH TO WATER BEFORE PUMP INSTBENEATH INNER CAP:OOSPECIFICREADINGCONDUCTIVITY(mV)DISSOLVEDOXYGENTURE(pH units)SPECIFICREADINGCONDUCTIVITYPOTENTIALOXYGENTURE(mV)(mg/l)(NREADING CHANGE*READINGCHANGE*READINGNA1.19NA22.68.042.524-10.20.8233.58.042.524-14.60.60445.28.022.530-22.30.604/9.88.022.519-41.40.634/9.88.022.530-22.30.604/9.88.022.519-41.40.63 <th <="" colspan="4" td=""><td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td><td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td></th> | <td>VIGS (ppm):BACKGROUND:$\bigcirc$PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP:$\bigcirc$DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0</td> <td>VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95<td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td></td> |  |  |  | VIGS (ppm):BACKGROUND: $\bigcirc$ PUMP INTAKE DEPTH: $\frac{44.8}{7.8}$ ft below t\$CDEPTH TO WATER BEFORE PUMP INSTALLATIONBENEATH OUTER CAP: $\bigcirc$ DPHSPECIFICREDOXDISSOLVEDCONDUCTIVITY(mY)CONDUCTIVITY(mY)CONDUCTIVITY(PH units)TURBIDITY(PH units)CONDUCTIVITY(mY)CHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*READINGCHANGE*8.012.524-10.20.623.022.530-32.0 | VGS (ppm):       BACKGROUND:       O       O       PUMP INTAKE DEPTH: $\frac{449.8}{9}$ ft below T\$C         BENEATH OUTER CAP:       O       O       DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{7.95}{7.95}$ ft below T\$C         pH       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         (pH units)       CONDUCTIVITY       POTENTIAL       DISSOLVED       TURBIDITY       TEMPEI         READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING       CHANGE*       READING         8.14       NA       2.550       NA       -9.2       NA       1.19       NA       22.6       NA       20.81         8.05       2.5540       -10.2       0.82       33.5       20.90       8.02       2.524       -29.4       0.62       44.0       20.79         8.02       2.524       -29.4       0.62       44.0       20.79       8.02       2.530       -32.3       0.87       45.2       20.90         8.02       2.530       -32.3       0.63       47.8       20.94       8.02       2.55       21.07         8.02       2.519       -40.2       0.63       39.6       20.95       9.062       9.95 <td>NGS (ppm):BACKGROUND:BENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP:$\bigcirc$DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250<td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td></td> | NGS (ppm):BACKGROUND:BENEATH OUTER CAP: $\bigcirc$ DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH OUTER CAP: $\bigcirc$ DEPTH TO WATER BEFORE PUMP INSTALLATION : $\underline{J}.\underline{G}$ $\underline{G}$ helow TOCBENEATH INNER CAP:OCCONDUCTIVITYPOTENTIALDISSOLVEDTURBIDITYTEMPERATURE '(degrees C)READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'8.14NA2.010.2O.8233.520.648.042.526NA1.19NA20.648.052.524CONDUCTIVITYPOTENTIALDISSOLVEDOUTRING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE'READING CHANGE' READING CHANGE' READING CHANGE'8.012.524-10.20.820.628.022.524-14.16O.1629.022.524-29.40.628.022.52502.5250 <td cols<="" td=""><td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td></td> | <td>NGS (ppm)*BACKGROUND:<br/>BENEATH OUTER CAP:<br/>OOPUMP INTAKE DEPTH:$\frac{0}{0}$BENEATH OUTER CAP:<br/>OODEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$SPECIFIC<br/>ONDUCTVITYPUMP INTAKE DEPTH:$\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCSPECIFIC<br/>CONDUCTIVITYPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH:$\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:READING CHANGE:<br/>READING CHANGE:$\frac{1}{4}$ ft ft</td> | NGS (ppm)*BACKGROUND:<br>BENEATH OUTER CAP:<br>OOPUMP INTAKE DEPTH: $\frac{0}{0}$ BENEATH OUTER CAP:<br>OODEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{1}{4}$ SPECIFIC<br>ONDUCTVITYPUMP INTAKE DEPTH: $\frac{47.8}{0}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH TO WATER BEFORE PUMP INSTALLATION: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCSPECIFIC<br>CONDUCTIVITYPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCSPECIFIC<br>CONDUCTIVITYPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCSPECIFIC<br>CONDUCTIVITYPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCPUMP INTAKE DEPTH: $\frac{1}{4}$ ft below TØCBENEATH OUTER CAP:<br>READING CHANGE:READING CHANGE:<br>READING CHANGE:READING CHANGE:<br>READING CHANGE: $\frac{1}{4}$ ft |

### LOW FLOW SAMPLING DATA SHEET

SITE:	1	Daywoo	od						G FIRM:	CBEL		······································		• • • •	
WEATHER	₹1 ⁻ 2	Sunny (	905	······································	QT	2-44-24		45.5	ITK.	-910					
MONITOR	RMELL	#_ <u>Mu</u>	J42D	WELL I	LL DEPTH: DIAMETER:	44.90	Dinches	, that	<del>unce</del> P	4-23SCREEN	IED/OPEN II	NTERVAL:	<u>19.90 -</u> 20.51 -	45,54	
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	- 0.0 Pi - 0.0 Fi - 0.0	0	PUMI DEPT	P INTAKE D	EPTH:39.( R BEFORE	0) ft below PUMP INST	TOC	; <u>//.26</u> ft1	below TOC		· · · ·
	RGING	pH (pH	oH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL 1V)	DISS 0X1 . (m	DLVED (GEN 19/1)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE * ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D A	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1320	x	8.29	NA	1.331	NA	-89.8	NA	1.22	NA	0.4	NA	21:17	NA	zœ	11.50
1325	X	7.99		1.307		-90.9	-	0.84		0.0		21.18	_	200	11.55
1330	X	7.72		1.293	• • • • • •	-92.7		0.64	,	9.8		21.03		200	11.60
1335	X	7.68		1.281	а. - А.	-92.8		0.59		8.0		21.06		200	N.60
1340	x	7.67		1.283		-95.6		0.55		9.0		21.09		200	11.60
1345	x	7.65		1.272		-940		0.54		6.5		21.28		200	11.60
1350	×	7.66		1.269		-94.5		0.53		6.0		21.31		200	11.65
1355	×	7.65	·	1.267		-95.0		0.53		4.1		21.21		200	11.65
1400	X	7.65	. ·	1.248		-94.3	-	0.53		4.6		21.20		200	11,65
1405	×	7.65		1.268		-93.6		0.53		3.3		21,22		200	11.65
140	X													Final	17.30
COMMEN	TS:		• • •	•		•			•						



### LOW FLOW SAMPLING

**DATA SHEET** 

		AA A.		·		· · · ·			* 	005				JAGH	Or
SITE:		MAYWC S-9	-16		· · · · · · · · · · · · · · · · · · ·	• • • • •	'	CONSULTIN		TO /E	217				· .
WEATHER	2:	M.SU	N 85	°F			<b>—</b> .	, , , , , , , , , , , , , , , , , , ,				,	•	2	
MONITOR WELL PE	WELL RMIT #	# <u>B38</u>	W24D	WE	LL DEPTH: DIAMETER:	28.80	6 A TIC mches	, <del>18,0 6</del> 21.05	-Siber	SCREEN	ed/open i	NTERVAL:	22.00 23.8	-270	2 $ff$ , bas 1 $g$ , $fic$
PĮD/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	DUND: I OUTER CAI I INNER CAF	0- Pi <u>0.</u> Pi <u>0.</u>	0 0 1	PUMI DEPT	P INTAKE DI H TO WATE	EPTH: 26.2 R BEFORE	36 ft below PUMP INST	TỘC Allation	: <u>/0•19</u> ft 1	below TOC	.:	
	RGING	P (pH )	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS( OXY (m	)LVED 'GEN g/l)	TURB (N	IDITY FU)	TEMPEI (degra	RATURE ` ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	<u> </u>	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1315	X		NA		NA		NA		NA		NA		NA		10.19
1320	X	6.11		1.762		-2.0		1.75	-	50.0		22.00		165	10.27
1325	$\star$	6.05		1.738		-31.6		1.00		24.0		20.21	• •	165	10.27
1330	X	6.06		1.737		-40.2		0.74		21.2		19.56		165	10,27
1335	X	6.07		1.736		- 44.6		0.65		16.7		19.22		165	10.27
1340	X	6.07		1.758		47.4		0.59		16.4		18.99		165	16.27
1345	X	6.08		1.776		-50.5		0.57		11.4		18,75	-	165	10.27
1350	X	6.09		1.789		-51.3		0.55		7.9		19.01		165	10.27
1355	X	6.09		1.797		53.Z	· · ·	0.52		6.9		18-82		165	10.27
1400	X	6.09		1.799		- 52.9		0.53		7.0	. •	(8.79		165	10.27
1405	X							•						FINAL	10.27
COMMEN	TS:	10 A-0	90012	<b>-</b> .	· ·		1.	• •	۹		•	····	• •		· · · · ·

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity FET OF



# LOW FLOW SAMPLING

DATA SHEET

														SHEE	тог
SITE: DATE: WEATHEI		Maywa 8-9-	10 10 21 85°	· 		· · · · · · · · · · · · · · · · · · ·		CONSULTIN	ig firm: Ionnel.:	CBI 3.Cook	, P.M	e Dman	16.24-	15,04	<b>t</b> H2S
MONITOR WELL PE	RMIT	L#: <u>1338</u> #:	w245	WE WELL I	LL DEPTH: DIAMETER:	17.0	ToC inches	15.04'	bop.	SCREEN	ed/open h	NTERVAL:	12.2 -	17.0	titk.
PID/FID R	EAD	NGS (ppm):	BACKGRO BENEATH BENEATH	DUND: I OUTER CAI I INNER CAP		<u> </u>	PUM DEPT	INTAKE D	EPTH: <u>/</u> R BEFORE	ft below PUMP INST	TPC (2) Allation	: 10,85 # 1	othon) below TOC		•
	RGING	Bring (pH	pH   units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS( OXY (m	OLVED (GEN (g/l)	TURB (N1	IDITY FU)	TEMPEI (degra	RATURE -	PUMPING RATE	DEPTH TO WATER (ft below
	N		CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	(ml/min)	TOC)
11 57	$\left  \right\rangle$		NA				A7							190	10.85
<u>1145</u>	X	6.24		3.932		-19.3		0.92		68.2		23.23		190	10.17
150	X	6.19		3.903		-12.5		0.75		51.8		22.93	<u>،</u>	190	11.01
155	$\times$	615	• .	3.785		-7.8		0.69		44:0		22.91		190	11.01
1200	Х	6.11		3.674		-3.5		0.65		31.7		22.67		190	11.01
1205	X	6.07	-	3.603		0.4		0.62		24.4		22.33		190	1).01
1210	X	6.06		3.578		2.6		0.60		21.0		22.63		190	11.01
1215	X	6.0	3	3.563		4.9		0.57	4	13.2		22.54	1	190	1.01
1220	X	6.07	2	3.517	1	2.0		0.55		11.1		22.68		190	11.01
122'	1	6.0	N	3.540		7.8		0.53		8.6		22.83		190	11.01
1230	X	6.00		3,537		9.3		0.52		8.0		23.22		190	11.01
COMMEN	ITS:	10A-09	0011		· · · · · ·								• • •		

### LOW FLOW SAMPLING DATA SHEET

:								DA	ta she	ET			· · ·		SHEE	т_2ог_2
SITE: DATE: WEATHEI	2	M	laywo 2	00 5-9-14	0	· · · · · · · · · · · · · · · · · · ·			CONSULTIN FIELD PER	ig firm: Sonnel.;	CB+ J.Co	I ek, P	Hedne	<b>^</b>	· · · · · · · · · · · · · · · · · · ·	
MONITOR	WI RMI	ELL T#	#: <u>B38</u>	w245	WELL	ILL DEPTH: DIAMETER:		inches			SCREEN	IED/OPEN I	NTERVAL:		<u>.</u>	
PID/FID R	EAI		GS (ppm):	BACKGRO BENEATH BENEATH	DUND: I OUTER CA I INNER CAI	P:	· · · · · · · · · · · · · · · · · · ·	PUM DEPT	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft	below TOC		
:	RGING	<b>MPLING</b>	F (pH	oH units)	SPE CONDU (m\$	CIFIC CTIVITY i/cm)	RE POTE (1	DOX INTIAL IIV)	DISS OX (m	OLVED (GEN Ig/l)	TURI (N	BIÐITY TU)	TEMPEI (degr	RATURE ` ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	N N	SA	READING	CHANGE*	READING	CHANGE*	READING 9.4	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min) 190	тос) 11.07
1240		X													FINAL	11.01
																,
						3										
						-							· _			
	i.		· .													
·											·. ·					
											· .				: .	
• •								· .								
COMMEN	TS:				-				• • • • • •				1 m			



### LOW FLOW SAMPLING **DATA SHEET**

			· .											SHEE	TOF	
SITE: DATE: WEATHE	 ti	10700000) 8-9-14 5-004,	<i>न</i> ्र २५०					CONSULTIN FIELD PERS	G FIRM: ONNEL:	CB-1] J. Cook	, P.Hei	swar/				
MONITOR WELL PE	WELL	# <u>B380</u>	SIBDR	WELL I	LL DEPTH: DIAMETER:	7(.00	Unches	. Alus	n Morre	SCREEN	ed/open II	NTERVAL:	46.00	- 71.00	H, TOC	
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI	0 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14		PUMI DEPT	P INTAKE DI H TO WATE	EPTH: <u>66</u> R BEFORE	ft below PUMP INST	TOC Allation	: <u>8.43</u> # 1	below TOC	•		N.
	URGING	р (рН 1	)H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REE POTE: (m	XXX NTIAL IV)	DISSO OXY (m	DLVED 'GEN g/l)	TURE (N	IIDITY TU)	TEMPEI (degru	RATURE .	PUMPING RATE	DEPTH TO WATER (it below	•
837	a s X	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE"	(m/mm) 235	8.43	
345	X	7.18		0.789		-83.2		1.50		13.1		15.76	-	235	8.59	
350	X	7.36		0.803		- 88.6		1.14		16.2		15.74		235	8.69	
855	X	7.44		0.805		94.9	-	1.01		20.0		15.72		235	8.78	
900	7	7.47		0.805		-100.4		0.96		20.3		15.69		235	8.82	
905	X	7.48		0.805	-	103.8		0.95	. •	20.5		15.73		235	8.87	
910	x	7.49		0.806	-	104.7		0.88		17:1		15.67		235	8.90	
915	X	7.50		0.805	-	105.5		0.79	· · · ·	16.0	,	16.02		235	8.91	
920	X	7.50	· · · · ·	0.807	•	106.0		0.78		16.3		16.14		235	3.91	
925	X	7.50		0.303		107.6		0.77		15.(		16.20		235	8.92	
930									•			<u>.</u>			8.80 FI	JA
COMMEN	TS:	128-09 Fidd	Dup 12	(+ MS/R9 28-690	010	<del>ү</del> мү) - 093	5		· · · · · · · · · · · · · · · · · · ·			•		-		



### LOW FLOW SAMPLING DATA SHEET

SITE:	<u>^</u>	1aywoo	9				_	CONSULTIN	G FIRM:	CB+	E				
DATE:	·	8210-	16 -					FIELD PERS	ONNEL:	3.60	ok, P.I	Kedman			
WEATHE	G		, 72			<u>14.0'</u>	bas.								
MONITOR	WELL	.#: <u>M155</u>	<u>oi ar</u>	WE	LL DEPTH:	<u>13.0</u> 2	vere .	15,04	TIC	SCREEN	ED/OPEN I	NTERVAL:	9.0-	-15.02	Dee
PID/FID R	FADIN	GS (nnm):								~ ~ ~ ~ ~	(12	5'8(-5)	10:04	- 0.04	110
			BENEATH	OUND:	- <u>0</u>	<u> </u>	DEPT	P INTAKE D H TO WATE	R BEFORE	<u>.0</u> It below PUMP INST	ALLATION	:7.81 ft1	elow TOC		
			BENEATH	INNER CAP		5							,		
	UZ			SPE	CIFIC	RE	DOX	DISS	DLVED						<b>DEPTH TO</b>
		F (pH	units)	(mS	CTIVITY (cm)	POTE (n	INTIAL IV)	(m	(GEN Ig/ī)	(N	upitt TU)	(degr	es C)	PUMPING RATE	WATER (ft.below
TIME	PUL	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
825	X		NA		NA		NA		NA		NA		NA	165	7.81
830	X	7.15		2.484		-18.6		1.66		172.6		18.77		165	7.88
835	X	7.28		2.518		-67.2		1.56		105.9		18.99		165	7.88
840	X	7.3)		2.534		-81.0		1.29		67.5		19.03		165	7.88
845	X	7.33		2.523	:	-90.4		0.96		55.7		19.27		165	7.88
850	*	7.34		2.460		93.8		0.76		75.6		19,00		165	7.88
855	X	7.35	1	2.376		-95.4		0.64		66.2		18.78		165	7.88
900	X	7,35		2.325		97.1		0.57		53.8		19.20		165	7.88
905	X	7.35		2.289		97.8		0.53		45.9		19,38		165	7.88
910	X	7.35		2.246		-97.7		0.50		37.5		19.40		165	7.88
915	X	7.35		2.210		-97.9		0.47		27.0		19.29		165	7.88
COMMEN	TS:	128-0	90016	, .											

323

の十ののころで



# LOW FLOW SAMPLING

DATA SHEET

SITE:	· · ·	Manno	00	<u> </u>				CONSULTIN	G FIRM:	CB+I					
DATE:		8-10-	16					FIELD PERS	ONNEL:	3 Coo	K P.	Hedman	L		
WEATHE	R;	Cloud	5,75			·									
MONITOR	WEL	# Mis	SOIAR	WE	LL DEPTH:			<u></u>		SCREEN	ED/OPEN I	TERVAL:			
WELL PE	RMIT∳	k:		WELL	DIAMETER:		inches								
PID/FID R	EADIN	IGS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CA INNER CAP	P:	······································	PUMI DEPT	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft	below TOC		
	RGING	р (рН 1	H Inits)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (1	DOX NTIAL IV)	DISS OXY (m	DLVED 'GEN g/l)	TURE (N	IIDITY TU)	TEMPEI (degr	RATÚRE Bes C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D R	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
920	X	nn	NA		NA		NA		NA .		NA		NA		
920	X	7.35		2.181	· ,	-96.7		0.45		26.2		19.03		165	7.68
925	×	7.35		2.167		97.1		0.44		19.3		19.24		165	7.88
930	X	7.35		2.148		-96.0		0.41		15.4		19.20		165	7.88
935	X	7.35		2.138		-95.5		0.39		10.8		19.46		165	7.88
940	X	7.35		2.133		-94.0		0.39		11.3		19,15	1	165	7.88
945	X	7.35		2.129		-94.2		0,39		9.4		19.51		165	7.88
950	X													FINAL	7.38
i							j. j.								
:															
· .			· .		• •										
COMMEN	ITS:	128-09	0016												· ·

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET <u>2</u> OF <u>2</u>



### LOW FLOW SAMPLING DATA SHEET

'E; TE: ATHER	·	May. 8-10- clad	Nood 16 2, 80°					CONSULTIN	g firm: Onnel:	C\$. I J Cool	c, P.H	edman			
NITOR LL PER /FID RE	WELL MIT # ADIN	#: <u>M155</u> : GS (ppm):	BACKGRO	WE WELL (	LL DEPTH: DIAMETER:	61.5	inches PUMI	03.31 -	Г1 <i>L</i> ертн: <u>5</u> 8	SCREEN	ED/OPEN IN	S6.0 3	<u>38 -</u> 39 181 45)	61.5'	bp. itic
	9 D		BENEATH	OUTER CAP		REI	DEPT	H TO WATE	R BEFORE			: <u>70,01</u> ft I	PÁTURE [°]		DEPTH T
IME	PURGIN	p (pH i READING	units) CHANGE*	(mS)	(cm) CHANGE*	(IT	tv) CHANGE*	(m	g/l) CHANGE*	(NT	FU) CHANGE*	(degra	ees C) CHANGE*	PUMPING RATE (ml/min)	WATER (ft below TOC)
057	X		NA		NA		NA		NA		NA		ŇĄ	200	8.01
US:	*	7.36		0.882		-89.7		2.33		27.1		A.61		200	8.02
0	X	7.42		0.898		-60.4		1.68		21.8		17.51		200	8.02
15	X	7.43		0.902		-33.9		1.44		13.7		17.36		200	8.02
20	×	7.43		0.902		-9.8		1.31		12.2		17.74		200	802
25	X	7,43		0.903		4.9		1.28		13.3		17.87		200	8.02
30	X	7.44		0.905		21.3		1.25		8.6		18.13		200	8,02
35	X	7.43		0.907		35.4		1.22		8.8		18,21		200	8.02
40	X	7.44		0.988		50,6		1.20		7.2		18.09		200	8.02
45	X	7,43		0.908		64.2		1.19	•	7.0		18.12		200	8.62
	. /	742		7 5.4		201		112		6.4		1071		7.	8 2



# LOW FLOW SAMPLING

SHEET

OF

DATA SHEET

SITE:		Yaywo	60				_	ONSULTIN	G FIRM:					· · · · · · · · · · · · · · · · · · ·	
DATE: WEATHER		3010	-16			• •	<u> </u>	FIELD PERS	ONNEL:	· · · · · · · · · · · · · · · · · · ·					
MONITOR	WELL MIT #	# <u>MIS</u>	50) BR	WELL C	LL DEPTH: NAMETER:		inches		· · · · · · · · · · · · · · · · · · ·	SCREEN	ED/OPEN II	NTERVAL:	· · · · · · · · · · · · · · · · · · ·		
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	h 		PUMF DEPT	H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft I	elow TOC		
	SGING	p (pH u	H inits)	SPEC CONDU (mS	CIFIC CTIVITY (cm)	REI POTE (n	DOX NTIAL IV)	DISSO OXY (m	DLVED 'GEN Ig/l)	TURE (N	SIDITY TU)	TEMPEI (degra	RATURE •	PUMPING RATE	DEPTH TO WATER (ft below
TIME ,	PUI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
	, , 		NA		NA		NA	-	NA		NA		· NA		
1155	X	7.43	· ·	0.910		87.4	-	1.17		5.1		18.44		200	8.02
1200	X	7.43		0.912		99.5		1.15		6.8		18.66		200	8.02
1205	X	7.43		0.912		109.3		1.14		5.0		18.59		200	8.02
1210	×	7.43	· .	0.913	-	122.9		1.14		6.0		18.33		200	8.62
1215	X	7.43		0.912		135.9		1.14		3.8		18.30		200	8.02
1220	X	7.42		0.915		147.4		1.12	9	5.4		18.34		200	8.02
1225	X	7.43		0.917		154.5		1.1)		5.5		18.29		200	8.02
1230	X	7.43		0.921		158.3		1.10		4.4		18.64	- -	200	8.02
1235	X	743		0.925		160.4		1.10		4.5		18.71		200	8.02
1240	X													FINAL	8.02
COMMEN	т <b>\$</b> :		128-0	900(7					-	• •			· · ·		

### LOW FLOW SAMPLING DATA SHEET

		· ·					DA		<b>- -</b>					SHEE	r_ <u>/</u> of
SITE: DATE: WEATHER		Mayus B-10 rain	00 J - 16 - 85°				(	CONSULTIN	g firm:	CB+] J.Co	ok, P.	Hedma	<u>^</u>		
MONITOR	WELL MIT #	# <u>MISS</u>	52BR	WELL I	LL DEPTH: DIAMETER:	534	inches	Clus	i meon	SCREEN	ed/open in	TERVAL:	38-	536	<b>8</b> -
PID/FID R	D/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: 51.0 ft below 70% ground surface BENEATH OUTER CAP: D BENEATH INNER CAP: 0,5 SPECIFIC REDOX DISSOLVED														
	0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0 <th>H units)</th> <th>SPEC CONDU (mS</th> <th>CIFIC CTIVITY /cm)</th> <th>REI POTE (n</th> <th>DOX NTIAL IV)</th> <th>Disso OXY (m</th> <th>DLVED 'GEN g/l)</th> <th>TURI (N</th> <th>SIDITY TU)</th> <th>TEMPEI (degra</th> <th>RATURE ees C)</th> <th>PUMPING RATE</th> <th>DEPTH TO WATER (ft below</th>		H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	Disso OXY (m	DLVED 'GEN g/l)	TURI (N	SIDITY TU)	TEMPEI (degra	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	V PU	B     S     READING     CHANGE*     READING     CHANGE*       X     NA     NA     NA						READING	CHANGE*	READING		READING	CHANGE*		TOC)
1347	Λ_	<b>n</b>		0,1111	NA			1 211	NA			1.226		210	1.54
1555	X	$\frac{+.01}{1.00}$	<u>.</u>	21107		-41.5	<u> </u>	0.14		1.5		13,55		210	1.65
1400	×	FT,00		2987		-41.0		0.51		5,1		17.97	·····	210	7.65
1905	*	7.00		5.489		-53.5		0.48		2.5		18.62		210	9.65
1410	X	7.00		3.487		-55.4		0.46	· · · · ·	3.2		18.77	ļ	210	7.65
1415	X	7.00		3.480		-57.6		0.44		3.3		18.97		210	9.65
1420	X	7.00		3.479		-58.3		0.42		2.9		19.00		210	9.65
1425	X	9.00		3.481		-59.2		0.41		2.4		19.02	-	210	9.65
1430	X	7.00	>	3.470	· .	-59.2		0.39		2.5		19.01		210	9.65
1435	X	7.00		3.168		-59.3		0.39		2.4	- ·	19.08		210	9.65
1440	X	1					. ·							FINAL	9.65
COMMEN	TS:	-1415-	- pM - I	28-0	90018		······································	· · · · · · · · ·			-			-	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity



OF Z

QUEET

SITE:		May	wood				(	CONSULTIN	G FIRM:	CBI	1140				
DATE:		8/1	0//6	1 00	0 =			FIELD PERS	ONNEL:	KG/	MS				
WEATHER	č	Clou	dy hum	id ~80	<u>.</u>					<u>\</u>					· ·
MONITOR WELL PEI	RMIT #	# <u>//ss</u> #	SOZAR	WELL]	LL DEPTH: DIAMETER:	201	inches	& Cfr	shmoor	大) SCREEN	ied/open II	NTERVAL:		-19 17	- pro
PID/FID R	EADIN	IGS (ppm):	BACKGRO	UND:	0		PUM	INTAKE D	EPTH: 17	ft below	TOC				
			BENEATH	OUTER CA	P: 0		DEPT	H TO WATE	R BEFORE		ALLATION	: <u>6.75</u> ft1	elow TOC		
· · ·			BENEATH	INNER CAP	• <u>O</u>										
	GING	ha)	pH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL av)	DISS	DLVED (GEN (g/l)	TURI	BIDITY ITU)	TEMPE (degr	RATURE Res C)		DEPTH TO WATER
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0825	x		NA		NA		NA		NA	-	NA		NA	: .	
0830	x	No	reading	35 -1	Adjust	ing pu	mp f	600 4	has	h dur	bidit	, 		200	7.00
0835	X	7.48		4.016		-90.4		0.97		44.5		19.71		200	7,00
0840	X	7.18		4.049		-102.1		1.65		43.8		19.78	·	200	7.00
0845	×	7.22		8.054	-	-103.5		1.61	·	46.9		19.75		200	7.00
0850	×	7.65		4.087		-121.9		1.31		35.5		19.46		200	7.00
0855	x	1.71		4.105		-127.6		1.27	· · · ·	32.9		19.52		200	6.90
0900	×	7.73		4.118		-130.1		1.23		32.7		19.74		200	6.92
0905	×	7.74		4.136		-134.9		1.20		28.2	· · · · ·	19.75		200	6.90
0910	x	7,75		4.141		-137.6		1.16		24.3	· .	19.78		200	6.90
0915	X	2.75	н 	4.152		-135.2		1.10		23.6		19.81		200	6.90
COMMEN	(TS: (	asing th	e Lamot	n for T	iurbidi	ty. Stra	w Colo	rwade	ſ						Ĵ,



DATA SHEET

2

OF

SHEET

SITE: DATE: WEATHEI	ł	fr	)aywoc 8-10-1 Cloudy	s cl 6 humid	-80°F		J.	(	Consultin Field Per:	IG FIRM:	OBE KG/N	15		· · · · · · · · · · · · · · · · · · ·		
MONITOR	R WI	ELL T#	#: <u>mč</u>	<u>85 02</u> p	WELL	LL DEPTH: DIAMETER:	2	inches	· · ·	-	SCREEN	ED/OPEN II	NTERVAL:		· ·	
PID/FID R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CA	Pi 0		PUMF DEPT	P INTAKE D H TO WATI	EPTH: _/ ER BEFORE	7 ft below PUMP INST	TOC ALLATION	: <u>6.75</u> n	below TOC		<del></del>
· · · · · · · · · · · · · · · · · · ·	RGING	MPLING	р (рН 1	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OXT (II	OLVED (GEN 19/1)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE [*] ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0920	X		7.76	NA	4.157	NA	-138.t	NA	1.06	NA NA	24.4	NA	19.91	NA	200	6.90
0925	×		7.70		4.155		- 137.5		1.06		21.6		19.98		200	6.90
0930		×				-	-	-	-						Final	7.00
••••••••••••••••••••••••••••••••••••••																_
								. \								
· · · ·			-			· · · ·							-			
			· · · · · · · · · · · · · · · · · · ·			1										
:	1	1											- · ·			
	╞──	<u> </u>					·   · · · · · · · · · · · · · · · · · ·						· .			
·	┢			· ·						· · · ·	-				n en	
COMMEN	i <b>ts</b>	: 5	comple D	kipe or Strau	735 et	water	collected	ms(MS)	s and s	plit for	Corp.	I	1	<b>I</b>	· · · · ·	<u>L</u> ,

# **S**

# LOW FLOW SAMPLING

SHEET

DATA SHEET

SITE: DATE: WEATHE	= <u>B-10-16</u> THER: Bain hunder 80's								CONSULTING FIRM: <u>CBT</u> FIELD PERSONNEL: <u>LG-MS</u>									
MONITOF	t W RM	ELL	# MW	25D	WELLI	LL DEPTH: DIAMETER:	<u>-59</u> .	0 0 ap a	,61.0		SCREEN	ED/OPEN II	NTERVAL:	<b>43</b> 33 35	5.0-5 102-101	9 0'H		
'ID/FID R	EA	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	<u> </u>	2 2	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>45</u> R BEFORE	ft below PUMP INST	TPC ALLATION	: <u>/2.//</u> ft	below T <b>#</b> C		· · · · · ·		
	SAMPLING SAMPLING 520 X		P (pH u	H Inits)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL nv)	DISS OX1 (m	DLVED 'GEN g/l)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE [^] ees C)	PUMPING RATE	DEPTH TO WATER (ft below		
			READING	CHANGE*	READING	CHANGE*				CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)		
1250	X	<u> </u>	Stoy +	roary	1113 - D	o mea	ding	Sentiv	S MO	w Ka	te	NA		NA	250	12.40		
1255	X		788		2.776		-125.6	. '	1.81		14.6	ļ	19.50		250	12.40		
1300	X		7.89		2.766		-128.9		1.54		12.9		19.74		250	12.50		
305	k		7.49		2 768		- 131.7		1.49		15.4		20.53		250	12.50		
1310	x		J.46		2,758	:	-133.5	$\langle \cdot \rangle$	1.49		15.8		21.10		250	12.55		
1315	χ		7.43		2,767		-132.1	\	1.45		16.0		21.00		2520	12.55		
1320	X		7.38		2.759		-132.9		00 ا		19.1		21.26		zsu	12.55		
1325	X		7.33		2,750		-127.2		1.54		20.8		21.30		250	12.60		
330	X		7.31		2,753		-127.6	•	1.56		21.8		21.37		250	12.60		
1335	X		2.29		2,757		-121.6		1.57		21.5		21.41		250	12,00		
1340												· .			final	12.60		
COMMEN	TS	iu (	sing La Water C	montte color Cleo	zozow w/strau	r Turbid	Ameter f	for Turb	oidity.		· · · · ·				-			



### LOW FLOW SAMPLING

SHEFT

DATA SHEET

SITE:		Mainu	600				i	CONSULTIN	G FIRM:	CB+J					
DATE:		301	1-10					FIELD PERS	ONNEL:	J.Coo	c, P.1	6 Junor		- <u>-</u> (	
WEATHER	ts	p. c1	andy,	850	· · · · · ·			E.							
MONITOR	WELL RMIT #	#: <u>M</u> W	475	WE WELL S	LL DEPTH: DIAMETER:	12.0 Z	99).) 13 _ inches	162 TI	<u>C</u>	SCREEN	ED/OPEN II	NTERVAL:	- <del>1</del> .0 8.62-	-12-0 -13-62	STR.
PID/FID R	EADIN	GS (ppm);	BACKGRO	UND:	Ø	<u>.</u>	PUMI	INTAKE D	ртн: <u>1</u> 3.	O ft below	TOC (I)	.0' 84	5)		
			BENEATH	OUTER CAL	r		DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	691 #1	below TOC		
BENEATH INNER CAP:															
	<b>NILING</b>	р (рН і	H Inits)	CONDU (mS	CTIVITY (cm)	POTE (m	NTIAL NV)	OXY (m	GEN g/l)	TURE (N	IDITY FU)	TEMPE (degr	RATURE 🛟 Bes C)	PUMPING	DEPTH TO WATER (ft below
TIME	PCF	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1202	X		NA		NA		ŇA		NA		NA		NA	200	6.91
1210	X	7.14		2.444		76.6	. *	0.88		14.6		21.05		200	7.01
1215	X	7.14		2,432		85.8		0.55		3.4		20.95		200	7.00
1220	X	7.13		2.428		87.3	-	0.44		1.4		20,71		200	7.00
1225	X	7.11		2,121	-	88.8	Ľ,	0.38	,	1.2		20,49		200	7.00
1230	×	7.10		2,417		90.0		0.32	· ·	-1.2		20,00		200	7.00
1235	×	7.10		2.415	~	90.5		0.29		-2.7		21.14		200	7.00
1240	×	7.10		2.416		88.9		0.28		- 3.2		21.72		200	7.00
1245	X	7.10		2.419		90.4		0.28	·.	-2.9		Z1.43		200	7,00
1250	X					-		· · · · · · · · · · · · · · · · · · ·						FINAL	7.00
														-	
COMMEN	TS:	128-	0 900	24		•				-	-				

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

> LOW FLOW SAMPLING DATA SHEET

SHEET ____OF

6)

SITE:		Mazwo	0)	· · · · ·	-	· · · · · · · · · · · · · · · · · · ·			G FIRM:	CBTI	1 0	Xadma	~		
WEATHER		p. cloud	19, 85	0				FIELD PERG		<u> </u>	ac, I	1000			
MONITOR WELL PER	WELL MIT#	# <u>Mu</u>	460	WE WELL C	LL DEPTH: DIAMETER:	57.0	inches	58.88	TIC	SCREEN	ED/OPEN IN	TERVAL:	<u>32 - 5</u> 33,88	-58.8	7 bes. 8'5%
PID/FID R	D/FID READINGS (ppm): BACKGROUND: BENEATH OUTER CAP: BENEATH INNER CAP: SPECIFIC REDOX DISSOLVED														
	C Z pH Z J pH S d (pH units) A READING CHANGE			SPEC CONDUC (mS	CIFIC CTIVITY /cm)	RED POTE (117	NOX NTIAL IV)	DISSC OXY (m	DLVED 'GEN g/l)	TURE (N	NDITY TU)	TEMPEI (degro	RATURE ses C}	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D BS	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		(ml/min) 225	TOC)
1036	メ	1 27		2 .99		-100 0		1.09		2. 7		11. 72		225	1214
1015	7	6.07		5.001		100.0		1.07	<u>.</u>	21.2		14.12		225	12.17
1050		6.07		3.088		-109.5		0.5+		21.7		10.42		220	12.10
1035	X	6.70		3.077		106.3		0.74		14.0	·	16.53		225	13.14
1100	X	6.90		3.083	· · ·	-167.4		0.68		21.8		16.70		225	13.21
1105	X	6.91		3.086	* ¹	-107.4		0.63		21.4		16.93		225	13.21
110	X	6.90	· ·	3.087		107.1		0.62		22.0		17.0)	-	225	13.21
1115	x	690		3.095		107.3		0.58		10.7		17.07	1	225	13.21
1120	X	6.90		3.093	-	107.4		0.56		20.3		17.00		225	13.21
1125	X	6.90		3.087	-	107.7		0.52		18.9	`	17.14		225	[3.21
130	X													FINAL	13.ZZ
COMMEN	TS:	128-0	29002	3										•	

### LOW FLOW SAMPLING DATA SHEET

( OF 2)

SHEET

( )

SITE:		Jaywo	.)					CONSULTIN	G FIRM: C	BrI					
DATE:		J. 8-	11-16					FIELD PERS	ONNEL:	J. Cook	= , P.H	ednan			
WEATHER	l:	portly :	sung, a	2 <i>0°</i>			- <u> </u>			-			·		•
MONITOR	IONITOR WELL #: MW46S       WELL DEPTH: 1.5 Left 1260.1 [9.25], TK SCREENED/OPEN INTERVAL: 12-17.5 KF. TK         /ELL PERMIT #:       WELL DIAMETER: 2 Inches         13.75-19.75 KF. TK         ID/EID READINGS (nom):         13.75-19.75 KF. TK														
PID/FID R	'ID/FID READINGS (ppm):       BACKGROUND:       Ø       PUMP INTAKE DEPTH: 17.5 ft below TOC (15.5 ' BGS)         BENEATH OUTER CAP:       Ø       DEPTH TO WATER BEFORE PUMP INSTALLATION : 10.58 ft below TOC         BENEATH INNER CAP:       Ø, 4														
	MPLING	q Hq)	oH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS( OXY (m	OLVED 'GEN g/l)	TURE (N	NDITY TU)	TEMPEI (degra	RATURE -	PUMPING RATE	DEPTH TO WATER (ft below
TIME	J A	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
823	X		NA		NA	· ,	NA		NA		NA		NA	(85	10.58
830	X	6.69		2.180		-18.8		2.81		380.9		17.89		185	11.05
635	$\times$	6.72		2.207		-47.7		3.13		171.4		17.49		185	11.16
840	X	6.65		2.246		-53.8		3.64		88.4		17.43		185	11.17
845	X	658		2.275	-	55.4		4.03		67.6		17.36		185	11.20
850	X	6.55		2.282		-55.7		5.27		57. (		17.48		185	11.27
355	X	6.53		2.271		-54.3		7.06		52.2		17.56		(85	11,28
900	X	6.51		2.262		56.2		8.62		28.1		17.56	2	185	11,28
905	X	6.49		2.247	· .	-59.2		11.11		17.7		17.78		185	11.28
910	X	6.50		2.238		61.1		10.91		16.2		4.02		185	11.28
915	X	6.49		2.225		63.8		10.22		7.7		18.11		185	11.28
COMMEN	TS:	12B -	09003	22.		· · · ·	- · ·								<u></u>
. ALANAMAN TANK OF LIVEROIMMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

· · ·						. '		DA	іа эпе	<b>5</b> 1					SHEE	T_2_OF_2
SITE: DATE:		_	Mazur	-11-11-0						G FIRM:		· · · · · · · · · · · · · · · · · · ·				
WEATHER	<u>د</u>		0											`		
MONITOR	KWE	≧LL T #:	# <u>M</u> w	465	WELL I	LL DEPTH: DIAMETER:		inches			SCREEN	ed/open II	NTERVAL:			
PID/FID R	EAD	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	P:		PUMI DEP1	INTAKE D	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft	pelow TOC		
	RGING	MPLING	p (pH )	H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX (m	DLVED /GEN Ig/1)	TURB (N	SIDITY FU)	TEMPEI (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
				NA	/	NA		NA		NA		NA		NA		
920	X	·	6.49		2.208		-66.1		8.90		4.6		17.97	- ·	185	11.28
925	X		6.49		2.193		-67.9		7.9.2		2.3		17.84		185	11.28
930	Х		649	·	2.181	· ···.	- 68.9		7.99		1.1		17.91		185	11.28
935		X							×						FINAL	11.28
1010	X		REPLA	ED DO	MEMB	RANE P	ND AE	ONNEO	T YSI	FLOW-T	HROUKH	CELL	AFTER	coue	KANKG S	AMPLE.
1020	X			· .					0.88		1					
1025	X								0.54							
1030	X								0.40			•				
					<i>1</i> .											
										1	· .					
COMMEN	TS:		1213-	0900Z	2	¥ Do	NEMBRA	NE FAILE	D		· · · ·	· · ·		<u></u>		
				· · ·		÷	·	· · ·								

BINVIKUNMENTAL PROTECTION

Low Flow Purging and Sampling Guidance Page 15 of 18

#### LOW FLOW SAMPLING DATA SHEET

SITE: DATE: WEATHER MONITOR WELL PER		12/000 3-11-16 3000 90 1 #: 1100	d 85 <i>14</i> 60 470	i d WE	LL DEPTH: DIAMETER:	630	- - - - - - - - - - - - - - - - - - -	CONSULTIN FIELD PERS	ig firm: sonnel: _/	CBAT MS/KG SCREEN	ED/OPEN I	NTERVAL:	<u></u>	63	1368
PID/FID R	EADI	NGS (ppm):	BACKGRO BENEATH BENEATH	DUND: OUTER CAI	<u>0.</u> • <u>0.0</u>		PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>63</u> R BEFORE	· ft below PUMP INST	TOC ALLATION	: <u>777</u> #1	DT.T.4	-01.77	
	RGING	pH	pH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	DOX NTIAL IV)	DISS OX1 (nt	OLVED /GEN ig/i)	TURE (N	IDITY FU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	104	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0830	x	7.08	NA	11.56	NA	-9514	NA	23.3	NA	3.31	NA	18.45	NA	250	7.85
9835	x	7.21		11.56		-108.4		11.8	· · ·	1.02		18.03		250	8-00
2840	¥	2.29		11.57		-113.4		1.73		.91 +2000-19		18.07		220	8.00
2845	×	1.35		11.58		-119.0		1.80		1,27		17.97		250	8.00
2850	X	7.37		11.57		-117,8		1.91		1.29		17.89		250	8.05
৩৪১১	×	2.38		11.56		-117:2		1.97		7.01		17.97		250	8.05
0900	¥	7.38		11.58		-114.7	×.	2.16		2.55		18.17		250	8.05
2905	¥	739		11.58		- 112.8	·.	2.21		2.60		18.14		250	8.05
910	¥	7.38	· .	11.59		-110.6		2.29		2,97		18.05		250	8.05
3915	X	7.38		11.58		-108.7		2.31		2.30		18.01		252	8.05
-61 0	1 I	/							1				1		



#### LOW FLOW SAMPLING DATA SHEET

TE: ATE: EATHE	 R:	8-1 8-1	<u> 90</u>	· · · · · · · · · · · · · · · · · · ·	· · · ·		I	FIELD PERS	IG FIRM: IONNEL:	MS/K	6	x Seri			
ONITOI ELL PE	R WE	L#: <u>}//</u> #:	284	WELL	LL DEPTH: DIAMETER:	<u>19</u>	nches			SCREEN	ED/OPEN IT	ITERVAL:	Mer	9 they	<u>.</u>
D/FID R	EAD	NGS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CA	<u> </u>	<u> </u>	PUMP DEPT	INTA <b>KE</b> D H TO WATE	EPTH: <u>17</u> IR BEFORE	ft below PUMP INST	TOC	: <u>†2.86</u> ft)	below TOC		<u>.</u>
	RGING	LLING Hq)	oH units)	SPE CONDU (mS	CIFIC CTIVITY %cm)	RE POTE (r	DOX INTIAL nv)	DISS( OXY (m	DLVED /GEN /g/1)	TURI (N	SIDITY TU)	TEMPE (degr	RATURE - ees C)	PUMPING RATE	DEPTH T WATER (ft below
<b>FIME</b>	2	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
)55	X	Star	t NA Pr	inging	NAS	setting	FBW	hate	4 AN	o Kee	dings	-	NA	150	12.98
00	×	7.07		1.723	·	€36.Z		6.20		103.6		22.45		150	12.98
05	x	7.00		1.618		26.9		6.21		58.5		22.73		150	12.97
10	×	6.99		1.589		iz7.1		6.55		59.2		22.77		150	12.97
S	×	1.95		1.574	5	28.2		6.77		39.9		22.42	-	150	12.97
20	X	6.99		1.560	•	\$29.8		6.86		35.4		22.01		\$150	12.97
25	X	6.98		1.558		\$ 31.4		6.90		27.2		22.08		150	12.97
30	X	6.98		1,553		32.0		6.88		7.9		22.12		150	12.97
35	×	6.98		1.519	·	33.5		6.90		,ડપ		22.16		180	12.97
40	x	6.98		1.543	•	34.2		6.93		0		22.19		150	12,97
	1.1			, mul											0.7



#### LOW FLOW SAMPLING DATA SHEET

SITE:			Maywo	ocl					CONSULTIN	G FIRM:	CBT					
DATE:			8-11-16	-					FIELD PERS	ONNEL: 🛓	G-MS					• •
WEATHE	<b>R:</b>		Sunny 9	0's Hum	id				A A8							
MONITO	R W	ELI	L#: M(L)	185	WE	LL DEPTH:	9	bat	1.92.17	10	SCREEN	ED/OPEN I	NTERVAL:	14-1	916	2.
WELL PE	RM	IT #	*		WELL		گ	inches						15 08-	20.08	HIC
	FA	nin					~							15100		
			ice (bhinh	BACKGRO	UND:			PUM	P INTAKE D		It below	TUC ALLATION	12 BGH			
•				BENEATH	INNER CAP		0	VEF		K BEFUNE		ALLAIION	. <u>72/04</u> 1			
	1	65			SPE		RE	DOX	DISS	DLVED			1			
		Ĭ	p	н	CONDU	CTIVITY	POTE	NTIAL	OXI	GEN	TURE	DITY	TEMPE	RATURE	PUMPING	WATER
	JRG	MP	(pH i	units)	(mS	/cm)	(n	nv)	(m	g/l)	(N	ru)	(degr	rees C)	RATE	(ft below
TIME	Ĩ	3	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1150	×		6.96	NA	1.500	NA	34.8	NA	45-gen	NA	15.7 23.94	, <u>NA</u>	22.94	NA	130	12.98
155	X		6.96		1.498		35.7		6.97		13.3		23.01		150	12.28
1200	×		6.96		1.4194		36.2	•	6.98		15.2	:	23.07		150	12.98
1205	X		6.96		1.491	· · ·	35.9		6.97		10.8		23.10		180	12.98
1210	×	,	6.94		1.488		35.8		6.94		7.9		23.14		150	12.98
1215	x		6.96	-	1.483		35.4		6.91		8.6		23,16		150	12.98
1220		X							1 -						final	12.58
		T									-					
		-											-			
	-		*													
COMMEN	ITS	_ t	ising Lal	notte 207	LOWE F	or Turbic	dity	· ·		<u>.                                    </u>			<u> </u>			
				378.4		a 17 2	- ° '									
s		£	sup laxer	120-(	10075	C 1228	>									

.



#### LOW FLOW SAMPLING DATA SHEET

BITE: DATE: NEATHEF	0 2:	Javwoo B-11-14 Stoudy	20's Nw	nid	· ·			CONSULTIN FIELD PERS	ig firm: _( Sonnel: _{	CBI CG, MS					
MONITOR	WEL RMIT	L#: <u>MW</u> #:	480	WE WELL I	LL DEPTH: DIAMETER:	630	inches	4-64 وا	100 Jack ;71	C SCREEN	IED/OPEN II	NTERVAL:	<u>38-6</u> 59.64-	3-14-1	4, TIC
PID/FID R	EADI	IGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 P:0.3		PUM	P INTAKE D TH TO WATE	EPTH: <u>SS</u> R BEFORE	ft below PUMP INST	TOC	: <u>/3.86</u> #1	below TOC		· · · · ·
	SGING	F (pH	oH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (1	DOX INTIAL IIV)	DISS OX (m	OLVED /GEN 19/1)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME		READING		READING	CHANGE*	READING		READING		READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
<u>7150</u>		714	FU	a nua	get-+	ing i	1000 4	252	No	183	35	19.12		200	13.75
000	x	1.31		3.864		- 2.(0		2.56		13.9		18.05	· .	200	14.00
005	¥	7.22		3.862		-0.7		2.39		15.8		17.79		200	14.00
010	x	7.18		3,858		-0.1		2.37		17.3		17.92		200	14.00
215	×	7.15		3.851		-0.6	·· \	2.64		19.5		17.84		200	14.00
020	X	7.13		3,850		-1.1		2.76		-19.8		17.89		200	14.00
025	×	7.13		3.853		-1.6		2.81		20.2	<u> </u>	18.03		200	14.00
030	×	7.12		3.850		-2.3		2.77		21.3		18.04		200	14.00
035	X	7.12		3,858		-2.7		2.71		20.9		18.01		200	14.00
INUN										· .				final	14.00



# LOW FLOW SAMPLING

SHEET

OF

DATA SHEET

SITE:		Maria	Gan				· . ·	CONSULTIN	G FIRM:	CRA	L				
DATE		81	5-16				_	FIELD PERS	ONNEL:	3.6	SK P.	Kednar	<b>\</b>		
WEATHE	č;	5010	y, 85°												
MONITOP	WELL	#: Mu	J240	WE	LL DEPTH:	67.70)	F365.6	1,9524,7	16	SCREEN	ED/OPEN II	TERVAL:	47.70	)-67.70	1 to ASS
WELL PE	RMIT #	•		WELL C	DIAMETER:	21	/ inches	0.					49,95	- 69.95	HATIC
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	Ø	5	PUM	P INTAKE D		5 ft below	тос (4	50.0' BC	<del>,</del> \$ )		- <b>b</b> /
			BENEATH	OUTER CAI	r 🦉	Y	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	<u>  .83</u> tt	below TOC		
			BENEATH	INNER CAP	: <i>q</i>	<u>×                                    </u>				· · · · · · · · · · · · · · · · · · ·					
	D N		u	SPEC		REI		DISSO	LVED GEM	TUDE	INTY	TEMPE			<b>DEPTH TO</b>
	MPL	(pH u	units)	(mS	/cm)	(n	1V)	(m	g/l)	(N	FU)	(degr	ees C)	RATE	(ft below
TIME	PU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1021	$\mathbf{x}$		NA		NA		NA		NA		NA		· NA	190	-11.83
1030	X	6.57		3.575		71.7		0.36		67.1	,	20.34		190	12.35
1035	X	6.54		3.668		58.8		0.23		38.6		19.51		190	(2.35
1040	X	6.55		3.652		56.3		0.19		32.8		19.94		190	12.35
1045	×	6.55		3.665		55.0		0.15		27.0		20.05	F	190	12.35
1050	X	6.55		3.659		55.3		0.14		22.2		20.58		190	12.35
1055	X	6.54		3.669		56.5	÷	0.13		18.4		20.74		190	12.35
1100	X	6.54		3.666		58.0		0.(3		14.6		20,99		190	12.35
1105	X	6.54		3.674		58.9		0.(3		11.4		21.10		190	12.35
110	X	6.54		3.676		60.4	y	0.12		10.4		20.70	)	190	12.35
1115	X	6.53		3.666		62.4		0.12		9.2		20,75		190	12.35
COMMEN	ITS:	128-1	09002	.9	Samp	de fim	L: 112	0			FIN	AL DTU	w:12.	35 To	C

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $\pm$  10 mv for Redox Potential; and  $\pm$  10% for Dissolved Oxygen and Turbidity



#### LOW FLOW SAMPLING DATA SHEET

SHEET

SITE:		Maria	<u>)</u>			,		CONSULTIN	G FIRM:	CB+J			•		
DATE:			3-15-10	•				FIELD PERS	ONNEL:	3.0	ok 1	2 HODM	ŝ		
WEATHER	2:		SUMMy,	900			_			. – .					
MONITOR	WELL	# OVP	WIS	WE	LL DEPTH:	2117	[0 C			SCREEN	ED/OPEN in	NTERVAL:	· · · · · · · · · · · · · · · · · · ·		
WELL PE	RMIT #	<b>!</b>		WELLI	DIAMETER:	4	_ inches				•				
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	ø		PUM	INTAKE D	ЕРТН: <u>18 .</u>	5 ft below	тос				······································
;			BENEATH	OUTER CA	r Ø		DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	6, <u>74</u> ft1	elow TOC		- '
, <u></u>	1.00	1	BENEATH	INNER CAP				DIES				[].		I	
		P	Ĥ	CONDU	CTIVITY	POTE	NTIAL	OXY	GEN	TURE	BIDITY	TEMPE	RATURE	PUMPING	DEPTH TO WATER
	URG!	(pH u	anits)	(mS	/cm)	(n	IV)	(m	g/l)	(N	TU)	(degr	ees C)	RATE	(ft below
TIME	2 3	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	(mvmin)	
1234	X		NA		NA -		NA		NA		NA		NA	200	6.79
1240	X	698		1.427		-8.8		0.26		7.1		19.51		200	6.74
1245	X	6.99		1,460		-35.9		0.13		5.2		18.89		200	6.74
1250	Х	6.99		1.464		- 38.9		0.12		4.2		18.79		200	6.74
1255	X	6.99		1.458		-44.9		0.10		2.7		18.79		200	6.74
1300	X	6.99		1.454		-47.9		0.09		2.5		18.49		200	6.74
1305	X	6.99		1.453		-50.5		0.09		1.2	- 	18.56		200	6.71
1310	X	6.99		1.456		-51.5	· · · · ·	0.09		1.0		18.39		200	6.74
1315	1													FINAL	6.74
	·											×			
COMMEN	TS:	12B-	.0900	30							*.		-		
				_		•									



# LOW FLOW SAMPLING

OF /

SHEET

DATA SHEET

SITE: DATE: WEATHER MONITOR WELL PER		aywood 8-15- 52203, #: <u>Mw</u>	-16 78° 245	WE	LL DEPTH: DIAMETER;	19.5	- - TIC inches	CONSULTIN FIELD PERS	G FIRM; DNNEL:		I oK, P. ed/open II	Hedno vterval:	10.60	- 15.60	PHIL
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PUMF DEPT	P INTAKE DI H TO WATE	PTH: 17.	5 ft below PUMP INST	TOC ALLATION	12.45 m	below TOC		
	JRGING	P (pH t	H Inits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	DOX NTIAL IV)	DISSC OXY (m	LVED GEN g/i)	TURB (NT	IDITY IU)	TEMPE (degr	RATURE + ees C)	PUMPING RATE	DEPTH TO WATER (ft below
JAZ		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	(ml/min)	тос) -12.45
840	X	6.51		1.209		-43,5		0.17		108.5		18.92		180	12.49
845	X	6.57		1.220	·	-60.0		0.10		76.3		19,1	3	180	12.49
350	X	6.59		1.215		-65.5		0.08		55.1		19,30		180	12.49
855	X	6.59		1.216	:	-67.4		0.08	·	42.6		19.27		130	12.49
900	X	6.59		1.215		-69.0		0.00		39.2		19.65	• •	180	12.49
905	X	6.59		1.218		-68.4	÷.,	10.01		31.4		19.55		180	12.49
910	X	6.58	· · · · · ·	1.218		- 68.4		0.00		29.2		19.80		180	12.49
915	X	6.58		1.217		-69.2		0.00		24.5		20.19	i	(80	12.49
920	X	6.58		1.218		-69.5	·	0.00		24.6		20.4		180	12.49
925	X	6.39		1,219		-70.0		0,00		23.5		20.48	<u> </u>	130	12.49
COMMEN	TS:	126	-09002	સ	Son	ple tri	ne (	0930		ſ	FINAL	DTW: 1	2.49'-	TOC	•

# LOW FLOW SAMPLING DATA SHEET

N By

SI,TE:	1	nywe	od	<u></u>				ONSULTIN	G FIRM:	CBE	,		· · · ·	· · · ·	· · · ·
DATE: NEATHEI	ъ ⁻	<u>8-15-1</u> 8.000	() 194 7(2)	tunichily			<u> </u>	FIELD PERS	ONNEL:	ns/KG					. · · · · ·
MONITOR WELL PEI	WE	LL #:	134D	WELL I	LL DEPTH: DIAMETER:	51.90	- BbS555 inches	3.78-6.	rico	SCREEN	IED/OPEN I	NTERVAL:	26.90	<u>-51.90</u> -53.7	HE BES
ID/FID R	EAD	INGS (ppm	BACKGRO BENEATH BENEATH	DUND: OUTER CA INNER CAP	<u> </u>		PUMP DEPT	INTAKE D	EPTH: <u>40</u> R BEFORE	) ft below PUMP INS1	TOC	: <u>10.18</u> m)	below TOC		
· .	RGING	WPL ING	pH H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX1 (m	DLVED 'GEN g/l)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE • ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2		GHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
020	x	Stad	+ Purgi	ing - N	O NARe	adings	Setti	ng Flo	W NA	Ve.	NA		NA	175	10.37
855	X	6.54	<u> </u>	4.416		-146.7		0.00		5.7		19.66		175	10.43
900	x	6.70		4.413		-153.7		0.00		Siy		19.85		175	10.55
905	X	6.79		112.9		-156.9		0.00		4.9		19.83		175	10.66
910	X	6.82		4.404		-158.8		0.00		4.6		19.84		175	10.80
915	X	6.82		4.406		- 159.9		0.00		4.4		19.94		175	10.89
92D	X	6.87		4.406		-160.0		0.00		4.5		19.98		175	10.97
925	X	6.88	,	4.407		-162.5		0.00		4.4		# 20.02		110	11.06
2930	X	6.89		4.407		- 161.3		0.00		4.5		21.10		110	11.06
935	X	6.90	•	4.409		-160.2		0.00		4.3		21.16		110	11.12
5940	Y	6.91		4.410		-159.3		0 00		4.4		21.02		110	11.17
COMMEN	T\$:	Some Sor	t of an ob	lect in we	11 at 10'	· · · · · · · · · · · · · · · · · · ·									



# LOW FLOW SAMPLING

DATA SHEET

SITE:	<u>N</u>	Taywoo	sd			· · ·			IG FIRM:	CRAR K (KC	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
WEATHE	u	unny 8	o's tu	6 Humid	Thy					<u>~~~~~~</u>	· · ·				
MONITOR WELL PEI	RMIT #	# <u>mw</u>	3YD	WE	LL DEPTH: DIAMETER:	6	inches			SCREEN	IED/OPEN II	NTERVAL:	· · · · · · ·	•	
PID/FID R	EADIN	iGS (ppm):	BACKGRO BENEATH BENEATH	DUND: I OUTER CAI I INNER CAF	<u>6.0</u> 6.0 7.8	<u>&gt;</u>	PUMF DE <b>PT</b>	P INTAKE D H TO WATI	EPTH: <u>40</u> ER BEFORE	) ft below PUMP INST	TOC	: <u>/0./8</u> ft	below TOC		
	RGING	l (pH	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX (n	OLVED /GEN 1g/l)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PUF	READING	CHANGE:	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0945	X	6.91	NA	4.412	NA	-158.7	NA	0.0	. NA	4.5	NA	21.13	<u> </u>	90	11.22
0950	X	6.92		4.412		-160.1		0.0	•	4.6		21.20		90	11.25
0955	x	4.92		4.411		-160.9		0.0		4.7		21.29		90	11:30
10:00	x	6.92		4.410		-161.3		0.0		\$4.5		21.32		90	11.32
10.05	×	6.91		4.410		-1618		0.0		4.4		21.35		90	11.36
1010	~	6.91		4.411		-162.0		0.0		4.6		21.39		90	11.38
1015	X	6.91		4.412		-162.4		0.0		4.5		21.41		90	11.41
1020	X	6.91		4.413		-162.9		0.0		4.6		21.44		90	11.43
4025	V	6.90		4.414		-163.5		0.0		4.7		21.49		90	11.43
1030	x	1.90		4.415		-163.5		0.0		4.8		21.52		90	11.44
1035		4.90		4.415		-11.3.5		0.0		4.6		21.57		90	11.44
COMMEN	ITS:		· · ·	1 1 1 1 1			1. <u>.</u>			· · · ·				<u> </u>	

IVEW JERSEN CEPARINEIVIAL OF ENVIRONMENTAL FROIDCINON Low Flow Purging and Sampling Guidance Page 15 of 18

#### LOW FLOW SAMPLING DATA SHEET

SHEET 3 OF 3

1

SITE: DATE: WEATHE	R:	8 8 5	15-16 15-16	) )'s		······································			CONSULTIN	IG FIRM:	CBI KG/MS					,
WELL PE	R.MI	ELL T#	# <u>Mu</u>	240	WELL	DIAMETER:	6	inches			JCKEEP	ieu/upen h	NIEKVAL:			;
PID/FID R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	DUND: OUTER CA	P:	<u> </u>	PUMF DEPT	P INTAKE D H TO WATE	EPTH: ER BEFORE	O_ft below PUMP INST	TOC	: <u>/o//8</u> ft	below TOC		
	GING	DNIJAN	l Hq)	oH units)	SPE CONDU (mS	CIFIC CTIVITY i/cm)	RE POTE (r	DOX INTIAL nv)	DISS OX (n	OLVED /GEN 1g/l)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	Da	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1040	*	X		NA		NA		NA		NA		NA		NA		
•			-													
			-													
				-									- · ·			
																-
			-										-			
								· · ·								
							-									
		1	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _		1									·		
COMMEN	ITS	. 8	sample (	040	).	· · ·			- <u> .</u>	· · ·					.: .:	t

# LOW FLOW SAMPLING

QUEET

DATA SHEET

61

SITE: DATE: WEATHER MONITOR WELL PER		<u>لا</u> 2 2	101100 3-15-11 unny 91 # Miss	od o O's Hur OSBR	vid WE	LL DEPTH: DIAMETER:	55.0 A	 5 inches	CONSULTIN FIELD PERS	ig firm: fonnel: TTC	CBT KG+ MS SCREEN	ED/OPEN I	NTERVAL:	25.50 27.29	- 49.00 - 50.79	K-14-S
id/Fid R	EAD	INC	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI	0.0 0.0	<u>&gt;</u> > >	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>43</u> R BEFORE	PUMP INST	TOC ALLATION	: 10.45 ft 1	pelow TOC		D.2
	JRGING	MPLING	р (рН 1	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX (m	0LVED 'GEN g/l}	TURE (N	SIDITY TU)	TEMPE (degre	RATURE •	PUMPING RATE	DEPTH T( WATER (ft below
TIME		S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE'	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
205	*	_	6.6>		14.52		~45.5		0.97		5.8		20.16		250	10.22
	X		6.21		19.90		-52.2		0.89		4.2		14:85		250	10.36
215	×	_	6.20		14.97		-66.2		0.24		15.5		20.0+		250	10.35
220	X		6.19		14.96		-72.7	·	0.21		13.2		Z0.33		250	10:35
225	X		6.16	· · · · ·	14.95		-76.0		0.23		12.9		20.14		250	10.35
230	X		6.13		14.94		-76.9		0.24		10.0		19.93		250	10.35
235	x		6.10		14.93		-76.8		0.34		9.0		20.09		250	10.35
2.40	×		6.08		14.93		-77.9		0.60		8.1		19.62		2.50	10.35
2.45	×		6.08		14.93		-79:1		0.74		7.1		19.54		250	10.35
250	X		6.07		14:93		-80.4	· .	0.76		7.3		19.58		250	10.35
255		Ŷ	6.08		14.93		-82.6		0.74		7.5		19.26		250	10.35
OMMEN	TS:	So.	impleti	ken 125	s. Dup	Sample	tukene	1300	126-090	DO74	•				· · ·	

a)

#### LOW FLOW SAMPLING DATA SHEET

	<u> </u>	<u>.</u>			· · ·		· · · · · · · · · · · · · · · · · · ·		<u> </u>							
SITE:		M	avero	od				_	CONSULTIN	IG FIRM:	CBT					
DATE:		8	-15-16	0		:			FIELD PERS	SONNEL:	KG/MS				·····	
WEATHER	<b>4</b>	<u>S</u>	why T	103 H	mid	·····										
MONITOR WELL PEI	RMI 1	:LL F #:	# <b>K</b> iss(	XAR_	WELL I	LL DEPTH: DIAMETER:	15.30	inches	17.81	TK	SCREEN	ied/open ii	NTERVAL:	<u>5.00-1</u> 7.31 -	5.00 7	TK
PID/FID R	EAD	IN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CA INNER CAP	<u></u>	2 2 0	PUM DEP1	P INTAKE D TH TO WATE	EPTH: <u>/3</u> R BEFORE	ft below PUMP INST	TOC	: <u>/0,75</u> ft I	elow TOC		
V V V V V SPECIFIC REDOX DISSOLVED   V V PH CONDUCTIVITY POTENTIAL OXYGEN TURBIDITY TEMPERATURE PUMPING DEPTH   TIME Q V (pH units) (mS/cm) (mV) (mg/l) (mg/l) CHANGE* READING CHANGE* CHANGE* CMI/min TOC															DEPTH TO WATER (ft below	
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1400	x		7.13	NA	1.903	NA	-34.7	NA	1.47	NÁ	39.2	NA	24.41	NA	200	11.00
1405	×		6.94		1.870		-35		0.95		12.1		21.97		200	11.04
1410	x		7.01	· · · ·	1.877		-131.0	-	0.74		23.0		22.00		200	10.95
1415	X		7.06	:	1.877		-132.9		0.71		Z2.8		22.39		200	10.83
1420	X	-	7.08		1.882		-133.8	<u> </u>	0.60		19.6		22.51		200	10.91
1425	x		7.08		1.083		-134.9		0.50		21.8		23:05		200	10.91
1430	X		7.08		1.883	· · · · ·	-134.4	· · · · · · ·	0.48	· · · · · · · · · · · · · · · · · · ·	20.6	·	22.98		200	10.90
1435	X	_	7.08		1.884	· .	- 134.2		0.46		11.4	ļ	22.93		200	10.20
1440	X		7.08		1.883	·	-134.3		0.43		3.9		22.74	·	200	10.50
1445	x		1.08	· .	1.883		-134.4		0.41		3.2		22.74		200	10.80
1450	X	X	7.03		1.883		+34.5		0.39		3.0		22.73		200	10.90
COMMEN	TS:	8	ample@	21450												•



or 2

eucer

ITE: ATE: PEATHER ONITOR ELL PER	 well mit #	(aywoo 8 - 16- 50 03- # # GS (ppm):	BACKGRO BENEATH BENEATH	- WE WELL I UND: OUTER CAI INNER CAP	LL DEPTH: DIAMETER: P:Q :Q	125,	inches	S.09 INTAKE DI	g firm: onnel: f,\T/C epth: <u>13,</u> r before	CB+1 S. ( ool SCREEN SCREEN St below PUMP INST	ED/OPEN II	(0) 895 1. <u>9,94</u> 41	7.5- 10.09 ) below TOC	12.5 B - 15.09	65. Hr.7K
	g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g														
320	a os	READING	NA NA	READING	NA NA	KEADING	NA	READING	NA	READING	NA	READING	CHANGE"	(80)	13.5-M
25	X	6.54		1.520		41.8		0.66		405.0		18.83		180	9.99
30	X	6.72	-	1.772	• •	-35.0		0.25		159.3		18.25		180	10.00
35	y _	6.79		1,32-8		-56.4	· .	0.12		105.0		18.06		(80	60.00
40.	X	6.82		1.247		-60.9		0.3		105.2		18.11		180	9.98
15	X	6.82		1.801		-62.9	\	0.15		100.2		18.31		200	10,00
50	$\mathbf{X}$	6.81		1.840	· .	-66.2		0.06		69.8		17.37		200	10.00
55	X	6.83		1.858		-71.2		0.04		52.9		17.67		200	10.00
00	×	6.83		1,860		72.7		0.04		53.4		17.67		200	10,00
5	X	6.84		1.861		-72.9		0.04		48.2		17.53		200	10,00
10	X	6.84		1.358		73.4		0.03		47.4		17.78		200	10,00
)MMEN	T\$:	128	- 0900	34											



#### LOW FLOW SAMPLING DATA SHEET

						*. •	•	DA	TA SHE	ET		•••.			SHEE	т_ <u>2</u> о <u>г</u> 2
SITE: DATE: WEATHEF		M	laywood 3-16-	) 10					CONSULTIN	G FIRM:						· · · · · · · · · · · · · · · · · · ·
MONITOR WELL PER	WE	LL F #:	#: <u>M15</u>	STAR	WE WELL	LL DEPTH: DIAMETER:		inches	· · ·		SCREEN	ED/OPEN I	NTERVAL:			
PID/FID R	EAD	IN	GS (ppm):	BACKGRO Beneath Beneath	OUND: OUTER CA INNER CAP	P:	······································	PUMF DEPT	P INTAKE:D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft ł	elow TOC		
	RGING	DNITH	l (pH	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX1 (m	DLVED 'GEN g/l)	TURE (N	SIDITY TU)	TEMPEI (degro	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	<b>D</b>	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
915	X	_	1 91	NA	1 852	NA	-74 1	NA	0.03	NA	472	NA	17 83	NA	2.00	10.00
920	X		6.83		1.860		- 47-7	1.6	0.04		47.1		17.79		200	10,00
925	<u>,</u>	X			1.0*-	6				-				÷	FINAL	10.00
	у					a di seconda										
				1											-	N
																-
					**											
				· · · ·	• -											
COMMEN	TS:		128-	09003	4			-				1			······	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

c

The second s



#### LOW FLOW SAMPLING

۲

DATA SHEET

		· ·					DA	іа эпе	21					SHEE	т_/_оғ_2
SITE:	:	Mayu	600		<u>`</u>	· · · · · · · · · · · · · · · · · · ·		CONSULTIN	G FIRM:	CB+I					
DATE:	, <u> </u>	3-46	-10	<b>.</b>				FIELD PERS	ONNEL:	3.000	< , P.1	te Inar			
MONITOR		<u></u>	<u>&lt;078</u>	WE	LL DEPTH:	44,0	Pro f	090.50	78147	CSCREEN	ED/OPEN I	NTERVAL: #	13.00	-41.0	AL 50
WELL PE	RMIT	h		WELL	DIAMETER:	- 4	Inches	00 (04 %	0			•	14.78	- 5017	动行,中心
PID/FID R	EADIN	IGS (ppm):	BACKGRO	)UND:	- \$	<u> </u>	PUM	P INTAKE D	ертн: <u>45</u> .	<b>S</b> ft below	тос (74	1.0 BES	)		-17
			BENEATH BENEATH	I OUTER CAI		<b></b>	DEPT	TH TO WATE	R BEFORE	PUMP INST	ALLATION	: <u>70, o</u> ut i	elow TOC		
	RGING	р (рН )	xH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISSO OXY (m	OLVED 'GEN 1g/1)	TURE (N	NDITY TU)	TEMPE (degr	RATURE ` ees C)	PUMPING	DEPTH TO WATER (ft below
TIME	PU NAS	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
000	X		NA		NA .		NA		NA		NA		NA	225	10.80
1010	X	7.05		5.836		66.0		0.77		59.0		18,78		225	11.04
1015	X	7.00		5.911	· .	38.2		0.58		47.5		19.21		225	11.04
1020	X	6.99		5.937		24.0		0.61		48.8		19.05		225	11.04
1025	X	6.98		5.937		18.5		0.79		44.3		18.81		225	11.04
1030	X	6.98		5.934		16.3		1.00		45.7		18.38		225	11,04
1035	×	6.98		5.916		15.1		1.19		44.5		19.07		225	11.04
1040	X	6.98		5.911		13.6		1.17		36.5		19.23		225	11.04
1045	X	6.98		5.893		10.2		1.12		34.9		19.24		225	11,04
1050	X	6.98		5.884		9.8		1.35		39.2		19.36		225	11.04
055	X	6.98		5.874		10.9		1.45		42.3		19.34		225	11.04
COMMEN	its:	128-	09003	,5											

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

the second s



#### LOW FLOW SAMPLING DATA SHEET

200 2

SHEET

SITE:		Mayne	- 1(0						G FIRM:						
WEATHER	Ŀ	5-10		•											
MONITOR	WELL	# MI	5507B	WE	LL DEPTH:	· · · · · · · · · · · · · · · · · · ·	<u> </u>			SCREEN	ED/OPEN IN	TERVAL:		······································	
WELL PEI	RMIT #			WELL	DIAMETER:		inches			·			··········		
PI9/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	P:	· · · · · · · · · · · · · · · · · · ·	PUMP	P INTAKE DI H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION :	:ft	below TOC		
	RGING	q (PH a	H Inits)	SPEC CONDUC (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISSC OXY (m	GEN g/ī)	TURB (N	IDITY TU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
			NA		NA		NA		NA		2020	<u> </u>	NA		
1100	X	6.98		5.872		12.0		1.51		40.3	11.70	19.29		225	1.04
1105	X	6.98		5.867		12.(		1.49		36.1	11.4	19.05		225	11.04
1110	X	6.97		5.870		10.4		1.31		33.2	8.0	19.14		225	11.04
1115	X	6.97		5.867		8.5		1.23		30.5	7.7	19.54		225	11.04
11201	X	6.97		5.879		6.3		1.11		25.4	6.5	19.44		225	11.04
1125	X	6.96		5.886		5.2		1.02		24.7	6.2	19.15		225	11.04
1130	X	6.96		5.881		5.9		0.97		24.6	5.5	18.60		225	11.04
1135	X	6.90		5.670		5.0		0.99		22.2	6.7	18.87	-	225	11.04
140	X										, i			FINAL	11.04
1.														-	
COMMEN	TS;	128-00	30035	5	•		• •	• • • •							

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $\pm$  10 mv for Redox Potential; and  $\pm$  10% for Dissolved Oxygen and Turbidity



#### LOW FLOW SAMPLING DATA SHEET

					-	÷	DA	IA JIEI						SHEE	г <u> </u>
SITE:		Mayun	202		· · · · · · · · · · · · · · · · · · ·		_ (		G FIRM:	CB+I	k 0	He dance	•		
DATE: WEATHEI	e	p.cl	-16-1( ovdy,	e 90°				FIELD PERS	UNNEL:	3.000	~ <u>, F</u> ,	reema	<u> </u>		
MONITOR	WELI RMIT #	L#: <u>B38</u> !:	WO7B	WELL I	LL DEPTH: DIAMETER:	52.59	inches	54.98	FTYC,	SCREEN	ED/OPEN II	TERVAL:	<u>18-5-</u> 20.89-	28-8	TIE
PID/FID R	EADIN	IGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP		· · · · · · · · · · · · · · · · · · ·	PUMI DEPT	P INTAKE D H TO WATE	EPTH: 26 R BEFORE	D ft below PUMP INST	TOC (23 ALLATION	9.60 m	below TOC		
	URGING	q (pH	oH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL nv)	DISS( OXY (m	OLVED 'GEN g/l)	TURE (N	IDITY FU)	TEMPEI (degru	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME 1200	N S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	тос) 91-р
1305	×	( (Jo		1.1000		186.8		0 < 9	· · · · · · · · · · · · · · · · · · ·	301.4		17.48		190	9.72
1310	x	6.58	· · · · ·	1.658		224.1		0.39	· · · · ·	132.6	· ·	17.12		190	972
1315	X	662		1.660		2451		0.2 %		65.5		16.94		190	9,72
1320	X	6.64		1.667		262.5		0.22	÷	27.)		16.89		190	9.72
1325	X	6.64		1.667		272.4		0.25		18.6		16.77		190	9.72
1330	X	6.61		1.662		283.2		0.20		11.9		16.57		190	9.72
1335	X	6.60		1.663		292.1		6.18		8.1		16.44		190	9.72
1340	X	6.59		1.665		298.4		0.19		5.9		16.53		190	9.72
1345	X	6.60		1.664		304.6		0.16		4.3	-	16.53		190	9.72
1350	X	6.59		1.664		311.0		0.15		2.8		16.54		190	9.72
COMMEN	TS:	10/	1-091	030											



#### LOW FLOW SAMPLING DATA SHEET

SITE: DATE: WEATHEI	- R: _		Mayu	1000) -11e-110					CONSULTIN	g firm: ONNEL:		······································			······	
MONITOR	R WE	ELL T #:	# <u>B38</u>	w078	WELL 1	LL DEPTH: DIAMETER:	· · · · · · · · · · · · · · · · · · ·	inches			SCREEN	ED/OPEN II	NTERVAL:			•
PID/FID R	ËAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAP	P:		PUMI DEPT	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft	below TOC		
	RGING	MPLING	Р (рН 1	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (1	DOX NTIAL NV)	DISS OX1 (m	DLVED 'GEN g/l)	TURI (N	BIDITY TU)	TEMPEI (degra	RATURE ` ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D	SA	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1355	X		6.60		1.661		316.1		0.14		2.1		16.48		190	9.72
1400	X		6.60		1.663		318.7		0.14		1.9		16.58		190	9.72
1405		X		· · · · ·		· .					· ·				FINAL	9.72
						· · · · ·		\`								
						· · · · · ·		. 		ļ			 T			
	_										<u> </u>				· · · · · · · · · · · · · · · · · · ·	
					· · · · ·			<u>.                                    </u>			· · · · · · · · · · · · · · · · · · ·					<u></u>
	-											 				
						· .							\			<u> </u>
COMMEN	ITS:	•	0	4-09	0036		•	•								



SHEET

OF /

SITE: DATE: WEATHER	1 2 2 2 3	10-16-16	) cl			<u></u>		CONSULTIN FIELD PERS	G FIRM:	CB1I CG/MS			7-12		
MONITOR	WELL MIT#	# <u>m</u> w	<u>uus</u>	WELL I	LL DEPTH: DIAMETER:	Z	bes inches			SCREEN	ED/OPEN II	NTERVAL:	9-14	A., bg	2
PID/FID RI	ADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 0.0 0.0	) )	PUMI DEPT	P INTAKE D H TO WATE	EPTH: //_	ft below PUMP INST	TOC ALLATION	1 <u>7.40</u> ft I	below TOC		
	IRGING	pH (pH )	H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISSC OXY (m	DLVED 'GEN g/l)	TURI (N	NDITY TU)	TEMPE (degr	RATURE * ees C)	PUMPING RATE	DEPTH TO WATER (ft below
		READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE.	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
<u>2030</u> 0835	x	6.99	- YCLV ZI	1.800	o nec	-2.1	Take a	0.29	1 100	39.0		23.11	÷ .	125	7.50
0840	×	7.00		1.799		-18.9		0.18		8.8		23.28		125	7.57
0845	×	7:05		1.801		-26.4		0.16		7.5		23.42		125	7.63
0850	×	7.07		1.807		-30,4		0.15		4.9		23.96		100	7.60
0855	×	7.09		1.808		=31.6		0.15		0.0		23.98		100	7.64
0900	x	7.10		1.808		-32.3		0.15		0.0		23.96		100	7.65
0905	×	7.11		1.807		-32.9		0.15		0.0		23.93		100	7.66
0910	_X						· ·	· · · · · · · · · · · · · · · · · · ·						Finale	7.68
COMMEN	TS: 3	ample	0910												<u> </u>



#### LOW FLOW SAMPLING

/ OF Z

SHEET

DATA SHEET

SITE: DATE: WEATHER MONITOR WELL PER PID/FID R	EAD	8 S II #:	10742300 -16-16 10-16 16-16 16 16 16 16 16 16 16 16 16 16 16 16 1	O'S HU DE BACKGRO BENEATH	WELL I WELL I UND: OUTER CAI	LL DEPTH: DIAMETER: P: 0 · 0	634 6	inches PUMI DEP1	CONSULTIN FIELD PERS Ushine PINTAKE D H TO WATE	G FIRM: ONNEL: COLT). EPTH: TS R BEFORE	CBT VS (KG SCREEN 7 ft below PUMP INST	IED/OPEN II 7 TOC FALLATION	NTERVAL: : <u>\0 ، \\$</u> ft ا	<u>38 -</u>	639	⇒bq2
· .	RGING	MPLING	p (pH u	BENEATH Munits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	DOX NTIAL IV)	DISS OX1 (m	DLVED 'GEN g/l)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE [*] ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	R	8		CHANGE"	READING	CHANGE*	READING		READING		READING	CHANGE"	READING	CHANGE*	(mi/min)	TOC)
1005	X		7.64	purgin	C - NE 04,522	head	-164.6	Hing	100 I	hade	17 /		19109		225	10.05
1025	x		7.57		4.451		-117.8		0.00	».	6.1	1	18.20		225	10.60
1030	X		1.53		4.546		-172.6		0.00		1.3		17.75		225	10.60
1035	x		2.51		4.551		-174.4		0.02		0.0		17.71		225	10.76
1040	X		7.48		4.558		-176.3		0.00		0.0		17.98		728	10.93
1045	×		7.47		4.561		-177,4		0.00		0.0		18.19		180	11.03
1050	×		7.46		4.566		- 180.7		0.00		0.0		18.96		180	11.10
1055	×		7.46		4.868		-181.6		0.00		0.0		19.02		180	11.12
1100	×		2.45		4.567		-182.4		0.00		0.0		19.12		180	11.15
1105	x		7.44		4.546		-182.8		0.00		0.0	•	19.16		180	11,16
COMMEN	TS:						· ·					· .				

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

147 A. L. L.

± 10 my for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity



## LOW FLOW SAMPLING

SHEET COF Z

DATA SHEET

SITE:		M	<u>aywoo</u>	d				_ (		G FIRM:					,	
WEATHE	R:	S	unny 90	I's Hun	ù d											
MONITO	R W RM	EL1. IT #:	# <u>Mus</u>	3DR	WELL I	LL DEPTH: DIAMETER:	6	inches			SCREEN	ED/OPEN H	NTERVAL:	· · ·		
PID/FID R	REA	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 0.0 0.0	>	PUMF DEPT	P INTAKE D H TO WATE	EPTH: <u>5</u> R BEFORE	7 ft below PUMP INST	TOC ALLATION	: <u>/0/63</u> A I	elow TOC	•	
	RGING	MPLING	i Hq)	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (n	DOX NTIAL nv)	DISS OX1 (m	DLVED /GEN /g/l)	TURE (N	SIDITY TU)	TEMPEI (degre	RATURE -	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	8 B	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1110	X	Ø	743	NA	4.567	NA ,	-183.1	NA	0,00	NA	0.0	NA	19.22	· NA	180	11/16
1115		X												-		
						· ·										х.
							1.1.								· · ·	
•						1										
	Ι						·									
																-
								-								
											· .					
	T										1					
COMME	NTS	:: <b>4</b>		5 samp	le had	Seinpl	es also	> tater	-1 H2	> clea	r, sa	mples for	Sulfide	turned	a <b>b</b> stad	e of Blue

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

802

tiati anu

د موجود



# LOW FLOW SAMPLING

SHEET

DATA SHEET

SLTE: DATE: WEATHER	<u>N</u> _e	bywood	GO'S L	king i d	······································			ONSULTIN	g firm: <u>(</u> ONNEL: <u>k</u>	BI CG/MS					
MONITOR WELL PER	WEL	1#8381	002 B	WELL	LL DEPTH: DIAMETER:	39.J. Z	feat, la inches	<b>g-</b> 40	84 84,51	C SCREEN	ED/OPEN II	NTERVAL:	<u>298</u> 31,15-	- 37-	FF3P
PID/FID R	EADI	iGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CA INNER CAP	0.0 -0-0	>	PUMP DEPT	INTAKE D	EPTH: <u>35</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>/0.30</u> ft I	elow TOC		
	Normal Section SPECIFIC REDOX DISSOLVED TURBIDITY TEMPERATURE* PUMPING DEPTH TO   1 pH (pH units) (mS/cm) (mS/cm) (mv) (myl) TURBIDITY TEMPERATURE* PUMPING RATER (ft below   1 READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* (ml/min) TOC)														
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1340	x	Star	- Purg	ns - 1	LONA B	endings	Settin	e Flor	~ Kat		NA		NA	230	10.40
1345	X	8.78	U	1.724		-82.3		0.16		29.5		19.57		Z 30	10.45
1350	X	8.73		1.634	···.	-79.6	1 A	0.16		27.8		19.56		220	10.45
1355	x	7.51		1.391		-52.2		0.11		11.1	:	19.09		230	10.43
1400	X	7.09		1.602	-	-55.1		0.10		8.6		19.01		230	10,43
1405	×	6.87		1.619		-57.6		0.09		4.9		19.05		230	10,43
1410	Y	6.32		1.619		-50 0		0.09		63		19.06		230	10.45
	v	6.20		1.620		-(40.2		0.08		3.0		19 03	······	730	10.43
	Y	6.19		1 ( 20		-lalit		0.00		20		19,02		230	10.42
1475	Y	( ( .Q	-	11.20		(1)		0.01		20	<u> </u>	19 10		230	10.43
1420	<b>^</b>	6,00		1.620		-61.6		0.00		2.0				0.00	10.73
COMMEN	<u>т</u> я; 2	anole for	r And a	Proder	•							<u> </u>	;	1	L

## LOW FLOW SAMPLING DATA SHEET

OF Z

SHEET

SITE: DATE: WEATHER MONITOR WELL PEI PID/FID R	R: RMIT #	Maywo 8 -17 <u>P. C)ov</u> #: <u>B381</u> : GS (ppm):	-16 -16 -16 -16 -16 -16 -16 -16	WELL I WELL I OUND: OUTER CAI		13.5 Z	inches PUMI DEPT	FIELD PERS	G FIRM: ONNEL: NULCOLA EPTH: R BEFORE	CB+I S.C. SCREEN 5 ft below PUMP INST	ED/OPEN IN THE BCTS	2 Hodr NTERVAL:	8.5-	(3.5	
TIME	URGING	p (pH t PFADING	H Inits)	SPEC CONDUC (mS	CHANGE*	REI POTE (m	DOX NTIAL IV)	DISSC OXY (m	DLVED GEN g/l) CHANGE*	TURE (N	IDITY TU) CHANGE*	TEMPEI (degra	RATURE ees C) CHANGE*	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
848	X		NA		NA		NA		NA		NA		NA	200	4.68
155	X	7.07	· · · · · ·	1.646	2	178.9		6.10		68.0		17.85		200	469
900	X	7.05		1.612		171.5		0.06		26.1		17.86	1	200	4.69
905	X	7.08		1.672		1670		0.04		13.7		17.75	-	200	4,69
910	X	7.10		1,759	:	1625		0.03		8.6		17.77		200	4.69
915	X	7.11		1.844		159.6	- \	0:03		4.8		17.74		200	4.69
920	×	7.10		1.909		157.5		0.03		3.0		17.73		200	4.69
925	X	7.10		1.968		K5.4		0.03		1.8		17.72		200	4.69
930	X	7.09		2.020		153.3		0.02		0,6		17.72	-	200	4.69
935	X	7.08		2.070		151.1		0.02		0.3		17.65	Ĺ	200	4.69
940	X	7.08		2.106		149.1		0.02		0.2	1	17.70		200	4.69
COMMEN	TS:	19	A- 090	040		· · ·									

#### LOW FLOW SAMPLING DATA SHEET

TE: ATHER			8-1-	1-16					CONSULTIN FIELD PERS	G FIRM: ONNEL:						
NITOR	WE Mi7	LL #	* <u>1</u> 337	<u>ک ۲۰ سر</u>	WELL 1	LL DEPTH: DIAMETER:		inches			SCREEN	ED/OPEN IN	ITERVAL:			
/FID RI	AD	ING	S (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0 	574 Ø.2	PUMI DEPT	P INTAKE DI TH TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	: ft I	oelow TOC		
	JRGING	ONITING	pi (pHu	H Inits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE {n	DOX NTIAL IV)	DISSC OXY (m	9LVED GEN g/l)	TURE (N	HDITY TU)	TEMPEI (degra	RATURE Bes C)	PUMPING RATE	DEPTH TO WATER (ft below
IME	ž	5	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mVmm)	10C)
15	X		7.07		2.134		147.2		0.02		0.2		17.73		200	4.69
50	X		7.06		2.163	-	145.5		0.02		0,0		17.70		200	4.69
55	٢		7.06		2.183		143.4		0.02		0.0		17.74		200	4.69
00		X	•				-								FINAL	4.69
									N.							
							4 .									
			X				-									
· .																

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $\pm$  10 my for Redox Potential; and  $\pm$  10% for Dissolved Oxygen and Turbidity

## LOW FLOW SAMPLING DATA SHEET

SHEET 1 OF 3

12.2

SITE:	i	Maywoo	60				-			CBTI	e u		·		
WEATHE	R:	5-17	5,75	6				FICLD FERD	UNNEL:	<u>, Coop</u>	, 1-10				
MONITO	RMIT #	# <u>03</u> 6	wito	WE WELL I	LL DEPTH: DIAMETER:	51.5.	inches	-bqs (H	ush wee	CREEN	ED/OPEN II	NTERVAL:	46-0	- 51.5	\$ 58.
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP		<u> </u>	PUMI DEPT	P INTAKE DI H TO WATE	EPTH: <u>48</u> R BEFORE	<u>.6</u> ft below PUMP INST	ALLATION	rs : <u>3,47</u> #1	below TOC		
	RGING MPLING	р (рН 1	H mits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (11	XX NTIAL IV)	DISSC OXY (m	DLVED GEN g/l)	TURE (N	IDITY FU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D B	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1031	<u> X </u> _		NA		NA		NA		NA		NA	· · · ·	NA		3.47
035	X	7.62		0.701		121.1		0.36		309.0		19.78		175	3.70
1040	X	7.39		1.249		125.6		0.11		349.1		(80)		175	3.84
1045	X	7.33		1.340	÷ .	124.4		0.06		231.4		17.61		175	3.85
1050	X	7.35		1,338		120.8		0.04		3 48.6		17.19		175	3.85
1055	X	7.38		1.322		117.5		0.04		386.1		7,03		175	3,85
1100	X	7.41		1.323		115.1		0.03		354.9		17.15		175	3.85
1105	X	7.42		1.325		113.2	-	0.03		320.2	-	17.17	-	175	3.85
1110	X	7.43		1.331		112.1		0.03		259.4		17.22	T	175	3.85
1115	X	7.43		1.335		110.4	. '	0.03	·	210.0		17.18		175	3.85
1120	X	7.43		1,340		109.1		0.03		178.	•	17.19		175	3-85
COMMEN	ITS:	19	A-0	90041							-				

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity



#### LOW FLOW SAMPLING DATA SHEET

							DA	TA SHEI	ET				•	SHEE	T2_0F3
SITE: DATE: WEATHER	  tu	MAY W 8-1-	100D 7-16	· · · · · · · · · · · · · · · · · · ·				CONSULTIN FIELD PERS	g firm: Onnel:			· · · · · · · · · · · · · · · · · · ·			
MONITOR	WELL MIT #	# <u>B3</u>	BWIH D	WELL (	LL DEPTH: DIAMETER:	· · · · · · · · · · · · · · · · · · ·	inches			SCREEN	ED/OPEN II	TERVAL:	· · · · · · · · · · · · · · · · · · ·		·
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	P:	<u> </u>	PUMI DEPT	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	:ft	below TOC		
The	URGING	p (pH a	units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	NTIAL	DISSO OXY (m	CUED GEN g/l)			TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
	<u>a</u> 0	READING	NA	READING	NA	READING	NA	READING	NA	READING	NA	READING	NA		
1125	X	7.43		1.344		107.7		0.02		134.0		17.14		175	3.85
1130	X	7.43		1.348		107.2		0.02		113.0		17.13		175	3.85
1135	×	7.44		1,349		105.9		0.02		114.7	-	17.09		175	3,85
1140	X	7.44		1.349		105.2		0.02	£	109.4		17.10	·	175	3.85
1145	X	7.44		1.355		103.9		0.02		84.2		17.10		175	3,85
1150	X	7.44		1.355		101.6		0.02		70.6		17.23		175	3.85
1155	X	7.44		1.355	· .	100,0		0.02		68.6		17.00		175	3.85
1200	X	7.44		1.355		97.1		0.02		54.0		16.78		175	3,85
1205	X	7.44		1.355		95.1		0.02		44.1		16.75		175	3.85
1210	X	7.45		1.356		91.4		0.02		45.3		16.98		175	3.85
COMMEN	TS:	194-0	29004	11					,				•		•



#### LOW FLOW SAMPLING DATA SHEET

3

CHEF

SITE:		MAYW	DOD					CONSULTIN	G FIRM:						
DATE:		8-17-	16					FIELD PERS	ONNEL:						
WEATHER			······································												
MONITOR	WÉLL MIT#	# <u>1338</u>	WI4D	WELL	LL DEPTH:		inchoc			SCREEN	ed/open in	ITERVAL:	<u> </u>		
		•													
PID/FID RE	ADIN	GS (ppm):	BACKGRO	UND:			PUM	P INTAKE D	EPTH:	ft below	TOC				
			BENEATH	INNER CAP			DEFI	R IV HAIE	r befyre	FUMP INST	ALLAIION	· PK P			
	9 UN			SPEC		REI	DOX	DISSO	OLVED	TUP		TEMPE			<b>DEPTH TO</b>
	MPL	(рН и	mits)	(mS	/cm)	(11	IV)	(m	g/l)	(N	τυ)	(degr	ees C)	PUMPING RATE	WATER (ft below
TIME	D B	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TÔC)
125			NA		NA		NA		NA		NA		NA		-
1215	X	7.45		1.356		89.2		0.02		42.6		16.94		175	3.85
1220	X	7.45		1.356		88.0		0.02		41.3	LAMOTTE	16.85		175	3.85
1225	X	7.45		1.358		87.2		0.02		43.4	8.9	16.97		175	3.85
1230	X	7.46		1.358		87.7		0.02		43.3	9.2	17.08		175	3.85
1235	X	7.46		1.357		88.4		0.02		42.2	9:4	17.00		175	3.85
1240	şχ													FINAL	3.85
. C	P														
		-									· · ·				
					•										
												× .			
COMMENT	rs:	19A-	-0900	41			· .	·······		· · ·				· · · · · · · · · · · · · · · · · · ·	



100

		· · · ·	\										· · ·		
SITE:	_ <u>r</u>	laywoo	<u>)</u>				(	CONSULTIN	G FIRM:	CB+1	10.5		· · ·		
WEATHER	 2:	<u>5 0 1</u>	850				<del>-</del>	rield Pers	UNREL:	<u> </u>	60K, 7	SPROM			· .
MONITOR	WEIT	* 20	07 7	WE		107 0	- La be	> 1.2.24	KL TI	SCREEN		TERVAL :	42	のったり	0 00
WELL PE	RMIT #		10-6	WELL I	DIAMETER:	2	linches	יליכשןה	0,			(	13.24-	63.34	ATR
PID/FID R	EADIN	GS (ppm):	PACKOPO							5 ft holow	TOC (52	o'Bas	)	07.7.1	
			BENEATH	OUTER CAI	- <del>7</del>	<u> </u>	DEP7	'H TO WATE	R BEFORE	PUMP INST	ALLATION	9,50	below TOC		
			BENEATH	INNÉR CAP	<u> </u>										
	U U			SPEC	CIFIC	REI	DOX	DISSO	LVED	TUDO		TEMPE	ATHOR		<b>DEPTH TO</b>
	<b>GIN</b>	թ (թНւ	n units)	(mS	/cm)	(11	NT LAL NV)	(m	gen g/l)	(N	(U)	(degn	ees C)	PUMPING RATE	WATER (ft below
TIME	PUI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOÇ)
1336	X	-	NA		NA		NA	-	NA		NA	-	NA	210	9.50
1340	X	6.90		5.208		-35.6		0.81		50.0		18.47		210	9.56
1345	X	6.72		6.599		42.3		0,55		81.8		17.58		210	9.58
1350	X	6.74		6.554		-42.0		0.34		45.8		17.06		210	9.59
1355	X	6.75		6.528		-41.9		0.28		31.0		17.01		210	9.60
1400	×	6.75		6.514		- 42.4		0.28		30.1		16.98		210	9.60
1405	X	6.76		6.477		-41.9		0.23		38.5		17.21		210	9.61
1410	X	6.76		6.429		-42.0		0.20		44.3	Lamot	17.04		210	9.61
1415	X	6.76		6.406		-42.1		0.16		40.9	22.4	17.14		210	9-61
1420	×	6.76		6.414		42.7		0.14		32.9	23.8	16.97	-	210	9.62
1425	X	6.77		6-428		43.1	-	0.13		30.1	16.3	17.25	Ĺ	210	9.62
COMMEN	TS:	12	B-C	900-	12										
		-				. •									



# LOW FLOW SAMPLING

7

- - - -

22

DATA SHEET

NONITO VELL PE VID/FID F	R WELL RMIT # READIN	#: <u>B</u> <u>P</u> :: GS (ppm):	Z-Z.	WE WELL   )UND:	LL DEPTH: DIAMETER:		inches PUMF	P INTAKE D	EPTH:	SCREEN	ED/OPEN IN TOC	ITERVAL:			
-			BENEATH BENEATH	OUTER CAI	P: 'i	. <u></u>	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	; ft l	elow TOC		
	RGING	F (pH	oH units)	SPE CONDU (mS	CIFIC CTIVITY %cm)	REI POTE (n	DOX NTIAL IV)	DISSC OXY (m	)LVED GEN g/l)	TURE (N	NDITY TU)	TEMPEI (degro	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D BU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1430	X	6.77		6.436		-44.0		0.12	NA	32.5	19.6	17.45		210	9.63
1435	X	6.77		6.428		-44.9		0.13		31.1	18.5	17.28		210	9.63
1440	X													FINAL	9.63
• •					1										
				-											
								1							



# LOW FLOW SAMPLING

SHEET

DATA SHEET

SITE:		M	21/10000	1					CONSULTIN	G FIRM:	Ter					
DATE: Weather		8	1-17-14	o					FIELD PERS	ONNEL: _	NSIKG					
MONITOR WELL PER	WE RMI		#:	MWISS	WELL (	LL DEPTH: DIAMETER:	 7	Hog.	Chlush	mourt)	· SCREEN	ED/OPEN II	TERVAL:	10.5	- 12.5	18 50
PID/FID R	EAD	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 6.0 0.0	>	PUMP DEPT	INTAKE D H TO WATE	EPTH: <u>13</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>5.4(</u> #1	elow TOC		
	GING	IPLING	p (pH a	H mits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	RÉI POTE (m	DOX NTIAL IV)	DISS( OXY (m	DLVED /GEN  g/i)	TURE (N	HDITY TU)	TEMPEI (degre	RATURE es C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0840	X		Sterr	NA	ins - i	JONRE	ading	G Sct	ting f	1000	Rede	NA	•	NA	200	
0845	X		7.13		1.907		40.3	8	0.58		0.0		18.78		200	5.60
0850	X		7.29	•	1.912	-	-18.2		6.43		6.0		18.53		200	5.56
0955	×		7.31		1.900		-32.5	·	0.35		0.0		18.28		200	5.53
0900	×		7.32		1.895		-40.7		0.42		0.0		19.01	· .	200	5-53
0905	×		7.33		1.897		-41.3	k.	0.42		6.0		19.06		200	5.51
0910	×		7.34		1.896		-41.9		0.42	·	0.0		19.10		200	5-5-1
0915		X					×							·	Final	5.51
													•		· ·	
COMMEN HZC	тs: ) (	L 20	oup teit lor clea	ien ale	ongwi	th M	s/MsD	. Dup	୧ ୦୨୪	0	· · · ·			· · · · · · · · · · · · · · · · · · ·	· · ·	••••••••••••••••••••••••••••••••••••••

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $\pm$  10 mv for Redox Potential; and  $\pm$  10% for Dissolved Oxygen and Turbidity

# LOW FLOW SAMPLING DATA SHEET

SHEET

SITE: DATE: WEATHER MONITOR WELL PEI PID/FID R	M. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-17-16 <u>unny</u> 8 #: <u>B 38</u> : GS (ppm):	BACKGRO	WELL I WELL I	LL DEPTH: DIAMETER:	<u> 43 (</u> 2	Linches	ONSULTIN FIELD PERS	g firm: onnel: _ wodw _ wodw	CBT KC, MS SCREEN	ED/OPEN II TOC	NTERVAL:	40.0	- 45.	2 1 - 6- 0.
	URGING	р (рН и	BENEATH BENEATH H units)	OUTER CAP	Pi O - C CIFIC CTIVITY /cm)	REI POTEI (m	DEPT IOX NTIAL IV)	H TO WATE DISSC OXY (m	R BEFORE DLVED (GEN g/l)	TURE	ALLATION IIDITY FU)	: <u>4/98</u> ft I 4. <del>7/</del> TEMPEI (degn	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
1030	TIME E & READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' READING CHANGE' (mi/min) 10C) 330 X Start purcing No heading Stating Proverse NA 200 5.02 0255 x 7.77														
1035	X	7.37	t pui	1.703		2832.1	0	0.61		13 1		18.53		250	5.02
1040	x	7.34	-	1.676	• .	331.5		0.32		6.3		17.80		250	5.02
1045.	X	7.34		1.670		342.4	· · · · · ·	0.26		17.4		17.60		250	5.02
1050	x	7.33		1,660		358.5	Ì	0.24		66.6		16.57		250	5:03
1055	X	7.34		1.658		365.2	\. 	0.31		35.5	WS	16.88		2520	5.03
1100.	X	1.33		1. Lole (	、 、	369.8		0.30		27.2		17.09		250	5.03
1105	X	1.35		1.666		373.4		0.31		19.4		17.68		250	5.03
1110	X	7.35		1.663		374.8		0.32	-	17.2	•.	17.71	н	250	5.03
1115	X	7.35		1.666		375,3		0.31		14.3		12.75		250	5.03
1120	X	7.36		1.667		376.1		0.30	•	15.3		17.78		220	5.03
COMMEN Lost	<b>тs: (</b> С	hecking	Turbid	ity with 1125	5.03	Lamotte Sfinal	Wezoz Water	ometer terret	Turb=	35.Se	1055.4	esing La	amotte	for u	<u>ب</u>



# LOW FLOW SAMPLING DATA SHEET

SITE: DATE: WEATHEI MONITOF WELL PEI PID/FID R	R: RMIT :	1011220 3-12-11 Scong L #: <u>697</u> H: HGS (ppm):	BACKGRO BENEATH BENEATH	WELL I WELL I OUND: OUTER CAN	LL DEPTH: DIAMETER: 	5 <b>3</b> 0 • 2	Unches PUMI DEPT	CONSULTIN FIELD PER 7) 54, PINTAKE D TH TO WATH	ig firm: sonnel: 69	<u>C BT</u> MS KG C SCREEN 2 ft below PUMP INST	IED/OPEN Í TOC TALLATION	NTERVAL: : <u>9.77</u> ft	3-3	<u>0 - 51.</u> - 54,6	
-	RGING WP1 ING	l (pH	pH units) .	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (#	DOX NTIAL nv)	DISS OX (n	OL <b>VED</b> /GEN 19/1}	TURI (N	SIDITY TU}	TEMPE (degr	RATURE [*] ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1300	X	Star	+ Bur	nping	NONA P	eading	s Noe	Aina 1	long	Rate.	NA		NA	250	10.00
1305	X	6.84		5.112		14.9		0.54		12.3		17.38		250	10.00
1310	X	6.39	· · ·	5.197		9.5		0.26		14.8		16.97	-	250	10.00
1315	x	6.39	Т	5.188		8.0		0.43		17.3		16.94		250	10.00
1320	x	6.36		5.168		5.4		1.10		27.3		17.15	· ·	250	10.00
1325	X	1.36		5.110	· .	7.7		1.37		37.2	· · ·	16.71		250	10,00
1330	¥	1.34	1	5069		1.6		1.66		36.4	1	11.33	<u></u>	750	10.00
1235	X	6.34		5.038		0.5		1.81		22 0	-	11.12		250	10,00
1240	×	6.24		5.028		6.3	n	1.82		26.7	·	11.10	·	280	10.00
1245	×	1.35		5.040		14		1-672		19.8		16.17		250	10,00
1350		6.34		5.046		0.6		1.06		13.5		16.14		250	10.00
OMMEN	<b>TS:</b> (	ising th	e camot	e we 202	Unumer	tor tu	noiding	e.			•		•		



## LOW FLOW SAMPLING DATA SHEET

SHEET

SITE: DATE:	· · · ·	<u>P</u>	101100	od			` <u>···</u>	_			BI ME /KG				· · · · · ·	
WEATHER	2: _	8	unny 9	0'5			····	· · ·			<u>13760</u>					
MONITOR	WE	LL	# BEP	23	WE	LL DEPTH:		· · ·			SCREEN	ED/OPEN I	NTERVAL:			
NELL PEI	SWI .	Γ#:	alar Martin		WEL.L. I	DIAMETER:	2	inches								
PID/FID R	EAD	ING	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	<u>o.</u> <u>o.</u>	2 2 2	PUMI DEPT	P INTAKE D H TO WATI	EPTH: <u>47</u> R BEFORE	2ft below PUMP INST	TOC ALLATION	: <u>9.77</u> n	below TOC		
	RGING	DNITAW	р (рН 1	H inits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (1	ĐOX INTIAL IIV)	DISS OX (n	OLVED /GEN 1g/l)	TURE (N	BIDITY TU)	TEMPE (degr	RATURE.* ees C)		DEPTH TO WATER (ft below
TIME	2	<b>A</b> S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1355	×		6.37	NA	5.046	NA	0.5	NA	1.10	NA	12.8	ŅA	16.17	NA	250	10.00
400	X		6.36		5.046		0.3		1.12		11.4		16.20		250	10.00
1405	x		6.34		65.047		0.2		1.15		9.53		16.23		280	10.00
410	X		6.36		5.046		0.0		1.17		8,80		16.26		250	10.00
415	$\mathbf{v}$		6.35		5.045		-0.2		1.20		8.13		16.30		250	10.00
1420		X												· .	Final	10.00
															:	~
					· · ·											
:		_								· · · · · · · · · · · · · · · · · · ·						
	•							-		-						· · · ·
COMMEN	TS:	U	Sinc (a	notteus	LZOZO N	ever fe	or Turbi	dity. Fi	nal DT	w 10.0	O. HZO	clear	•		• . · .	<u></u>
								U								

## LOW FLOW SAMPLING DATA SHEET

SHEET

SITE:		MAYWO	OD				- 9			CB+I	10			· · · ·	
WEATHER	₹:	CLOUD	y 75°	F		· · · · · ·		FIELD PERS	,	30/10					
MONITOR	RMIT #	# <u>M</u> W	33 5	WÉ WELL C	LL DEPTH: DIAMETER:	19.6	inches	21.26	J., bgs.	SCREEN	ED/OPEN II	NTERVAL:	14.6-	19.6	t bep
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	0.0 0.0 0.0	2 2 /	PUMI DEPT	INTAKE D	EPTH: <u>11</u> 0 R BEFORE	b ft below PUMP INST	TOC BE	5, 18,6 . <u> 4:3]</u> #1	E STT	12	<u> </u>
	RGING	p (pH u	H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (#	DOX NTIAL IV)	DISS OX1 (m	DLVED 'GEN g/1)	TURE (N	BIDITY TU)	TEMPEI (degra	RATURE 1 Bes C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0848	X	START	NA	-	NA		NA		NA		NA		NA		·
0855	X	6.87		8.908		-95.5		1.73		15.6		17.64	· · ·	155	14.85
0900	X	6.94	,	9.096		-95.3		1.37		12.0		17.35		155	15.05
0905	X	6.99		9.264		-93.2		1.40		9.8		17.97		120	15.10
0910	X	7.02		9.342		-92.0		1.60		12.0		18.23		120	15.20
0915	X	7.04		9.380		-90.1		1.71		11.3		1805		120	15.25
0920	X	7.05		9.411		-879		1.88		10.3		18.03		120	15.30
0925	X	7.06		9.434		- 86.9		1.95		11.8		18.47		95	15.35
0930	X	7.07		9.472		- 85.2	+	1.98		11.9		19.09		95	15.30
0935	X	7.07		9.488		- 83.0		1.95		12.8		19.44		95	15.25
0940	X								k -		-			FINAL	15.19
COMMEN	ITS:	12B-	09004	7			· · · ·		I		• •	Acris come	· ·		<u> </u>

# LOW FLOW SAMPLING DATA SHEET

SHEET

SITE:		MAYU	000				_ (	ONSULTIN	G FIRM:	CB+	I			· · · · · · · · · · · · · · · · · · ·	
DATE:		8-18	-16	28	·· ··· ··		<u> </u>	FIELD PERS	ONNEL:	JC/M	S				
WEATHE	R:	[600	04 80	-1-		-63.6	17-129	1,6503	TIC	2			<u> </u>		
MONITO	WELL	#_ <u>Mu</u>	45D	WEILI	LL DEPTH:	-58.0	to a contraction of the contract	20.037	HPIC 19	B SCREEN	ED/OPEN II	NTERVAL:	38-6	5.69	2. 2. 2. 2.
		•											10.05	- 6510	5 Dric
PID/FID N	EADIN	GS (ppm):	BACKGRO	UND:	$\frac{O}{O}$	$\frac{2}{2}$	PUMP	P INTAKE DE	PTH: <u>58</u>	<u>Oft</u> below	TOPBLS	19.74	י כדר <i>ב</i>	ه ا	
			BENEATH	INNER CAP	$\frac{1}{1}$	$\frac{1}{1}$	DEFI		N DEFUNE	PUMP MQ1	alla i ivn	• <u>• • • •</u> • • •			
	. 0	1		SPEC	HFIC	RĒ	X	DISSO	LVED						
	DNIC	, b L	H Inite)	CONDU		POTE		OXY	ĠEN m/l)	TURB				PUMPING	WATER
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	(ft below TOC)
1010	X	START	NA		NA		NA		NA		NA		NA		
1015	X	6.62		7.957		-34-1		1.59	· · · · · ·	11.6		18.93	e	200	12.74
1020	X	6.42		8.185		-11.2		1.13		11.3		17.67		200	12.89
1025	X	4.38		8.179	-	-9.6		0.95		8.4		17.51		200	12.95
1030	X	6.36		8.149		-10.8		-0.64		9.3		17.45		2.00	13.03
1035	X	6.35		8.129		~11.5	· \	0.55		8.1		17.41		200	13.08
1040	X	6.35		8.128		-12.2		0.39	·	5.5		17.35		200	13.11
1045	X	6.35		8.116		-12.9		0.35		8.1		17.35		200	13.14
1050	X	6.35		8.099		-13.4		0.35		6.0		17.40		200	13.17
1059	X	6.34		8.017		-14.3		0.31		4.9		17.50		200	13.19
100	X	6.3.5	· · ·	8.044		-14.5		0.32		5.1		17.71		200	13.20
COMME	NTS:	123	- 09 00	046		(S)									
		1417	- 04 00	076 (1	UL10	רכי/									


# LOW FLOW SAMPLING

SHEET 20F 2-

DATA SHEET

SITE: DATE: WEATHER		8-18-1	16			· · · · · · · · · · · · · · · · · · ·	(	CONSULTIN	G FIRM: ONNEL:						-
MONITOR WELL PER	WEL	L# <u>Mu</u> #:	1 ⁶ 450	WI	LL DEPTH: DIAMETER:		inches		•	SCREEN	ED/OPEN ()	NTERVAL:			
PID/FID R	EADI	NGS (ppm): :	BACKGRO BENEATH BENEATH	OUND: OUTER CA	P:	······································	PUMF DEPT	P INTAKE D H TO WATE	EPTH:	ft below PUMP INST	TOC ALLATION	:ft	below TOC		
	RGING MBI ING	(pH	pH units)	SPE CONDU (m\$	CIFIC CTIVITY 5/cm)	REI POTE (#	DOX NTIAL IV)	DISS OX1 (m	DLVED /GEN ig/l)	TURB (N	iðity IU)	TEMPE (degr	RATURE - ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	Dd	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1105	×¢		NA		NA		NA		· NA		NA		NA		
1105	×	6.35		8.041		-14.8		0.33		5.2		17.71		200	13.20
1110		<												ENAL	13.18
			-												
														· ·	
														· · · · ·	
								۰. ۲							
			<i>a</i> .		-						· .				
		-					· · ·								
		-											1		
	1														
COMMEN	TS:	<u>d</u>	- <b>I</b>	<u></u> .			-L	1 <u></u>	•		<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · ·		<b>4</b>	·

HL

#### LOW FLOW SAMPLING DATA SHEET

CHE

	. '														<u> </u>
SITE:		MAY	NOOD	•				CONSULTIN	IG FIRM:	CB+	I ·				
DATE:		8-18	3-16			. •	I	FIELD PERS	SONNEL:	JC /	MS				
WEATHE	R:	MCL	DUDY	80°F			<u></u>								
MONITON	R WELI RMIT #	.# <u>Mis</u> #	5-Ø4F	<u>}</u> WELL (	LL DEPTH: DIAMETER:	-1	[1,0 ₎ % inches	Pr 48.	58 71	C SCREEN	ied/open i	NTERVAL:	<u>-0.F1</u> 18.58	47.01 -48.9	SHIFIC
PID/FID R	EADIN	IGS (ppm):	BACKGRO Beneath Beneath	UND: OUTER CAI INNER CAP	- <u>0.0</u> F: <u>0.0</u>	0	PUM DEPT	P INTAKE D TH TO WATI	EPTH: <u>41.</u> R BEFORE	S_ft below PUMP INST	TOC BODA	nd. : <u>11.08</u> m	below TOC		
	RGING	l (pH	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX1 (n	OLVED (GEN 19/1)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D B	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1220	X	START	NA		NA		NA		· NA		NA		NA	· · · · ·	- -
1225	x	6.82	· · ·	1.429		-32.2		2.04		54.4		19.26		250	11.08
1230	x	6.71		1.419		-36,5		2.50		75.1	•	19,00		250	11.08
1235	x	4.67		1.415		-39.9		1.61		47.8		19.06		250	11.08
1240	X	4.64		1.406		-42.2	$\mathbf{X}$	1.05		43.2		18.79		250	11.08
1245	×	6,62		1.397		-43.4		0.60		30.7	-	18.72		252	11.08
1250	X	4.61		1.391		- 44.1		0.55		27.3		18:46		250	11.08
1255	Y	6.60		1.383		-44,3		0.45		Z0,5		18:23	-	250	11.08
1300	×	6.59		1.383		- 44.7		0.44		19.3		18.22		2870	11.08
1305	X	6.59	)	1.373		-45,2		0.42		15.5		18.22		250	11.08
1310	X	6.59		1.372		-45.3		0.40		14.2		18.22		250	11.08
COMME	NTS:	10A -	0900	48			<u>.</u>			• .					

LOW FLOW Purging and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

															SHEE	т_2ог_
SITE:			Marin	ood	-				CONSULTIN	G FIRM:	CBT			•		
DATE:			8-18-	14					FIELD PERS	ONNEL:	MS, TC	· · · · · · · · · · · · · · · · · · ·				
WEATHE	R: _		avera	ast								<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
MONITOF WELL PE	R WE	ILL T#:	# <u></u>	5-\$4B	WELL 1	LL DEPTH: DIAMETER:	<u> </u>	inches			SCREEN	ED/OPEN II	NTERVAL:			
PID/FID R	ËAI	DING	GS (ppm):	BACKGRO BENEATH BENEATH	DUND:   OUTER CA    INNER CAP	- <u>0.0</u>	0 0	PUMI DEP1	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>// .08</u> ft I	elow TOC		
	RGING	MPLING	p (pH t	iH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (11	DOX NTIAL IV)	DISSI OX1 (m	DLVED 'GEN g/î)	TURI (N	BIDITY TU)	TEMPEI (degr	RATURE -	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PC	SA	READING	CHANGE*	READING	CHANGE*	READING	CHÂNGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(m/min)	TOC)
1315	Y	Ð	•	NA		NA	· .	NA		NA		NA		NA		
1315	¥		6.51		1.372		-45.2	· .	0.41		13.4		18.23		280	11.08
1320	X		6.58		1.371		- 45.3		0,36		10.3		18.25		250	11.08
1325	X	-	6.58		1.370		=45.5		0.36		9.4		18.30		785	11.08
13:30	۷		6.59		1.370	, :	-45.5		0.35		8.5	ч.	18.32		250	11.08
1335		X											-		FINAL	11.08
									х							
						· · · ·										
															-	
COMMEN	ITS:	ľ			· .											

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity



# LOW FLOW SAMPLING

SHEET

OF

DATA SHEET

SITE: DATE; WEATHER MONITOR WELL PER PID/FID R	• • • • • • • • • • • • • • • • • • • •	Mayweo 8- (2-11 clard .# Mw	) 9 2 D backgro	_ WE WELL I	LL DEPTH: DIAMETER:	46.5 4	   	CONSULTIN FIELD PERS	ig firm: ionnel: sh w.co. epth: 36.	CB+J K , GR ()SCREEN 5 ft bolow	JLS, F ED/OPEN IR <del>TOB</del> BG	S Kodma Iterval:	21.5	- 46.5	' <u>T/C.</u>
TIME	URGING	p (pH i	BENEATH BENEATH H units)	OUTER CAI INNER CAP SPEC CONDU (mS	P: CIFIC CTIVITY /cm) CHANGE*	REI POTE (n BEADING	DEPT DOX NTIAL IV) CHANGE*	H TO WATE DISS( OXY (m	R BEFORE DLVED (GEN gA) CHANGE*	PUMP INST	IDITY CHANGE*	TEMPEI (degra	RATURE , pes C)	PUMPING RATE (ml/min)	DEPTH TO WATER (ft below TOC)
839	X		NA		NA		NA		NA		NA		NA	195	5.42
845	X	6.59		1,783	-	-40,7		1.42		49.7		19.06		195	5.50
8:50	X	7.11		1.784		-86.2		0.72		49.8		19.12		195	5.50
8:55	×	7.25	1	1.784	· · ·	93.4		0,55		29.4		19,29		195	5.50
900	X	7.32		1,793	~	93.4		0.60		14.1		19:36		195	550
905	X	7.37		1.797		92.7		0.56		8.6		19.34		195	5.50
910	X	7.39		1.796		91.4		0.55		8.1		19.41		195	5.50
915	X	7.41		1.200		91.5	1 N. 4	0.50		5.9		19.46		195	5.50
920	X	7.13		1.800	-	90.3		0.42		4.6		19.55	[	195	550
925	X	7,43		1.805	-	93.5		0.50		5.1		19.54		195	5.50
930	X													FINAL	5.50
COMMEN	TS:	2	23B -	- 090	050				-		· · ·		······································		

Low Flow Purgang and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

SHEET OF 2

CONSULTING FIRM: CB+ SITE: Mayyjood FIELD PERSONNEL: K. Greibes, P. Kedman 2-12-16 DATE: 780 WEATHER: 13.0 DTR, Chushmont, 2 Vinches SCREENED/OPEN INTERVAL: 5,0 -13.0 TIC. MW-2.5 **MONITOR WELL #** WELL DEPTH: WELL PERMIT # WELL DIAMETER: Att halow The BGS PID/FID READINGS (ppm): Ø PUMP INTAKE DEPTH: BACKGROUND: DEPTH TO WATER BEFORE PUMP INSTALLATION : 5,38 to below TOC Ø BENEATH OUTER CAP: **BENEATH INNER CAP:** DISSOLVED SPECIFIC REDOX DEPTH TO SAMPLING PURGING OXYGEN . TURBIDITY TEMPERATURE -CONDUCTIVITY POTENTIAL pН PUMPING WATER (pH units) (mS/cm) (mv) (mg/l)(NTU) (degrees C) RATE (ft below READING CHANGE* READING CHANGE* (ml/min) TOC) TIME READING CHANGE* READING CHANGE* CHANGE* READING CHANGE* READING 5.38 150 947 NA NA NA NA NA NA 7.38 0.79 158.7 -79.9 150 5.51 933 22.56 1000 898 150 5.52 133.0 100517 7.28 -81.0 0,60 22.70 5.52 877 0.56 7.26 80.4 22.94 150 1010 10.1 5.52 -74.4 0.52 23.22 150 25 860 01.6 015 1.853 23.47 5.57 050 1020 行 25 68.2 722 150 69.7 0.49 552 .26 -66.7 846 23.66 150 1025 1.839 70.3 150 5.52 7.24 055 72.8 23,78 1020 5.52 7.24 0.49 83.5 23.34 1.836 73.0 150 1035 58. 0.46 1.833 22.47 150 5.52 725 72.0 040 X 5.52 7.25 71.D 0.45 72,20 1.816 150 20, 10 44 Z3B-096049 COMMENTS:



## LOW FLOW SAMPLING

SHEET ZOF 2

DATA SHEET

SITE: DATE: WEATHEI	•	Maywo 8518-	52 -10	······································	·	· · · · · · · · · · · · · · · · · · ·		CONSULTIN FIELD PERS	G FIRM:						
MONITOR WELL PEI	WELL RMIT #	# <u>Mu</u>	-25	WELL	LL DEPTH: DIAMETER:		inches			SCREEN	ED/OPEN I	NTERVAL:		•	
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI	P:		PUM	P INTAKE D H TO WATE	EPTH: R BEFORE	ft below PUMP INST	TOC	:ft1	below TOC		
	RGING	p (pH 1	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (1	DOX NTIAL nv)	DISS OX1 (m	DLVED (GEN g/l)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE ` ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	DU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1050	X	7.25		1.794		-68.0	<u></u>	0.46	· · .	27.0	<u> </u>	22.22		150	5,52
1055	X	7.26		1.791		-67.1		0.41		20.0		22.22		150	5.52
1100	X	7.25		1.783		-65.8		0.37		14.2		22.28		150	5.52
1105	X	7.25		1.778	-	-64.8		0.46	-	11.2		22.39		150	5.52
1110	X	7.26		1.777		-64.0		0.39		11.6		22.51		150	5.52
1115	X					. 							·	FINAL	5.52
								۲. 		r		· · ·		- · ·	
					ļ										
							•				;		· .		
							· ·					1. 1.	· · · ·		
COMMEN	TS:	23	B-091	0049			, · ·		•				•	• •	

#### LOW FLOW SAMPLING DATA SHEET

-

SITE:		Mazue						CONSULTIN	G FIRM:	CB+I	0	16.20			
WEATHE	R:	p. cla	127, 81	5°				FIELD PERS	UNNEL:	K-Gen	<u>xs, r</u>	Reama	4		
MONITOR	RMIT #	# <u>M</u> W	310	WE	LL DEPTH: DIAMETER:	45.0	bert, T Dinches	12		SCREEN	ED/OPEN I	NTERVAL:	20-0	-45.0	TIC
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI			PUM DEPT	P INTAKE D	EPTH: <u>32</u> R BEFORE	<u>.</u> ft below PUMP INST	TOC BC	-5 : <u>6.25</u> n1	below TOC		99 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199
	RGING	q Hq)	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (11	DOX NTIAL IV)	DISSC OXY (m	DLVED 'GEN g/l)	TURE (N	IDITY TU)	TEMPEI (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME 1221	A S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	<b>TOC</b> )
1230	X	7.87		2.633		-64.6		1.01		4.4		20.85	 	170	6,25
1235	X	7.48		2.670		63.8		0.71		10.1		20,08		170	6.25
1240	X	7.46	· · ·	2.676		-ido.7		0.79		10.2		20,08		170	6.25
1245	X	747		2.676	: :	-70,7		0.58		15.7		20.25	[	170	6.25
1250		7.49		2.681		74:7	<u>``</u>	0.49		25.3		20.14		170	6.25
1255	X	7.49		2,675		76.5	<u>`</u>	0.40		25.5		20.23		170	6.25
1300	X	7.50		2.674		77.0	· .	0.42		27.0		20,36		170	6.25
1305	X	7.51		2.672		78.6		0.37		25.8		20.03		170	6.25
1310	17	7.50		2.661		78.4		0.32		21.1		20.07	F	170	6.25
1315	X	7.51		2.662		178.1		0.39		20.4		20,15	<u> </u>	1170	6.25
COMMEN	TS:	20A-	-0900	৯৬ /	•				•••			{		• • •	



#### LOW FLOW SAMPLING DATA SHEET

eiTE.			1	-}		• ••••••				G EIPM-					10.045 Te.	
DATE:		-f	Nazus RZIA	-10			·· <u></u>		FIELD PERS	ONNEL:		······		·.		a specie
WEATHER	ł:						·····							•		
MONITOR	t W	ELL	# MW	310	WE	LL DEPTH:		· · · ·			SCREEN	ED/OPEN I	NTERVAL:			
WELL PE	RM	IT #	<u></u>		WELL	DIAMETER:		inches	-							
PID/FID R	EA	DIN	GS (ppm):	BACKGRO	UND:	· · · · · ·	• .	PUMP	INTAKE D	EPTH:	ft below	TOC		فكمور المورية المورية الم		
				BENEATH	OUTER CA	P:		DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	;ft	elow TOC		
			· ,	BENEATH	INNER CAP	אי <u></u>							 			
	9	D N			CONDU			DOX	DISS		TUR		TEMPE	RATURE		DEPTH TO
		J	(pH	units)	(mS	i/cm)	(1	nv)	(m	g/l)	(N	TU)	(degin	Bes C)	RATE	(ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mi/min)	
				NA		NA		NA		NA		NA		NA -		-
1320	Y		7.52		2.659		-78.3		0.43		22.7		20.15	· .	170	6,25
1325		X								· .			· .		FINAL	6.25
						1								·		
		:			п											-
							<u> </u>	• •	۲		ана (1997) С					
	, I															
														· .		
COMMEN	ITS	<b>3</b>	20A	-090	051			- · . · .		-						· ·

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 my for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

. .

K ....

## LOW FLOW SAMPLING DATA SHEET

SHEET _____ OF ____

SITE:	3	Davidoo	d		· .		· ·	CONSULTIN	G FIRM:	C.Ball		· · · · · · · · · · · · · · · · · · ·	·.		
DATE:	8	3-22-16						FIELD PERS	ONNEL:	MSITC		1.1 		· · · · · · · · · · · · · · · · · · ·	
WEATHE	R: <u>C</u>	lear 8	0'5				<b>—</b> ,	alt. al		1	•				
MONITO	WELL	# MW	23D	WE	LL DEPTH:	711	₹.TIC	. Cffer	nwood	) SCREEN	ED/OPEN IN	ITERVAL:	51-7		Dep. TIC
WELL PE	RMIT #	· · · · · · · · · · · · · · · · · · ·		WELL (	DIAMETER:	<u> </u>	/ inches	U				· · ·			
PID/FID R	EADIN	GS (ppm):	BACKGRO	DUND:	000	2	PUMI	P INTAKE DI	EPTH: _6	8 ft below	TOC				
•		•	BENEATH	I OUTER CAI	<u> </u>	2	DEPT	H TO WATE	r before	PUMP INST	ALLATION :	: <u>/0, 2</u> 84 I	elow TOC		
· · · · · · · · · · · · · · · · · · ·					• <u>0,4</u>		DOX	nieer		· · · · · · · · · · · · · · · · · · ·				I	
		P	H.	CONDU	CTIVITY	POTE	NTIAL	OXY	GEN	TURE	IDITY	TEMPE	RATURE 4	PUMPING	DEPTH TO WATER
TIRAL	AMP	(pH )	units)	(mS	(cm)	(1		(m	g/l)	(N'	TU)	(degr	ees C)	RATE	(ft below
	P. 97	REALANG	GHANGE		GRANGE"	READING	CRANGE	READING	CHANGE"	READING	CHANGE.	NEADING .	CHANGE:	(mamu)	106)
1340	X	Start F	NA		NA	· · ·	NA		NA		NA		NA	ISO	10.61
1345	×	6.74		2.498		-15.4		2.51		106.0		22.14		120	10,61
1350	X	6.69		2.534		-16.0	-	1.40	· .	115.5		21.90		120	10,67
1355	X	6.66		2.576		-14.8		1.68		148.1		21.66		120	10.70
1400	X	4.64		2.496		-14.2		1,89		180.4	(a motte	21.76		120	10,70
1405	X	6.64		2.482		-14.0	• \	1.82		133.9	53.4	21.41		120	10.67
1410	×	6.63	 	2,474		-13.7		1.39		121.1	419.8	21.16		120	10.67
1415	×	6.62		2,469		-13,4	• •	0.66		101.9	46.9	21.32		120	10.67
1420	X.	6,62		2.450		-12.5		60.36		91.4	41.7	21.24		120	10,67
1425	×	6.61		2.448		-12.2		0.31	• . •	96.5	39.2	21.23		120	10.67
1430	X	6.61		2.446		-11.7		0.29		83.9	40.9	21.21		no	10.67
COMMEN	ITS: (	ilso usi	ing the	. LaMothe	. 602 202	0 for f	whidthe	- 452	Turbid	it dut	Hng. US	sing Cev	tified	Lamoth	e for
- -	J	ample 1	26-09	PEOO	يد ک	•	v	Tu	rblolity	-		-	• .		

Low Flow Purgag and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

			•				-	DA.	ta she	ET	•			•	SHEET	г_ <u>2</u> ог_
SITE: DATE: WEATHE	R;	8	Mayus 1-22-16 26ar	000d 80's			· · · · · · · · · · · · · · · · · · ·	(	CONSULTIN	NG FIRM:	CRAD MS/JC					
MONITOR	R WI	ELL T#	#_ <u></u>	5230	WELL	LL DEPTH: DIAMETER:	2	inches	-		SCREEN	ED/OPEN IN	ITERVAL: '			
PID/FID R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUTER GA		<u></u>	PUM DEPT	P INTAKE D TH TO WATI	EPTH:	8 ft below PUMP INST	TOC ALLATION :	. <u>/0, 28</u> ft	below TOC		
	RGING	MPLING	p (pH )	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL nv)	Diss ox (n	OLVED YGEN ng/l)	TURE (N	н <b>DITY</b> TU) _{(сМо} ∦е	TEMPE (degr	RATURE • ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE"	READING	CHANGE*	(ml/min)	TOC)
1435	X	ŀ	6.60	NĄ	2.424		-11.3	NA	0.57	NA	747	-7 <b>NR</b>	21.63	NA	120	10,67
1440	×		6.60		2.409		-10.6		1.03	1	83.8	41.6	21.61		120	10.67
1445	X		6.60	·	2.407		-10.2		1.07		84.6	40.7	21.62	,	051	10.67
1450	×		6.60		2.409		- 9.8		1.04		82.1	41.3	21.64		120	10.67
1457	¥		6,60		2.409		-9.3		1.06		83.0	42.1	21.64		120	10.67
1500	x		1.60		2.410		-9.0		1:03		83.8	43.2	21.65		120	10.1.2
1505	Y		1.1.0	· ·	2 411		-90		1.05		87.9	427	21.64		120	10.62
1510		<u> </u>	( ( )		2.00		- 0.0			· · ·	95 8		7113		120	1012
1310	-		6.60	· · · · ·	2.411	<u> </u>	-0.2		1.04		05.0	77.1	<u>C1.US</u>		120	10.04
1575	+-	X	1		•	<u> </u>									Final	10.67
	· -	-				· · · · · · · · · · · · · · · · · · ·			· · · ·							
													1 v.	<u> </u>		
COMMEN	its:	I		•		· • ·				· ·					1	· .



# LOW FLOW SAMPLING

DATA SHEET

		. '	-					DA	TA SHE		· . · ·			. •	Shee	т <u>1</u> ог <u>2</u>
SITE:	-		Maywe	od.			· · · · · · · · · · · · · · · · · · ·		CONSULTIN	IG FIRM: _	1RT	· .				
DATE: WEATHER			8-22-	<u>-16</u> 205				·	FIELD PERS	SONNEL: _/	<u>115/5C</u>			-		
MONITOR	WE	LL.	# 638	words	WE	LL DEPTH:	42.0	Lect	pap. 4	5.1 8-11	C SCREEN	ED/OPEN I	NTERVAL:	37.0	-42-0	the
WELL PEI	<b>SMI</b>	Γ#:			WELL I	DIAMETER:	- 2	Inches		U U				4011 -	-45.14	f tic
PID/FID R	EAD	INC	3S (ppm):	BACKGRO	DUND:	0-1	0	PUM	P INTAKE D	ертн: <u>39</u>	ft below	TOB BLS	42.1	A.TI	Ŀ.	
· . ·				BENEATH	INNER CA	<u> </u>	0	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	1 <u>/8/43</u> ft1	below TOC		
2	BNID	DNITH	p (pH u	H units)	SPEC CONDU (mS	CIFIC CTIVITY (cm)	RE POTE (n	DOX NTIAL nv)	DISS OX1 (m	OLVED (GEN 19/1)	TURI	BIDITY TU)	TEMPE (degr	RATURE _	PUMPING	DEPTH TO WATER
TIME	P.	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1130	Ý	·	Start	NA		NA		NA		NA		NA		NA	110	18.63
135	V		6.82		0.498		81.6		1.81		77.8		14.85		110	19.52
1140	x	·	6.80		0.496	· · · · · ·	76.8		1.29	· .	41.6		14.75		110	19.85
1145	X		6.81		0.506		72,7		0.97		20.1		14.76		110	zo.18
1150	x		4.83		0.522		69,6		0.98		13.0		14.68		110	20,42
1155	X		6.84	•	0.541		65.8	· · /	0.61		8.1		14.61		110	20.63
1200	x		6.85		0.555		63.6		0,43		C.Z		14.60		110	20.73
1205	X		6.86	<u> </u>	0.568		61.4		0.25		.4.7	·	14.58		110	ZO .85
1210	Y		6.87		0.569		60.0		0.23		6.2		14.67	-	110	20,93
1215	¥		6.88		0.569		59.6		0.25	.	6.0		14.57		110	20.97
12.20	X		6.89	· ·	0.570		58.4	, .	0,27		5.8		1.4.60		110	20.99
COMMEN	TS:									-					•	· .



#### LOW FLOW SAMPLING DATA SHEET

TE: ATE: EATHEI		-22 -22	000 -10 -10	८ 05				(	CONSULTIN FIELD PER	•G Firm: Sonnel:						
DNITOR	WELL MIT #	# 9	380	20200	WELL	LL DEPTH: DIAMETER:	2	inches		<u>,</u>	SCREEN	ied/open II	NTERVAL: '			
D/FID R	EADIN	GS (p	pm):	BACKGRO BENEATH BENEATH	UND: OUTER CA	0. 1. 0.	000	PUM DEPT	INTÀKE D H TO WAT	EPTH: 39	ft below PUMP INST	TOC	: <u>/8.43</u> n	below TOC	1	-
	RGING		p (pH t	H mits)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (r	DOX NTIAL IIV)	DISS OX (n	OLVED YGEN ng/l)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE Bes C)	PUMPING RATE	DEPTH TO WATER (ft below
<b>гіме</b> 225	N SA	REAL	90	CHANGE*	READING	CHANGE"	READING	CHANGE*	READING	CHANGE*	C.O	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
z 30	x	6.	91		0.569		56.7		0.26		6.2		14.67		110	20.99
235			•					· .							final	20.2
· · ·								•								
				· · · ·			· ·									
÷								• .	e				1			
										•						
			,						· · · · ·		-					
MMEN	TS:		<u> </u>	<u> </u>	4 <u></u>	. <u></u>	- <b>L</b>					-•		. <b>h</b> ,		•

· ·



#### LOW FLOW SAMPLING DATA SHEET

QUEET

WEATHEI MONITOR WELL PEI PID/FID R	R WELI RMIT #	(Jear #: 528( GS (ppm):	BACKGRO BENEATH BENEATH	WELL I WELL I OUND: OUTER CAI	LL DEPTH: DIAMETER: 	22.0 j	et, py inches PUM DEP1	× 24,65 P INTAKE D H TO WATE	EPTH: 22	SCREEN	ED/OPEN II TOC Allation	NTERVAL: : <u>6.39</u> ft I	17-2 19,65- Delow TOC	<u>Z.0 ba</u> -24,65	2. 4. TIC
	RGING	q (pH 1	H units)**	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OXY (m	OLVED 'GEN g/1)	TURB (N	IDITY IU)	TEMPEI (degr	RATURE Bes C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME :	D BS	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0280	¥	Start			NA		NA		NA			· · · ·	NA		
<b>7885</b>	r	6.38	· · · ·	2.190		-36.6		2.23		229.8		16.30	•	200	6.50
500	X	6.45		2.163		-47.4		0.69		167.8	· .	15.95		200	6.57
2010	N	6.50		Z.133		-517		0.98		125.0		15.91		200	6.57
5910		6.54		2.105	1	-54,7		0.69		96.4		15.97		200	6-51
2915		657		2,092		-57.0		0.84		87.6		16.18		200	6.51
0120		6.58		2.084		-56.6		0.32		85.3		16.33		200	6.51
0925		6.89		2.082		-57.7		0.11		72.8		14.28		200	6.51
0930		6.61		2.063		-58.3		0.0		65.0		15.72	,	200	6.51
0935		6.60	-	2.063		-58.5		0.0		42.9		15.77		200	6.51
		1. 1.1		2063		-59 2		615		419		15 60		200	157



# LOW FLOW SAMPLING

DATA SHEET

SITE: DATE: WEATHE			Naywe 8-22-1	<del>ગ્યત</del> પ			······································	(	CONSULTIN	ig firm: Sonnel:	CBat uspc					
MONITOF	RMI	ELL T#	# 6381	UQIS	WELL	ILL DEPTH: DIAMETER:	2	inches			SCREEM	IED/OPEN I	NTERVAL:			
Pid/Fid R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	DUND: OUTER CA	6. Pi <u>0.</u> (		PUMI DEP1	P INTAKE D TH TO WAT	EPTH: <u>2</u> R BEFORE	2 ft below PUMP INST	TOC ALLATION	: <u>6.35</u> ft)	below TOC		<u> </u>
	IRGING	DNITHW	P (pH i	H inits)	SPE CONDU (mS	CIFIC CTIVITY i/cm)	RE Pote (1	DOX NTIAL nv)	DISS OX1 (n	OLVED IGEN 19/1)	TUR (N	BIDITY TU)	TEMPE (degr	RATURE `	PUMPING RATE	DEPTH TO WATER (ft below
TIME	Ĩ	30	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0845	X		6.62	NĄ	2.054	NA	-59.4	NA	0.88	NA	34.7	NA	15.90	NA	200	4.81
0880	ø		6.62		2.052		-55.1	-	0,82		34.1		15.92		200	6.51
0955	x		6.62	1.	2.052	· · · ·	-58.8		0.81		33.7		15.96		200	6.51
1000		×	÷ .	1 · ·		10									Final	6.51
					:				-							
			6-						v			· ·	· · · · · · · · · ·			
		· .				-			· ·							· · · ·
	f-								۴					··	-	
¥ .	-	$\square$	· · · · ·	· · · ·					·		<u> </u>	<u>·</u>				
		ŀ		<u> </u>								· ·	<u> </u>		· -	
	+	ļ	· ·				ļ			· .						
										· ·						
COMMEN	TS						•						-			

()

# LOW FLOW SAMPLING

OF 1

SHEET _

DATA SHEET

SITE: DATE; WEATHEI	2	Mayw 8-23 Clour	0011 -16 -70's	····· i ····· ·· · ··· · · · · · · · ·				FIELD PERS	G FIRM:	CBI MS, JC	ER(OPEN II	VTEBVAI -		(a	
WELL PE	RMIT #	fr	1212	WELL (	MAMETER:	zD	inches	Gusi	cuer,	JUREEN	ed/open II	▼		()	-1-
PID/FID R	EADIN	IGS (ppm):	BACKGRO BENEATH BENEATH	NUND: OUTER CAI INNER CAP	0.0 0.0	> > >	PUMI DEPT	P INTAKE D TH TO WATE	EPTH: 18.4 R BEFORE	3 ft below PUMP INST	TOC ALLATION	: <i>14.48</i> it I	elow TOC		
	IPLING	p (pH c	H mits)	SPEC CONDU (mS	lFIC CTIVITY (cm)	REI POTE (m	DOX NTIAL IV)	DISS( OXY (m	DLVED /GEN 19/1)	TURE (N	IDITY TU)	TEMPE (degr	RATURE Bes C)	PUMPING	DEPTH TO WATER (ft below
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mt/min)	TOC)
0855	X .	Start	NA		NÁ		NA		NA		NA		· NA	70	14.40
0900	×	5.24		6. delo		264.8		5.08		117.6		17.46		70	14.60
0905	x	5.26		6.097	·····	263.2		STIL		113.1		16.90		70	14.75
0910	X	5.34	۰ ·	5.919		258.5		4.92		83.0	, J	17.02		70	14.85
0915	X	5.41		5.761	. ,	255.0		4.96	· · ·	75.1	·	16.99		70	14.92
0920	X	5.48		5.551		250.6		4.91		61.4	••	17.04		70	15.01
0925	y	5.52		5.433		247.2		5.01		47.3		14.95		70	15.10
0930	X	8.53		5,432	· .	246.8	· · ·	4.98		41.0		17.04		70	15.18
0935	X	5.52		5.432		245.1		4.93		33.9		17.22		70	15.26
0940	X	5.52		5.432		244.3		4.91		32.6	1. 	17.19		20	15.39
0945	x	5.82		5.432		243.6		4.89		32.1		17.15		20	15. 35
COMMEN	I <b>TS:</b> 🤉	icimple (	950 6	final u	aderle	vel 15.	39		•						
		2	204-0	90055	• •	•						¢			

Å

LOW FLOW SAMPLING DATA SHEET

/ of ____

SHEET

SITE:		Maywo	od	, <u>, , ,</u> , ,			(	CONSULTIN	IG FIRM:	CBT			-	·····	
DATE: WEATHE	 R:	<u>8 · 23-</u> Clear 80	<u>له :</u> ک`د	· · · · · · · · · · · · · · · · · · ·			_ '	FIELD PERS	ONNEL:	<u>15,1C</u>	•		·		
MONITOR	RMIT #	# <u>რ</u> დ	SID	WELL (	LL DEPTH: DIAMETER:	54 1	inches	. Alus	hueow	SCREEN	ED/OPEN II	NTERVAL: '	29-	54 100	t, bg.
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CA INNER CAP	<u> </u>	> ) )	PUMP DEPT	INTAKE D H TO WATE	EPTH: <u>49</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>/4.08</u> n	below TOC		
	SUIDE	рн (рн	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX INTIAL Inv)	DISS OX1 (m	DLVED (GEN Ig/l)	TURI (N	NDITY TU)	TEMPE (degr	RATURE a	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
	X	Start	NA		NA		NA		NA		NA		NA	170	-14.10
1035	x	6.83		0.800	•	1.5		3.36	•.	44.6		15.55		170	14.18
1040	X	6.92		0.798		26.5		3.31		57.9		15.29		170	14.28
1045	X	6.96	· · ·	0.797	•	34.2	· · ·	3.33		62.9		15.30		170	14.35-
1050	X	6.98		0.794		31.2		3.31		66.0		15.41		170	14.39
1055	X	7.00		0.794		15.0	· \	3.30		72.0	۰.	15.76		170	14.41
1100	x	7.01		0.794		6.1		2.59		74.6		15.90		170	14.42
1105	y	7.02		0793		-8.9		3.35		81.6		16.02		170	14:43
1110	y .	202		0.790		-17.2		2.52		877		11.05		170	14.43
illS	X	2.07		0,789		- 20.3		3.40	·	81.9		16.38		170	14.43
112.0	Y	202	1	0.787		-21.1.		3.97	· ·	83.3		16.34		170	14,43
COMMEN	ITS:	1 7.03	- <b>t</b>		l:			10110	· .			114121			

Low Flow Purging and Sampling Guidance Page 15 of 18

## LOW FLOW SAMPLING DATA SHEET

						10		DA	ta she	21	•				SHEE	T_20F2
SITE:		۲ <b>γ</b>	avusoo	d				·	CONSULTIN	IG FIRM:	COL					
DATE:		3	3-23-16	>				·	FIELD PER	SONNEL:	ns,JC					
WEATHER	Ŀ		Clear 8	<u>0's</u>			· · · · · · · · · · · · · · · · · · ·			· . ·				<u> </u>	·	
MONITOR WELL PER	WE	LL r #:	# <u></u>	DIZC	WE	LL DEPTH: DIAMETER:		inches	•	:	SCREEN	ied/open II	NTERVAL: '			
PID/FID R	EAD	AŅÇ	35 (ṕpm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	0.0 • <u>6.0</u> • 0.0	>·	PUM DEP1	P INTAKE D H TO WAT	EPTH: <u>4</u> R BEFORE	2_ft below PUMP INS1	TOC	: <u>14.08</u> n	below TOC		
	RGING	MPLING	p (pH u	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (1	DOX NTIAL nv}	DISS OX (n	OLVED YGEN 19/1)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE ees CĴ	PUMPING RATE	DEPTH TO WATER (ft below)
TIME	2	8	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mi/min)	TOC)
1125	Х		7.03	NA	0.786	NA	-22.9	NA	4.03	NA	86.7	LAMOTTE	16.35	NA	170-	14.43
1130	X		7.03		0,785		-24.3		3.86		82.8	44.1	16.37		170	14.43
1135	X	·	7.03	·	0.783		-23.2		3.88		82.2	44.7	16.40		170	14:42
1140	Х		7.03	1, 1	0.792		-23.9		3.70		86.2	43.9	14.41		170	14.42
1145	X		7.03		0.780	. ,	- 24.3		3.73		89.1	46.5	16.39		120	14.42
1150	X		2.02		0.779		-24.2		3,71		86.6	44.4	16.32		170	14.42
1155	X		7.02		0.775		-23.6		3.68		84.7	44.3	16.29		170	14.42
1200	×	χ						· .	f						Final	14.44
		·					·								-	
							-									
COMMEN	TS:															

## LOW FLOW SAMPLING DATA SHEET

SHEET

SITE: DATE: WEATHE		Mayur 8-23-1 Clear	bood 1 - 80's				(	Consultin Field Per:	ig firm: Sonnel: _/	<u>CBI</u> MS/ <del>S</del> C				······································	
MONITO WELL PE	R WE	и* <u>М</u> из Г#	320	WELL	ELL DEPTH: DIAMETER:	57.13.	Lest, be inches	g. Cffr	ih noon	) SCREEN	ied/open i	NTERVAL: '	32- 3	> 1.0-6	<u>101,60</u>
PID/FID 1	READ	INGS (ppm):	BACKGR BENEATH BENEATH	DUND: I OUTER CA I INNER CAI	<u>Or</u> P: <u>O</u> -C P: <u>O</u> +C	0 2 2	/ PUMI DEPT	P INTAKE D H TO WATI	eptų: <u>4</u> ir before	2ft below PUMP INST	TOC ALLATION	: <u>    4.9/</u> m	below TOC		······································
	SGING	UNC Na Na N	pH units)	SPE CONDU (m\$	CIFIC CTIVITY Kcm)	RE POTE (n	DOX NTIAL nv)	DISS OX1 (m	OLVED /GEN ig/l)	TURI (N	BIDITY ITU)	TEMPE (degi	RATURE _	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1240	x	Steert	NA		NA		NA		NA		NA		NA	225	4.99
1245	X	7.11		4.317		-6.7		2.07		7.3		18.96	• .	225	4.95
1250	x	7.03		4.885		-37.8		0.92	• •	5:6		18.37		225	4.55
1255	X	1.05	1.1	4.919		-44.6		0.67		8.0		18.06		225	4.55
1300	x	2.04		4.943		-4516		6.67		8.4		18.10		725	4.95
1305	ĸ	7.0		4.974		-46.8		0.70	-	11.3		18.74		225	4.95
1210	X	7.07		4.949		-47.2		0.66		14.4		17.95		225	4.55
1315	X	7.07		4.950		-47.2		0.67		14.6		17.95		225	4.55
1320	X	1.07	,	4.953		-47.8		0.65		15.8		17.97		225	4.95
1325	X	2.08		4.951		-48.3		0.63		16.1		12.99		225	4.95
1330		7.08		4,954		-48.4		U.UI		16.8		12.92	<u> </u>	225	4.95
COMME	TS:	<u> </u>	· · · ·		- <u> </u>				• .			1.	- <b>-</b>	<u> </u>	



# LOW FLOW SAMPLING

SHEET

DATA SHEET

SITE: DATE:	<u>_</u>	23-16	o cl			······································	(	CONSULTIN	ig firm: Sonnel:	CBI2 ns/JC	·				
MONITOR	WELL	# Mu	305	WE	LL DEPTH:			· · ·		SCREEN	ED/OPEN I	NTERVAL:	3		
WELL PER	RMIT #	I		WELL	DIAMETER:		inches		•	••• • • • •		-			
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	WND: OUTER CA INNER CAF	0-C	2	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>47</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>4.9/</u> ft	below TOC		
	RGING	q Hq)	oH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (n	DOX NTIAL IV)	DISS OX1 (m	OLVED (GEN 1g/i)	TURI (N	SIDITY TU)	TEMPE (degr	RATURE 4 ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PU SAI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1335	X	7.08	NA	4.950	NA	-48.4	NA	0.40	NA	12.4	NA	17.85	NA	225	4.95
1340	X	7.09		4.945		-48.5		0.60		17.3		17.79	· ·	225	4.95
1345	A													Final	4.95
									· · · · ·	1. A.					
			•			- · ·	· · \								
						<u>+</u>	· · ·	· · · · ·						<b>.</b>	
			1		· ·										
			· · · ·	· ·											+
						· · · · · · · · · · · · · · · · · · ·									
		· · · · ·													
COMMEN	TS:	<b>I</b>	1	· ·	<u>.</u>		<u>]</u> ,	<u> </u>	. <u>L</u>	·1	<u>.</u>	<u> </u>	· <b>I</b>	<u>.</u>	

Low Flow Purging and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

SHEET

OF

SITE:	_0	Jarwoo	d			<u> </u>		CONSULTIN	G FIRM:	CBT			-		
DATE:		8-24-1	٩					FIELD PERS	ONNEL:	M5/56					
WEATHE	<b>t</b> :	Clear	805						·	\					
MONITOF	WELI	# <u>Mu</u>	535	WE	LL DEPTH:	16.D	Leet, Da	р. Циз	h moor	SCREEN	ED/OPEN II	NTERVAL: *	_11.0	- 16.0	He va
	KWH T 7	~		WELL I			)inclies \			·	· · ·	·			0
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	0.0	2	PUM	P INTAKE D	ертн: <u>/</u> 9	ft below	TOC	en 20			
• . *			BENEATH	INNER CAP	<u> </u>	3	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	: <u>0,20</u> 41	elow TOC		
	0	1		SPE	CIFIC	RE	DOX	DISS	DLVED	<u> </u>					
	DIN	q (Ha)	H units)	CONDU	CTIVITY (cm)	POTE	NTIAL NV)		GEN	TURE		TEMPE		PUMPING	WATER
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	(ft below TOC)
0840	X	START	NA		NA		NA		NA		NA		NA	180	5.30
08.45	x	6.58		1.699		-72:5		175	· .	126.0		20.34	•	180	5.30
0850	X	6.73		1.694		-103.2		.0.76		86.8		20.15		180	5.30
0855	X	6.76	1	1:690		-106.1		0.63		71.1		20.18		180	5.30
0900	X	677		1.671		-104.1		0.54		62.1		20.71		180	5,30
0905	X	6.78	 	1.664		-103.7		0.48		18.4		21.23		180	5.30
0910	x	6.78		1.647	1 in	-90.6		0.47		15.0		21.88	· · · ·	180	5.30
0915	X	6.78	· ·	1.635	/	-94.4	· .	0.44		- 12.1		22.42		180	5,30
0920	X	678		1.616		-101.7		0.43		8.4		22.73		180	5,30
0925	X	6.78		1.597	•••	-103.0		0.42		8.2		22.94		180	5.30
0930	X	6.78		1.588	,	-101.6		0.42		8.0		23.23		180	5.30
COMMEN	ITS:	23B	8-09	00 58	,										
0.93	5 >	(SAMP	LE)		-							•	[	FINAL	5.30



#### LOW FLOW SAMPLING DATA SHEET

					- -		UA.	іа эпе	<b>61</b> , ·	et al. A		÷		SHEE	r_ <u>/o</u> r_2
SITE: DATE: WEATHER	 t:	Mayuroo 8-24-1 Clear	d 6 80's					CONSULTIN FIELD PERS	ig firm: Konnel:	CBI- MS/JC			· · · · · · · · · · · · · · · · · · ·	······································	
MONITOR WELL PE	WELI RMIT #	L#: <u>Mu</u> #	8D 53	WE	LL DEPTH: DIAMETER:	62.0	A. 54 Cinches	, Aus	Kueon	SCREEN	ED/OPEN I	NTERVAL:	42.0.	- 62.0	ft-bgz
PID/FID R	EADIN	IGS (ppm):	BACKGRO BENEATH BENEATH	NUND: DUTER CA INNER CAP	<u>0.0</u> Pi <u>0.2</u> Pi <u>0.5</u>	<u>e</u>	PUM DEPT	P INTAKE D TH TO WATE	EPTH: _6	) ft below PUMP INST	TOC ALLATION	: <u>5.05</u> #1	below TOC		
	RGING	q (Hq)	eH units)	SPE CONDU (mS	CIFIC CTIVITY i/cm)	RE POTE (n	DOX NTIAL nv)	DISS OX1 (m	OLVED /GEN  g/l)	TURE (N	NDITY TU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D A B	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0950	×	START	NA		NA	<u></u>	NA	· · ·	NA		NA	ļ	NA		
0955	×	7.26		0.744		-59.2		2.27		74.5		21.75	, ,	245	5.05
1000	X	7,29		0.754		-36.3		1.58		36.3		21.74		245	5.05
1005	X	7.30		0.754		-39.8		0.78		51.5		21.54		245	5.05
1010	k	7.31		0.755		-49.5		0.57		61.1		21.50		245	5.05
1015	X	7.31		0.753		-56.6		0.47		66.0		21.40	>	245	5.05
1020	x	7.32		0.753		-60.4		0.38		56.0		21.47	-	245	5.05
1025	X	7.32	,	0.754		-59.6		0.34		.49.1		21.70		245	5.05
1030	X	7.32		0.753		-58.1		0.32		42.1		21.85		245	5.05
1035	X	732		0753		- 55.7		031		360		21.80		245	5,05
1040	X	7.32		0.754		-56.0		0.30		33.6		.21.80		245	5.05
COMMEN	ITS:	23B-	0900	59	<u></u>										· .

Low Flow Purging and Sampling Guidance Page 15 of 18

-----



# LOW FLOW SAMPLING

. .

SHEET _2 OF 2

DATA SHEET

SITE:			MAYW	00 D					CONSULTIN	G FIRM:				-		
DATE:			8-24-1	6				<u> </u>	FIELD PERS	ONNEL:	· · · · · · · · · · · · · · · · · · ·	· · · · ·				
WEATHE			# Dov.1	C20						· .	CODETA	ED/ODEN I			<u> </u>	
WELL PE	RMI'	:LL T #:	#≕ <u> }}∪∪</u>	1950	WELL	DIAMETER:		inches			QUIVEEN	ed/of en 1				·
PID/FID R	EAD	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CA	P1	· · · · · · · · · · · · · · · · · · ·	PUMI DEPT	INTAKE D	EPTH:	ft below PUMP INST	TOC ALLATION	:ft	below TOC	· · · ·	· · · · · · · · · · · · · · · · · · ·
	GING	<b>DLING</b>	p (pH u	H mits)	SPE CONDU (m9	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OX (m	DLVED (GEN 19/1)	TURI (N	BIDITY TU)	TEMPEI (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SAI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
<u> </u>				NA		NA		NA		NA		NA		NA		
1045	X		7.32		0.753		-55.2		0.30		277		2177	· · ·	245	5.05
1050	X		7.32		0.754		-50.9		0.29		26.7		21.67		245	5.05
1055	X		7.32	1.1	0.752		-48.6	н. Н	0.28		25.2		21.83		245	5 05
1100		Х					· · ·								FINAL	5.05
			•		6			$\sum_{i=1}^{n}$								
		•				× ,										
									c		· .					
•																
COMME	ITS:					1.4		······································								· · ·



#### LOW FLOW SAMPLING DATA SHEET

						DA	TA SHEI						SHEE	TOF	
	MAYW 8-24 CLEAR	00D -16 85°F	-				CONSULTIN FIELD PERS	g firm: _( ionnel:	CB+I JC/M	5					
WELL MIT #	#: <u>M</u> W-	43 SR	WELL I	LL DEPTH: DIAMETER:	8.30	inches	, 4.78	TIC,	SCREEN	ED/OPEN II	NTERVAL:	33-	-8.3.4 -9.7 4	bap. Tics	
ADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	P:		PUMI DEPT	P INTAKE D H TO WATE	EPTH:	ft below PUMP INST	TOC (7.3) ALLATION	845) ; <u>5:18</u> <del>r</del> i	elow TOC		-	
URGING	р (рН і	H enits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	RE POTE	DOX NTIAL nv)	DISS OXY (m	DLVED GEN Ig/i)			TEMPE (degr	RATURE *	PUMPING RATE	DEPTH TO WATER (ft below	
<u>a</u> 5 K	START	NA	READING	NA	JÆADING	NA	READING	NA NA	READING	NA	READING	NA NA		. 100)	
X	6.97	,	1.409		168.8		2.83		21.6		25.65		55	6.05	
X	SK 7.03		1.359		174.6		2-63		22.2		24.31		55	3.95	
X	7.07	1	1.347		183.9		2.56		20.0		26.90		80	6.00	
x	7.08		1.343		187.4		2.50	· · · · ·	18.4		27.55		80.	5.97	
X	7.09		1.344		203.3	\	240		26.0		28.15		90	6.01	
X	710		1.346		209.2		2.39		45.1		28.22		.90	6.09	
×	7.10		1,346		219.6	· · ·	2.29		. 55,9		27-59	· .	90	6.21	
X	7.10		1.344		228.5	<u></u>	2.26		47.9		27.16		90	6.28	
<u>X</u>	7.1		1.342		237.8		2.38		34.0		26.94		90	6.34	
X	7:13	•	1.341		238.5		2.98	ŀ	21.2		27.12		60	6.33	
	X X X X X X X X X X X X X X X X X X X	MAYW 8-24 CLEAR CLEAR WELL #: MW MIT #: ADINGS (ppm): ADINGS (ppm): MIT #: ADINGS (ppm): MIT #: ADINGS (ppm): MIT #: READING K F.03 X F.07 X F.09 X F.09 X F.09 X F.09 X F.10 X F.10 X F.11 R F.13	$\begin{array}{c} \underline{MAYWOOD} \\ \underline{8-24-16} \\ \underline{CLEAR} & \underline{85^{\circ}F} \\ \hline \underline{CLEAR} & \underline{85^{\circ}F} \\ \hline \underline{CLEAR} & \underline{85^{\circ}F} \\ \hline \underline{NOR} & \underline{85^{\circ}F} \\ \hline \underline{MIT #:} \\ \hline \underline{ADINGS (ppm): BACKGRC \\ \underline{BENEATH} \\ \underline{BENEAH} \\ \underline{BENEATH} \\ $	$ \begin{array}{c c} MAY wrond D \\ \hline 8-24-16 \\ \hline CLEAR 85°F \\ \hline \\ $	$ \begin{array}{c c} MAY & 0 & 0 \\ \hline 8 - 2 & 4 - 1 & 0 \\ \hline CLE AR & 85 \circ F \\ \hline \\$	$\begin{array}{c c} \underline{MAYWOOD} \\ \hline 8 - 2 - 4 - 1 & \underline{85 \circ F} \\ \hline $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DATA SHEI       CONSULTIN 8-24-16       CONSULTIN 8-24-16       CLEAR 35°F       WELL A: <u>MW-43 SR</u> WELL DEPTH: <u>8.3 Lef</u> , <u>126</u> , 9.7.7 Å MIT #:       WELL DEPTH: <u>8.3 Lef</u> , <u>126</u> , 9.7.7 Å inches       ADINGS (ppm): BACKGROUND: BENEATH OUTER CAP: BENEATH INNER CAP:       DEPTH TO WATE BENEATH INNER CAP:       SPECIFIC CONDUCTIVITY     POMP INTAKE D DEPTH TO WATE BENEATH INNER CAP:       SPECIFIC (pH units)     READING CHANGE*     READING CHANGE*       X     PUMP INTAKE D DEPTH TO WATE       SPECIFIC (mV)     PUMP INTAKE D DISSO (mV)       SPECIFIC (pH units)     DEPTH TO WATE       SPECIFIC (pH units)     PUMP INTAKE D DISSO (MS 7:03       X     PUMP INTAKE D DISSO (MS 7:03       X     X <t< td=""><td>DATA SHEET       MAY WOOD     CONSULTING FIRM: 0       $g - 24 - 16$     FIEL DEPTH: $g - 24 - 16$       CLE AR $g \le 9F$       WELL $g \le 9F$       WELL $g \le 9F$       WELL $g \le 9F$       WELL DIAMETER: 20     inches       DEPTH TO WAY INTAKE DEPTH: 9       DEPTH TO WATER DEPTH: 9       ON DISSOLVED       OXYGEN       INSCR)       MELDIAGE CHANGE: READING CHANGE: READING CHANGE: READING CHANGE: READING CHANGE:       START NA     NA       X     %       X     %       X     X       X     X       X     <th cols<="" td=""><td>DATA SHEET       MAY woo D Several of the several severa several severa several several several several several several</td><td>DATA SHEET       MAY LIDGO D     CONSULTING FIRM:</td><td>DATA SHEET       MAY LUDOD D       CONBULTING FIRM: C(3+1]       SCIE AR 95°F       WELL DEPTH: D: 3 (20), 1000, 9.7 K , TIC       SCREENED/OPEN INTERVAL:       INT R:</td><td>DATA SHEET       MAY WOOD D       CONSULTING FIRM: C(3+1)       CLEAR 35°F       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C       SCREENED/OPEN INTERVAL: 3, 3       MEL # MW-435R     WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MEL MAMETER: 2.1 inchos     CONSULTING FIRM: C(3+1)       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MULL DEPTH: 2.1 inchos     SCREENED/OPEN INTERVAL: 3, 3       PUMP INTAKE DEPTH: 79.1 kolow TOC (7.3 6/s)       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       CONDUCTIVITY       PUMP INTAKE DEPTH: 70.1 INTERVAL: 3, 23       MEL DIAMETER: CONDUCTOR POTENTIAL       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       MEL DIAMETER: CONDUCTORYTY       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18       STALT     NA</td><td>DATA SHEET       SHEET       MAY WOOD D       CONSULTING FIRM:     C.GO, F.T.       JC/MS       CLEAR 35 °F       ADINGS (ROUND:       BENEATH INNER CAP:       PUMP INTAKE DEPTH: "9 - "f to bolow TOC (7.3 %G)       TEREDATION OFTER CAP:       DEPTIN TO WATER BEFORE PUMP INSTALLATION : 5^{1/2} ft bolow TOC       READING CHANGE: READING CHAN</td></th></td></t<>	DATA SHEET       MAY WOOD     CONSULTING FIRM: 0 $g - 24 - 16$ FIEL DEPTH: $g - 24 - 16$ CLE AR $g \le 9F$ WELL $g \le 9F$ WELL $g \le 9F$ WELL $g \le 9F$ WELL DIAMETER: 20     inches       DEPTH TO WAY INTAKE DEPTH: 9       DEPTH TO WATER DEPTH: 9       ON DISSOLVED       OXYGEN       INSCR)       MELDIAGE CHANGE: READING CHANGE: READING CHANGE: READING CHANGE: READING CHANGE:       START NA     NA       X     %       X     %       X     X       X     X       X <th cols<="" td=""><td>DATA SHEET       MAY woo D Several of the several severa several severa several several several several several several</td><td>DATA SHEET       MAY LIDGO D     CONSULTING FIRM:</td><td>DATA SHEET       MAY LUDOD D       CONBULTING FIRM: C(3+1]       SCIE AR 95°F       WELL DEPTH: D: 3 (20), 1000, 9.7 K , TIC       SCREENED/OPEN INTERVAL:       INT R:</td><td>DATA SHEET       MAY WOOD D       CONSULTING FIRM: C(3+1)       CLEAR 35°F       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C       SCREENED/OPEN INTERVAL: 3, 3       MEL # MW-435R     WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MEL MAMETER: 2.1 inchos     CONSULTING FIRM: C(3+1)       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MULL DEPTH: 2.1 inchos     SCREENED/OPEN INTERVAL: 3, 3       PUMP INTAKE DEPTH: 79.1 kolow TOC (7.3 6/s)       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       CONDUCTIVITY       PUMP INTAKE DEPTH: 70.1 INTERVAL: 3, 23       MEL DIAMETER: CONDUCTOR POTENTIAL       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       MEL DIAMETER: CONDUCTORYTY       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18       STALT     NA</td><td>DATA SHEET       SHEET       MAY WOOD D       CONSULTING FIRM:     C.GO, F.T.       JC/MS       CLEAR 35 °F       ADINGS (ROUND:       BENEATH INNER CAP:       PUMP INTAKE DEPTH: "9 - "f to bolow TOC (7.3 %G)       TEREDATION OFTER CAP:       DEPTIN TO WATER BEFORE PUMP INSTALLATION : 5^{1/2} ft bolow TOC       READING CHANGE: READING CHAN</td></th>	<td>DATA SHEET       MAY woo D Several of the several severa several severa several several several several several several</td> <td>DATA SHEET       MAY LIDGO D     CONSULTING FIRM:</td> <td>DATA SHEET       MAY LUDOD D       CONBULTING FIRM: C(3+1]       SCIE AR 95°F       WELL DEPTH: D: 3 (20), 1000, 9.7 K , TIC       SCREENED/OPEN INTERVAL:       INT R:</td> <td>DATA SHEET       MAY WOOD D       CONSULTING FIRM: C(3+1)       CLEAR 35°F       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C       SCREENED/OPEN INTERVAL: 3, 3       MEL # MW-435R     WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MEL MAMETER: 2.1 inchos     CONSULTING FIRM: C(3+1)       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MULL DEPTH: 2.1 inchos     SCREENED/OPEN INTERVAL: 3, 3       PUMP INTAKE DEPTH: 79.1 kolow TOC (7.3 6/s)       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       CONDUCTIVITY       PUMP INTAKE DEPTH: 70.1 INTERVAL: 3, 23       MEL DIAMETER: CONDUCTOR POTENTIAL       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       MEL DIAMETER: CONDUCTORYTY       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18       STALT     NA</td> <td>DATA SHEET       SHEET       MAY WOOD D       CONSULTING FIRM:     C.GO, F.T.       JC/MS       CLEAR 35 °F       ADINGS (ROUND:       BENEATH INNER CAP:       PUMP INTAKE DEPTH: "9 - "f to bolow TOC (7.3 %G)       TEREDATION OFTER CAP:       DEPTIN TO WATER BEFORE PUMP INSTALLATION : 5^{1/2} ft bolow TOC       READING CHANGE: READING CHAN</td>	DATA SHEET       MAY woo D Several of the several severa several severa several several several several several several	DATA SHEET       MAY LIDGO D     CONSULTING FIRM:	DATA SHEET       MAY LUDOD D       CONBULTING FIRM: C(3+1]       SCIE AR 95°F       WELL DEPTH: D: 3 (20), 1000, 9.7 K , TIC       SCREENED/OPEN INTERVAL:       INT R:	DATA SHEET       MAY WOOD D       CONSULTING FIRM: C(3+1)       CLEAR 35°F       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C       SCREENED/OPEN INTERVAL: 3, 3       MEL # MW-435R     WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MEL MAMETER: 2.1 inchos     CONSULTING FIRM: C(3+1)       WELL DEPTH: 8:3 Loft, bog, 19.7 kg, T/C     SCREENED/OPEN INTERVAL: 3, 3       MULL DEPTH: 2.1 inchos     SCREENED/OPEN INTERVAL: 3, 3       PUMP INTAKE DEPTH: 79.1 kolow TOC (7.3 6/s)       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       DEPTH TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       BENEATH INNER CAP:       CONDUCTIVITY       PUMP INTAKE DEPTH: 70.1 INTERVAL: 3, 23       MEL DIAMETER: CONDUCTOR POTENTIAL       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18 r bolow TOC       MEL DIAMETER: CONDUCTORYTY       OPT TO WATER BEFORE PUMP INSTALLATION ; 5:18       STALT     NA	DATA SHEET       SHEET       MAY WOOD D       CONSULTING FIRM:     C.GO, F.T.       JC/MS       CLEAR 35 °F       ADINGS (ROUND:       BENEATH INNER CAP:       PUMP INTAKE DEPTH: "9 - "f to bolow TOC (7.3 %G)       TEREDATION OFTER CAP:       DEPTIN TO WATER BEFORE PUMP INSTALLATION : 5 ^{1/2} ft bolow TOC       READING CHANGE: READING CHAN



### LOW FLOW SAMPLING

DATA SHEET

			· .	•	·		DA	ta shei	ET				•	SHEE	r_20F2
SITE:		MAYU	1000	·	:		(	CONSULTIN	G FIRM:						
DATE: WEATHER	t:	8-24	1-16	<u></u>			· .	FIELD PERS	IONNEL:		· · · · ·			· · · · ·	· ·
MONITOR WELL PE	WEI RMIT	.L#: #:	U-4356	WELL	LL DEPTH: DIAMETER:	     	inches			SCREEN	ED/OPEN I	NTERVAL: '			· · · · · · · · · · · · · · · · · · ·
PID/FID R	EAD	NGS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CA	P:		PUMI DEPT	P INTAKE D H TO WATE	EPTH:	ft below PUMP INST	TOC	:ft	below TOC		-
	KGING	C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	off units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE POTE (n	DOX NTIAL NV)	DISS OX1 (m	DLVED (GEN 1g/i)	TURI (N	BIDITY TU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
		-	- NA				NA		NA		NA		NA		•
1310	X	7.14		1.342		217.6		3.18	•.	17.0		27.62		60	6.33
1315	Х	715		1.342		2040		3.27		13.2		28.09		60	6.31
(320	X	7.16		1.343		202.1		3.32		13.0		28.35		60	6.27
1325	x	7.16	- · · · ·	1.342		208.8		3.37		12.9		28.64		60.	6.23
1330		X	•											FINAL	6.28
	$\uparrow$			1							· · · · · · · · · · · · · · · · · · ·				
					<u> </u>		, .	<u> </u>	- <i>i</i>						
					<u> </u>			<u> </u>		1	<u>.</u>				
		·····			, <u> </u>					-					· · ·
COMMEN	1 <b>TS:</b>	•	<u>د</u>			1		<u></u>	<u></u>	£	<u></u>	<u>.</u>	<u></u>	<u></u>	<u>.</u>

#### LOW FLOW SAMPLING DATA SHEET

SHEET OF 2

SITE:			Mayw	2001	_/			(	CONSULTIN	G FIRM:	CBI		• .			
DATE:			8-25	-6 2015 11				_	FIELD PERS	ONNEL:	MS, JC	· · · ·	,			
WEATHE	K: _		alar		tunice					· · · · · · · · · · · · · · · · · · ·						
WELL PE	R WE RMI'	:LL T #	# <u>Mu</u>	242	WE WELL (	LL DEPTH: DIAMETER:	10.5.	r ر لاعع inches	e que	sh heert	). SCREEN	ED/OPEN IN	ITERVAL:	5.2-	10.5 5	ring.
PID/FID F	EAD	IN	GS (ppm):			·					<u> </u>				<u> </u>	· · · ·
	·		(FF)-	BENEATH	OUTER CAI	1020 1000		DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION :	<u>3.60</u> #1	elow TOC		
· .				BENEATH	INNER CAP	· <u>0.</u> (	·								-	
	0	NG		4			REI	DOX	DISS		TUDE	IDITY	TEMPE	PATILIPE		DEPTH TO
	RGIA	MPL	p (pH u	inits)	(mS	(cm)	(n	1V)	(m	g/l)	(N	TU)	(degr	Bes C)	PUMPING RATE	WATER (ft below
TIME	Z	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
810	X		start	NA		NA		NA		NA		ر <b>NA</b>		NA	190	3.64
815	X		6:64		0.526		183.9		1.43		651.7	LaMotte	19.90		190	3.46
820	X		6.72		0.524		185.6		1.24		461.4		19.8z		190	3.66
825	Ø		6.78		0.522		188.3		1.12		341,6		19.65		190	3.66
830	0		4.81		0.521		190.7		2.78		249,7		19.49		190	3.66
835	x		6.85		0.522		193.0		2.67		134,5		19.41		190	3.66
840	V		4.83		0.522	· · ·	194.4		2.42		121.6		19.43		190	3.46
845	X		6.84		0.524		196.8		2.30		96.7		19.45		190	3.00
850	X		6.85		0.525		199.2		2.21		82.3		19.48		190	3.66
855	X		6.85		0.526		201.4		2.16		76.7	$\checkmark$	19.57		190	3.66
900	×		4.80		0.524		203.4		2.05		71.0	41.0	19.54		190	3.66
COMME	NTS:		73B-	09806	5/				•							

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity



SHEET Z OF Z

#### DATA SHEET

SITE		Mayus	boo					CONSULTIN	G FIRM:	CBI		·	•	· · · · · · · · · · · · · · · · · · ·	
DATE: WEATHER	<b>.</b>	8-25	-16 x 80's	Bunto				FIELD PERS	ONNEL:	<u>ms [5 C</u>			*	<u> </u>	
		.L#	SUS	WELL	LL DEPTH:		 			SCREEN	ED/OPEN II	TERVAL:			
PID/FID R	EADI	NGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI	0.0 P=0.0 P=0.1	<u> </u>	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>S</u> R BEFORE	S ft below PUMP INST	TOC ALLATION	<u>3.60</u> m	below TOC		
	BENEATH INNER CAP:O														
TIME	2	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0905	x	6.86	NA	0.527	NA	205.1	NA	1.87	NA	54.5	36.4	19.48	NA	190	3.66
0910	X	6.84		0.527		206.6		1.84		43.7	24.2	19.48		190	3.46
0915	Ý	6.86		0,527		207.4		1.81		32.0	23.8	19.53		190	3.66
0920	Ø	6.86		0.527		210.6		1.70		30.1	18.2	1.9.40		190	3.64
0925	y	4.85		0.522		213.7		1.44		31.5	18.7	19.66		190	3.66
0930	X	6.86		0.527		216.6		1.36		32.2	19.8	19.66		190	3.66
0935	8	6.85		0.527		217.4		1.32		23.1	17.1	19.71		190	3.66
0940	×	6.85		0.527		224.7		1.14		22.8	12.1	19.74	<b>n</b>	190	3.66
0945	X	6.85		0,528		227.6		1.1		22.4	1.4	19.78		190	3.66
0950	x	6.85		0.528	1	228.9		1.09		23.0	16.6	19.82		190	3.66
0955		X Samo	2						,					FINAL	3.66
COMMEN	ITS;	238	-0900	6						· · ·			-		

#### LOW FLOW SAMPLING DATA SHEET

	:				•		DA	IA SME			•			SHEE	тог
SITE:		MAY	WOOD			·	_	CONSULTIN	IG FIRM:	CBI					
ATE: /EATHER	•	8-25 (LEA	-16 HR 800	F				FIELD PERS	ONNEL:	_JC /	MS				
IONITOR	WELL MIT #	# <u>M</u> W	\$4D	WE WELL I	LL DEPTH: DIAMETER:	78.5	lees,	28. J	fush ner	SCREEN	ED/OPEN I	NTERVAL:	58.5	- 48.5	feelbe
id/Fid Re	ADIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP		<b>)</b>	PUMI DEPT	P INTAKE D	EPTH: <u>70.</u> R Before	0 ft below PUMP INST	TOC ALLATION	: <u>0.0</u> ft1	below TOC		· · · · ·
	JRGING	g IHq)	)H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OXY (m	OLVED /GEN 19/1)	TURE (N	BIDITY TU)	TEMPE (degr	RATURE ` ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	<u>a</u> 3 X	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mi/min)	TOC)
025	X	7.65		0.508		204.8		6.75		8.5		20.40		150	1.12
030	Υ	771		0.506		216.8		6.05	-	7.6		20.33		75	1:41
035	X	772		0.504		230.2		5.73		7.0		20.78		75	L35
040	X	7.73		0.504		235.8		5.54		7.8		21.55		75	1.15
045	X	7.74		0.504		240.8		5.31		8.3		22.09		75	1.00
050	X	7.74		0.505		248.3		5.26		14.0		22.46		95	1.00
055	X	7.76		0.506		260.1		5.16		23.5		22.19		95	1.07
100	X	7.76		0.505	·. ·	271.5		5.07		30.1		22.03		95	1.10
105	X	7.76		0.50%		281.6		5.00		31.0		21.99		95	1.10
110	X	7.76		0.505		289.1		4.96		31.9		22.21		95	1.10
MMENT	rs:	233	A9 00/	2		•						-		-	



# LOW FLOW SAMPLING

SHEET

DATA SHEET

SITE:	· · · · · ·	MAY	100D					CONSULTIN	G FIRM:						
DATE:		8	-25-11	0				FIELD PERS	ONNEL:						
ÆATHER	<b>1</b>							•			:				
IONITOR	WELL	#: Mu	1-54D	<u>&gt;</u> WE	LL DEPTH:			· · · · · · ·		SCREEN	ED/OPEN II	NTERVAL:	· <u> </u>		
VELL PER	MIT #	•		WELL (	DIAMETER:		inches								
ID/FID RI	EADIN	GS (ppm):	BACKGRO	UND:		. <u> </u>	PUM	P INTAKE D	ЕРТН:	ft below	тос		• •		
			BENEATH	OUTER CAN	₽; <u></u> ';		DEPI	TH TO WATE	R BEFORE	PUMP INST	ALLATION	:ft (	pelow TOC		
· ·	. 0			SPE	SIFIC	REI	xox	DISS	DLVED	1.			· · · · · ·		DEPTH TO
	GING	p (oH)	H units)	CONDU (mS	CTIVITY /cm)	POTE	NTIAL		(GEN (a/l)		HDITY TU)	TEMPEI (degr	RATURE [®] ees C)		WATER
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	(IT below TOC)
-			NA		NA		NA		NA	· ·	NA		NA -		
1115	X	7.76		0.506		296.3		4.87		26.2		22.51		95	1:10
1120	χ	7.76		0.506		302.1		4.82		23.2		22.63		95	1.10
1125	<u>x</u>	7.76		0.506	,	309.0		4.83		19.4		22.54		95	1.10
1130	X	7.77		0.506		317.0		4.82		19.6		22.36		95	1.10
1135	X	7.77		0.506	· 	323.2	· \	4.78		19.3		22.17		95	1.10
1140	X	777		0.506		327.1		4,78		19.4		22.13	· · · · · ·	95	1.10
1145	X	7.77		0.505		332.3		4.79		19.3		22.15		9.5	1.10
1150	X													FINAL	1.10
· .															
OMMEN	TS;	132	Non( )	· · ·									· · ·		

Low Flow Purseng and Sampling Guidance Page 15 of 18



#### LOW FLOW SAMPLING DATA SHEET

				, · .				DA	TA SHE	ET				÷ .	SHEE	TOF
SITE:		•	Mayuoo	od					CONSULTIN	ig firm:	CBI					
DATE: WEATHE	R:		B-29- Cloudy	90'S A	umid		14:10	ben 11	FIELD PERS	SONNEL: <u>/</u>	ns, KG		·	1	D - 17	where here
MONITOF WELL PE	t W	ELL T#	# 538	WI7A	WE WELL I	LL DEPTH: DIAMETER:	2	_ inches	13.001	tC Pro	SCREEN	IED/OPEN I	NTERVAL:	12.0	- 17.14	TT,TIC
PID/FID R	EAI	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	0 0	0 0 0	PUM DEPT	P INTAKE D TH TO WATI	EPTH: <u>//</u> ER BEFORE	7 ft below PUMP INST	TOC	: <u>9,57</u> #	below TOC	•	
· · ·	RGING	MPLING	F (pH	əH units)	SPEC CONDU (mS	CIFIC CTIVITY (cm)	RE POTE (n	DOX NTIAL nv)	DISS OX1 (m	OLVED /GEN 1g/l)	TURE (N	SIDITY TU)	TEMPE (degr	RATURE _	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0900	X		Stur	NA .		NA		NA		NA		NA		NA		-
0905	x		6.45	-	1.656		30.5		2.47		375.2		19.34		200	9.57
0910	x		7.06		1.573	,	60.5		3.56		101.0		19.99		005	9:69
0915	x		7.05		1,800	** - 4 1 - 1	58.6		2.51		92.4		19.98		200	9.84
0920	X		2.00		1.486		61.6		1.47		57.7		20.31		200	9-92
0925	×		6.99		1.499		71.4	·	1.77		29.6		20.81		200	9.95
0930	X		2.00		1.510		76.2	-	2.40		17.6		21.15		200	8-86
0935	X		6,99		1.512		82.3		1.97		12.2		21-32	,	200	925
0940	X		6.99		1.540		87.2		1,78		5.3		Z1.30		800	10-00
0945	X		6.99		1.540		89.3		1.80		3.4		21.40		2005	10:02
0950	X		6.99		1.539		90.6		1.79		0.1		21.51		zoo	10.03
COMMEN	TS	1	2012-09	0064	Sample	<u>ଡ</u> ୦୨୧	52 1	ms/msD	faken					·····	· · ·	

Low Flow Pulging and Sampling Guidance Page 15 of 18

## LOW FLOW SAMPLING DATA SHEET

SITE:		Mayue	eod.		· · · ·		I			CBE					
WEATHE	R:	Clear	90's Hun	nid	· · · · · · · · · · · · · · · · · · ·	Pr-12			Source T	etre		· · · · · · · · · · · · · · · · · · ·	18,70	- 29.0	o'bgs
MONITO WELL PE	R WE RMIT	# <u>B3</u> 8	3WI7B	WE	LL DEPTH: DIAMETER:	<del>3071</del> 2	-44,46 inches	Hog. 47	.0 J. 71	SCREEN	ED/OPEN I	NTERVAL: '	21.3-	31.6	<del> </del>
PID/FID I	EAD	NGS (ppm):	BACKGR Beneath Beneath	DUND: I OUTER CA I INNER CAI	<u> </u>	000	PUM	P INTAKE D TH TO WAT	EPTH: <u>7</u> 7. ER BEFORE	7 ft below PUMP INST	TOC TALLATION	; <b>9</b> .43 m	below TOC		
	RGING	C Z L L L L L L L L L L L L L L L L L L	pH units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	RE Pote (1	DOX INTIAL IV)	DISS OX (n	OLVED YGEN ng/1)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	Start	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1340	×	15 Do	NA S		NA		NA	· · ·		ļ		ļ		220	9,43
1345	×	7.14		5.405		-95.8		1.54		3.1		16.68		250	9.43
1350	x	6.79		51425		-83.4		0.54		2.8		16.01		280	9.43
1355	X	6.76		5.430		-80.0		0.60		0.1	<u> </u>	\$15.97		280	9.43
1400	X	670		5.43Z		-79.4		0.49		0.0		15.93		250	9.43
1405	X	6.75	6- -	5.435		-78.3		0.37		0.0		15.84		280	9.43
1410	×	6.74		5.437		-77.4		0.33		0.0		15,87		280	9.45
1415	x	6.74		8.440		-75.9	· · ·	0.30		6.0		15.85		250	9.43
1420	X	6.74		5.442		-74.3		0.28		0-0		15.85	-	250	9.43
1435	X	6.74		8.441		-73,8		0.26		0.0		15,83		250	9143
1430		X													
COMME	ITS:	Sample	204-0	90045	Dupt	aken G	1435	20A-	09007	3		-	· · ·	······································	• •

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET 2 OF 1

Low Flow Purging and Sampling Guidance Page 15 of 18

- 11-4-05 小数 (第二の)(4-5) (11-50) - 1

(1,2,1,2,2,2) = (1,2,2) + (2,2,2,2) + (2,2,2)



#### LOW FLOW SAMPLING

DATA SHEET

•										·.			SHEE	т_/_ог_
	May100 8-30- Clear	000 16 80'5 1	funial				ONSULTIN	G FIRM:	CBII MS/LG			· · · · · · · · · · · · · · · · · · ·		
WEL MIT	L# <u>Mu</u> #	26D	WE WELL I	LL DEPTH: DIAMETER:	52.0	inches	quest	NOCH	). SCREEN	ED/OPEN II	NTERVAL:	42.0	- 52.0	2) tog
ADI	IGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	-0.0 F: 0.0	2 2 2	PUMF DEPT	INTAKE D	EPTH: <u>48</u> R BEFORE	}ft below PUMP INST	TOC	: <u>6.25</u> ft I	below TOC		
RGING	pH (	)H units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OXY (m	DLVED (GEN (g/l)	TURI (N	BIDITY ITU)	TEMPEI (degr	RATURE ' ees C)	PUMPING RATE	DEPTH TO WATER (ft below
D S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
τ.	Start												80MC	4.32
X	- No	Readi	ngs.F	low ce	11 84:1	Filling	<b></b>		· · · · ·		· ·	·	SOME	6.32
x		Flow	Bare	<u>is 57</u>	pml/m	in							Some	6.32
×	7.51		1.006		157.6		0.55		0.0		24.34		Some	6.32
x	7.54		1.000		145.4		0.51	-	0.0		24.01		Some	6.32
x	7.56		0.992		137.0		0.40		0.0		23.63		SOML.	6.32
×	1.58		0.988		129.6		0.33		0.0		23.53		Some	10.37
X	7.60		0.984		123.2		0.30		0.0		23.52		Some	1.37
X	7.61		0.983	-	122.4		0.28		0.0		23.59		Some	6.32
X	7.62		0.981		121,5		0,26		0.0		23.61		SOML	6.32
							1		1					
	SAMPLING SAMPLING	Maylus 8-30- : Clear WELL # MU MIT #: ADINGS (ppm): ADINGS (ppm): (pH READING X Start X Start X 7.51 X 7.62	$\begin{array}{c c} \underline{Mailubood} \\ \underline{8-30-16} \\ \underline{8-30-16} \\ \underline{16} \\ \underline{8-30-16} \\$	$\begin{array}{c c} \underline{Mailid Ood} \\ \underline{8-30-16} \\ \hline \underline{Clear 80's Humid} \\ \hline \underline{Well # MUGD} \\ \hline Beneath Outer Can Beneath Outer Can Beneath Outer Can Beneath Inner Cap Beneath $	$\begin{array}{c c} Mailub cool \\ \hline 8-30-16 \\ \hline Clear 80's Hamid \\ \hline Well Beneath Outer Cap: 0.0 \\ \hline Beneath Outer Cap: 0.0 \\ \hline Beneath Outer Cap: 0.0 \\ \hline Beneath Inner Cap: 0.0 \\ \hline Beneath Inner Cap: 0.0 \\ \hline CONDUCTIVITY (pH units) (mS/cm) \\ \hline READING CHANGE* READING CHANGE* \\ \hline X Start NA NA \\ \hline NO Readings. Flow Ce \\ \hline X I.51 1.000 \\ \hline X I.51 1.000 \\ \hline X I.55 0.992 \\ \hline X I.55 0.9988 \\ \hline X I.55 0.988 \\ \hline X I.62 0.981 \\ \hline \end{array}$	$\begin{array}{c c} \underline{Mailibrood}\\ \underline{8-30-16}\\ 8-30$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c   c   c   c   c   c   c   c   c   c$

Low Flow Purging and Sampling Guidance Page 15 of 18 30 Mar.

#### LOW FLOW SAMPLING DATA SHEET

BITE: DATE: WEATHER MONITOR WELL PER	L: WI MI	ELL T#	Mayus B - <b>36</b> C (eau #: <u>M(r</u> #: GS (ppm):	900 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16	WE WELL (	LL DEPTH: DIAMETER:	17.0 2	The s	CONSULTIN FIELD PER: Glash	ig firm: sonnel: vlouv ) epth: _/	CBT MS /KG SCREEN	ED/OPEN I	NTERVAL:	5.0 -	-15.0	F bgo
	SGING	MPLING	F Hq)	BENEATH BENEATH DH units)	OUTER CAI	P: : CIFIC CTIVITY /cm)	O REI POTE (m	DEPT DOX NTIAL IV)	DISS	R BEFORE DLVED (GEN 19/1)	PUMP INST	ALLATION	: <u>7.0 {</u> ft   TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D	SAI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
020	X		Start	NA		NA		NA		NA	ļ	NA		NA	200	-6.80
025	X		6.93		5.261		-60.3		6.08		223.5	·	21.41	·	200	7.45
1030	X		6.91		5.270		-61.3		0.11		175.3		21.27		200	7.45
1035	x		6.90		5.201		-61.7		0.13		134.0		21.20	2	200	7.50
1040	X		6.90		5.154		-61.1		0.12		120.9		21.12	-	200	7.50
1045	X		6.91		5.083		-62.0		0.14		95.1		z1.14		200	750
1050	x		6.90		5.009		-61.2		0.13	· · ·	48.9		21.16		200	7.50
1055	x		6.91		4.968		-60,5		0.10		46.0		21.19		200	7.50
1100	Y		1.97		4.873		-1.0.6	:	0.09		44.2		21.22		200	2.50
1105	x		1 97		4.800		-(-0.1		0.09		31.7		81.78		700	250
1110	X	·	1.92		4770	, ,	-58.5		0.08		26.0		21.30		200	250
COMMEN	TS:		72B-	- 09 00	167 f	Final 1	tzo leve	1 2.50	10,00	- <u>.t</u>	1 2 47 10	· · ·	2. 20			

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET _/ OF _2



# LOW FLOW SAMPLING

SHEET ZOF Z

DATA SHEET

SITE: DATE:		Maywor 8-30	-(10					CONSULTIN	G FIRM:	CBE KG.MS					
WEATHER	t:	Cleer	-ନ୍ତିଠି'ऽ	Humoe		· · · · · · · · · · · · · · · · · · ·									· · ·
MONITOR	WEL	L# MU	٥٦٢	WE	LL DEPTH:					SCREEN	ED/OPEN I	TERVAL:			
WELL PE	RULE	*		WELL C	DIAMETER:	<u>Z</u>	_ inches		·	•					
PID/FID R	EADH	IGS (ppm):	BACKGRO BENEATH BENEATH	OUND: OUTER CAI INNER CAP	<u>0.0</u> 	<u>&gt;</u> >	PUMI DEP1	P INTAKE D H TO WATE	EPTH: <u>/</u> 3 R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>7.01</u> ft	below TOC		
	SGING MBI ING	p (pH i	H units)	SPEC CONDUC (mS	XFIC CTIVITY (cm)	REI POTE (m	DOX NTIAL	Disso OXY (m	OLVED 'GEN g/l)	TURE (N	NDITY TU)	TEMPE (degr	RATURE . ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D L L	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1115	X	6.93	NA	4.694	NA	-58.0	NA	0.08	, <b>NA</b>	23.2	NA	21.36	NA	ZOU	7.50
1120	X	6.93		4.682		-57.6		0.04		19.8		21.36		200	2.80
1125	γ_	6.93		4.618		-56.8		0.05		17.0		21.34		200	7.00
1130	7	6.94		4.569	· · · · · · · · · · · · · · · · · · ·	-56.5		0.06		14.4		21.82		200	7:50
1138	7	4.94		4.523		-55.5		0.02		17.0		21,62		200	7.50
1140	۲	6.94		4.500		-54.7		0.06		11.0		21.62		200	750
1148	۲	6.94	ļ	4.499		-55.1		0.06		10.6		21.62		200	250
1180	X	6.94		4,491		-54.2		0.07	. <u> </u>	11.0		21.63		200	7.50
1157	¥Χ	<u> </u>												Final	2.50
									1						,
COMMEN	TS:	238-	09000	i7@11	22	final 1	120 beu	el 7.50							

#### LOW FLOW SAMPLING DATA SHEET

OF Z

SHEET

SITE:		Marin	vood			•	C	ONSULTIN	G FIRM:	CBI					
DATE:		8-30-	-(0					FIELD PERS	ONNEL:	KG, MS					
WEATHER	t:	Clear	SO'S H	end			_			ĥ.					
MONITOR	WELI RMIT #	# <u>Mw</u>	390	WELL I	LL DEPTH: DIAMETER:	50.0	inches	p. Alus	huer	SCREEN	ed/open in	TERVAL:	25.0-	- 50.0	to by
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	0.6	>	PUMP		EPTH: 45	ft below	тос		· · ·		
			BENEATH	OUTER CA	- <u>-</u>	>	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION :	<u>5.80n</u>	elow TOC		
			BENEATH	INNER CAP	0,0	<u>)</u>						· .		1	
	O Z Z PH SPECIFIC REDOX Dissolved TURBIDITY TEMPERATURE DEPTH TO   0 Z Z PH CONDUCTIVITY POTENTIAL OXYGEN TURBIDITY TEMPERATURE PUMPING WATER   0 E (ms(m)) (ms/) (mg/l) (NTU) (degrees C) PUMPING WATER														
		p (pH)	units)	(mS	(cm)	. РОТЕ (п	NTAL IV)	(m	g/i)	(N1	IUIII IU)	(degra	es C)	PUMPING RATE	(ft below
TIME	PUR SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1230	×	Start	NA		NA		NA		NA		NA:		NA	230	5.83
1235	x	No No	D Recu	lings.	settin	ns Alou	> hate	and	vaitin	for FI	owcell	tofill	•	230	8.83
1240	×	7.81		1.004		3,7		0.15		154.2		19.49		230	5.83
1245	X	7.70	· .	0.983		-22.1		0.08		200.8		19.62	· ·	230	5.83
1250	x	7.68		0.974		-32.4		0.06		181.8		19.44		230	5,83
1255	X	7.66	· .	0,974		-38.4		0.07		159.4		19.77		230	5.83
13.00	x	7.65		0.977		-39.0		0.03		133.2		19.82		230	5.83
1305	X	7.65		0.979		-37.5		0.05		124.3		19.67		230	5.83
1310	×	2.64		0,980	· .	-36.1		0.02		120.5	Camolle	20,08		230	5.83
1315	X	7.64		0.977		-32.6		0.02		97.4	36.0	19.61		230	5-183
1320		7.63		0,979		-30.7		0.02		90,6	33.1	20.25		230	5783
COMMEN	TSi	238-0	90063	0 1345	5 fin	al HzO I	evel 5.1	83				• •			
		Using	Lamothe	we zo	zoTur	bidity M	refer								

-

10 A

EDV

## LOW FLOW SAMPLING

DATA SHEET

ATE: ATE: /EATHE/			Mayor 8-30 Cloar	2000 2-16 80's f	unicl				CONSULTIN	ig firm: Sonnel:	CBE KG/MS					
NITOR	WE	LL [ #:	# <u>Mu</u>	2390	WELL	LL DEPTH: DIAMETER:	ي	inches		-	SCREEN	ED/OPEN IN	TERVAL:			, . , .
)/FID R	EAD	INC	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CA INNER CAI	P:() < (		PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>4</u>	ft below PUMP INST	TOC ALLATION	<u>5,80</u> #	below TOC	· •	· · ·
	RGING	MPLING	р (рН 1	H Inits)	SPE CÒNDU (mS	CIFIC CTIVITY i/cm)	REI POTE (11	DOX NTIAL nv)	DISS OX1 (FF	OLVED /GEN ig/l)	TURE (N	BIDITY TU)CeMoH	TEMPE	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	3	S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
25	X		7.62	NA	0,981	NA	-31.6	. NA	0.01	NA	93.4	32.9	21.40	NA	230	5.83
30	X		763		0.981		-31.6	•	0.02		92.6	33.2	21.18		230	5.83
35	x		7.63	<u>.</u>	0.981		-31.6		0.01		81.6	32.0	21.07	· ·	230	5.83
40	×		7.63		0,981		-80.4		0.01		80.3	30.7	21.10		230	5.83
<u>45</u>		X			· ·	, ,								. 1	Final	5.83
			· · ·									· ·			· · · · · · · · · · · · · · · · · · ·	
								-		-						
							- -						• •			
												1				
			·													-
MMEN	TS:	2	3B-09 (USING	0063 ( La Ma	2 1345 offe we	F: 20207	nal HzC Furbidit	y Meter	5-83 : 45IIT	iurbidi+y	probe Q	cting up	۵.			

 $\pm$  10 mv for Redox Potential; and  $\pm$  10% for Dissolved Oxygen and Turbidity

#### LOW FLOW SAMPLING DATA SHEET

					•		DA							SHEE	тог
SITE; DATE; WEATHEF	  La	Mayu 8-31- Clear	000 -16 90's Hu	inid		· · · · · · · · · · · · · · · · · · ·	( 	CONSULTIN FIELD PERS	G FIRM: ONNEL:	CBI MS, KB	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	······································
MONITOR WELL PEI	WELI RMIT #	# <u>Mus</u>	3SR	WE WELL C	LL DEPTH: NAMETER:	19 'b	P. CHU inches	istenso	ut)	SCREEN	ED/OPEN II	NTERVAL:	14-19	7 feat 1	26.
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 0.0	<u> </u>	PUMF DEPT	INTAKE D H TO WATE	EPTH: <u>18</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>10.35</u> ft1	elow TOC		
	RGING	p (pH u	H units)	SPEC CONDUC (mS	CTIVITY (cm)	RE POTE (n	DOX INTIAL IIV)	DISS OXY (m	DLVED 'GEN g/l)	TURB (N1	IDITY IU)	TEMPEI (degri	RATURE • ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D A	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0900	X	Start	No the second	ing f	ON P	abe	NA		NA		NA		NA	50	10.50
0905	X	<u> </u>	11	<u> </u>	11	<u> </u>	<u> </u>	<u> </u>	NU	11	11	u -	<u>ų</u>	80	11.00
0910	γ	N	b head	ings P	Jource	II fill	ins at	50ml/	nin				-	80	11.00
0915	x	- 11	61	0	$\sim \alpha$	17.	"		. 01	( 1	<i>c i</i>	le.	47	50	11.00
0920	x	7.46		2.107	•	-6.0		5.31		198.4		24.19		80	11.00
0925	٢	7.49		2.084		-5.5		5.28		203.5		23.94		50	11.00
0930	Y	7.49		2.086		-51		5.30		201.6		23.83		50	11.20
0935	r	7.50		2.068		-2.7		8.21		191.7		23.90		50	11.25
0940	×	751		7.074		-1.8		5.14		180.4		23.67		60	11.32
0945	¥	7.51		2.072		-2.4		5.02		176.3		23,44		80	1138
0950	X	751		2.071		-3.1		4.85		174.1		23.50		50	MAL
COMMEN	TS:	128-0	90108	@ 1125	Final	HzO le	rl 11.78	3	. ·						
NEW JERS DEPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



# LOW FLOW SAMPLING

DATA SHEET

SITE:		Mayw	bod					CONSULTIN	G FIRM:						
DATE:		8-31-	اله				_ · · ·	FIELD PERS	ONNEL:		•				
WEATHE	R:	Clear	90's H	umid										• •	
MONITOR	WELL	# MW	3SA	WE	LL DEPTH:					SCREEN	ED/OPEN II	NTERVAL:	·····		
WELL PE	RMIT #			WELL C	DIAMETER:	2	inches								
PID/FID R	EADIN	GS (ppm):	BACKGRO	UND:	6.0	>	PUMF	INTAKE D	EPTH: <u>/8</u>	3_ft below	TOC				
			BENEATH	OUTER CA	0-0	2	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	: <u>70.35</u> ft1	elow TOC		
		B	BENEATH	INNER CAP	: <u>600</u>	2									:
	9 N		м		CIFIC CTIVITY		DOX NTIAL	DISSO	)LVED 'GEN	TURE		TEMPE	RATURE	DUMPING	DEPTH TO
	MPL	(pH	units)	(mS	/cm)	(11	1V)	(m	g/l)	(N	TU)	(degr	ees C)	RATE	(ft below
TIME	D A S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0955	X	7.49	NA	2.084	NA	-8.3	NA	4.57	NA	156.5	NA	23.70	NA	50	-11.41
1000	x	2.48	·	2.092		-13.6		4.36		152.4		23.88		50	11.45
1005	x	7.48		2.115	. ` 	-19.7		4.18		137.2		23.45		. 50	16.48
1010	4	7,47		2.126		-2510		\$ 3.92		123.6		23.31		50	11.57
1015	4	7.46		2.129		-28.3		3.72		114.5		23.41		50	11.54
1020	Ý	1.46	· .	2.146		-34.1		3.59		104.1		23.10		50	11.57
1025	x	7,45		2.154		-38.7		3.36	 	97.0		72-73		50	11.62
1030	4	2,45		2.165		-41.4		3.28	/	84.7		22.61		50	11.68
1035	6	2,44		2.184		-45.1		3.13		97.2		22.45		50	11.70
1040	×	7.44		2.204		-47.1		3.04		69.1		22.13	· .	50	11.75
1045	Ø	7.44		2.203		-47.7		2.98		64.8		21,60		60	11.78
COMMEN	ITS:	28-09	0108 @	1125 6	inal Hz	0 level	11.78					· • .			
					•			. *				)			

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET 2 OF 3

NEW JERSIC EPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



# LOW FLOW SAMPLING

DATA SHEET

SITE: DATE: WEATHER		Maywa 8-31-14 Clear	ocl 70's Hu	mod				CONSULTIN	G FIRM: ONNEL:	CBI MS ICG	· · · · · ·				
MONITOR WELL PE	WEL	L #: <u>ஸ்</u> ப் #:	35R	WE	LL DEPTH: DIAMETER:	-19. D	inches	•	-	SCREEN	ED/OPEN II	NTERVAL:	14-0	- 19,0	
PID/FID R	ADI	NGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	<u>0.0</u> <u>0.0</u> 0.0	<b></b>	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>78</u> R BEFORE	ft below PUMP INST	TOC ALLATION	: <u>/035</u> ft1	elow TOC		••••••••••••••••••••••••••••••••••••••
	RGING	F (pH	oH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	RE) POTE (n	DOX NTIAL	DISS OXY (m	DLVED 'GEN g/1)	TURE (N	SIDITY TU)	TEMPEI (degra	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
050	X	7.43	NA	2.228	NA	-50.2	NA	2.81	NA	58.3	NA	21.25	NA	50	11.82
055	¥	2.43		2.265		-54.3		2.70		47.9		20.88		SO	11.85
100	γ	7.42		2.291		-58.1		2.49	-	41.1		21.40		50	11.83
105	χ	241		2.301		-60.4	· · · · · · · · · · · · · · · · · · ·	2.24		35.1		21.49		50	11.80
(10	χ	7.40		2.309	÷	-61.6		2.22		34.2	-	21.53		50	11.78
115	X	140		7.314		-63.1		2.16		32.6		21.61		50	11.78
(20	Υ·	7.40		2.318		-64.6		2.10		30.7		2669		50	11.78
125		Same	) e									-		final	11.78
		-												· · · ·	
· · ·		-													
		128 -09		1125	<u> </u>	1-01eve	11.29								<u> </u>

NEW JERSE PARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



SHEET

#### DATA SHEET

				. *											
SITE:		Mayı	spool					CONSULTIN	IG FIRM:	<u> </u>	381				
DATE:		<del>3/8</del>	# Jus	9-1-/(	۵		_	FIELD PERS	SONNEL:	<u></u>	7MS				
WEATHER	2:	<u></u>	7 hain	Overcust	· · · · · · · · · · · · · · · · · · ·					70					
MONITOR	WEL	.# <u>0∨P</u> z	17R	WE	LL DEPTH:	19.5	x 710	- 18.01	4. bg/.	SCREEN	IED/OPEN II	NTERVAL:	14.3.	-19.34	eet, IC
WELL PE	RMIT #	h	···	WELLI	DIAMETER:	2 (	) inches	C			, 		13.0-	-18.0	1, bg1.
PID/FID R	EADIN	IGS (ppm):	BACKGRO	UND:	0		PUM	P INTAKE D	EPTH: <u>/8</u>	<u>3</u> ft below	TOC	9.47			•
			BENEATH	OUTER CA	P: <u>0</u>		DEPT	TH TO WATE	ER BEFORE	PUMP INST	ALLATION	: The test	below TOC		
			BENEATH	INNER CAP	<u> </u>					·····		<u> </u>			•
· ·			sH	CONDU	Cific CTIVITY	POTE	DOX NTIAL	DISS	OLVED YGEN	TUR	BIDITY		RATURE	DUMPING	
	RGII MPL	(pH	units)	(m\$	/cm)	. (n	1V)	(11	ng/l)	(N	TU)	(degr	ees C)	RATE	(ft below
TIME	D S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0825	X	StarF	NA		NA		NA		NA		NA	·	NA	150	9.85
0830	×	6.23		3.551		-87.6		6.34		119.0		19.21		150	9.85
0835	X	6.26		3.602	· 2.	-89.3		6.12		110.9		19.01		150	9.80
0840	¥	4.32		3.599		-93.Z		5.35		94.1		18.04		150	9.65
OBUS	×	6.35		3.568		-94.9		4.83		-95.4		18.33		150	9.60
0850	×	4.34		3,580		-93.7		4.53		34.2		18.54		150	9.60
0855	X	6.36		3.623		-90.4		3.85		38.4		20.70		150	9-53-
0900	×	6.38		3.581		-92.4		3.34		28.7		18.79		150	9.55
0905	×	4.39		3.572		-93.6		3.26		12,9		18.65		150	9.60
0910	×	6.39		3.572		-94.0		3.21		11.0		18.67		150	9.60
0915		6.39		3.572		-94.7		3.15		8.4		18.69		150	9.60
COMMEN	ITS: \	28-09	6005 e	0920	,										

Final HzDlevel= 9.60

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

NEW JERSE PARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18

# LOW FLOW SAMPLING DATA SHEET

										-	÷.				·
SITE:		Mayi	sood					CONSULTIN	IG FIRM:	CK	81				
DATE:		18	18/16	9-1-1	6		_	FIELD PERS	SONNEL:	<u>+6</u> /	MS	· · · ·			
WEATHE	<u></u>	<u> </u>	nny	· · ·		58.3	o ben !	S	<u>_</u>	36			37.7	0-58	20'6R
MONITOR	t WELL	# <u>BRP</u>	24	WE	LL DEPTH:	<u>- 761-1</u>	Z RO	60-81	KTIC	SCREEN	ED/OPEN I	NTERVAL:	40-	tot 10	ZD DA
WELL PE	RMIT #	·		WELL I	DIAMEȚER:	<u> </u>	Tinches						<u>39,8</u>	- 60 .	81 'TIC
PID/FID R	EADIN	GS (ppm):	BACKGRO	DUNÐ:			PUM	P INTAKE D	EPTH: <u>5</u> /	ft below	700-665	,53.ll	TIC.		·
•			BENEATH BENEATH	OUTER CA	P: <u>0</u> : 0	<u> </u>	DEPT	TH TO WATE	RBEFORE	PUMP INST	ALLATION	: <u>/0/YJ</u> ft I	below TOC		
	<u>ه</u> 9	1		SPE	CIFIC	RE	DOX	DISS	DLVED			- -			DEPTH TO
	IPLIN GIN	г (рН⊤	oH units)	CONDU (mS	CTIVITY /cm)	POTE (n	NTIAL nv)	OX1 (m	rGEN 1g/l)		HDITY TU)	TEMPEI (degre	RATURE ees C)		WATER
TIME	PUR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0955	X	Start	NA		NA		NA		NA		NA	-	NA -	250	10.45
1000	x	6.03		9.365		-36.2		1.81		16.0		18.02	· · · ·	250	10.48
1005	Y	5.97		10.09		-48.2		1.52		39.6		17.85	· .	250	10.35
1010	x	5.97		10.12		-49.5		1.52		22.5		17.82		250	10-55-
1015	×	5.96		10.22		-50.4		1.41	:	10.2	-	17.75		2520	10.60
1020	×	596		10.26		-51.1		1.13		10.0	·	17.74		280	10.60
1025	×	5.96		10.32		-51.1		1,36		17.1		17.90		250	10.60
1030	x	5.96		10.33		-51.0		1.42		11.9		18.02		250	10.60
1035	X	5.96		10.33	<u>.</u>	-51.1		1.43		12.6		18.05		250	10.60
1040	X	5.97		10.30		-51.7		1.4(	ļ	12,3		18.01		250	10.60
IDIS	X													Final	10.60
COMMEN	ITS:	28-09	00030	2 1045	· ·		•								· .
	F	inal 4	120 leve	$\lambda = 10.0$	0		• .	<u>~</u>		<u>.</u>	32 m				

NEW JERS DEPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



SHEET 1 OF 2

### DATA SHEET

SITE: DATE:	2	<u>9-1-14</u>	d	-				CONSULTIN	G FIRM:	CBP_ St/ms				······································	
MONITOR WELL PE	R WEL	1# <u>Mu</u> #	JSZZ	WE WELL I	LL DEPTH: DIAMETER:	16.0' Z	per.j	18,74	TIZ.	SCREEN	ed/open in	ITERVAL:	<u> </u>	16'66	<u>2.</u> 'TK
PID/FID R	EADI	IGS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0-0 -0-0	<b>4</b>	PUMI DEPT	P INTAKE DI H TO WATE	EPTH: <u>/ 9</u> R BEFORE	· <u>3</u> ft below PUMP INST	TOC ALLATION :	<u>10.83</u> mı	elow TOC		
	SGING MPLING	pH (pH )	eH units)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (m	IOX NTIAL IV)	DISSC OXY (m	DLVED 'GEN g/l)	TURB (N1	IDÍTY IU)	TEMPEI (degra	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(m/min)	TOC)
1145	X	Start	NA		NA		NA		NA		NA		NA	125	11.20
1150	x	7.02		1.570		60.8		4.94		292.8		22.80		125	11.20
1155	x	6.88		1.468	· ·	65.3		4.52		293.8		22.82		125-	11.20
1200	X	6.52		1.346		\$ 76.3		3.95		303.1		22.49		125	11.30
1205	X	6.40		1.334		81.4		3.33		291.5		22.54	<u></u>	125	11.30
1210	X	6.32		1.322		85.4	\	3.03		260.7		22.50		125	11.30
1215	X	6.25		1.317		90,7		2.68		253.1	La Motte	22.84		125	11.30
1220	×	4.22		1. 308		93.6		2.71		217.7	100.3	23.51		125	11.30
1225	X	4.21		1. 302		93.7		2.97		195,3	92.9	23.65		725	11.30
1230	X	6.18		1.310		95.2		2.45		172.7	88.5	23,45		125	11.30
1235	X	6.12		1.317		98.6		2.38		129.5	67.0	23.89		125	11.30
COMMEN	ITS: (	Ising La	Mothe W 2B-09(	e 20204	or Turbi 21320	dity Fir	Dal Hz	o level	= 11,30		-				

NEW JERSE DEPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



# LOW FLOW SAMPLING

SHEET 2 OF 2

DATA SHEET

SITE:		0	aywoo	sd			······································		CONSULTIN	G FIRM:	CBI					
DATE: NEATHEF	ta	C	9-1-16	-/Some?	Sun Hu	nid		-	FIELD PERS	ONNEL:	JC/MS					
MONITOR	WE	EĽ	* <u>Mu</u>	>255	WE	LL DEPTH:		_			SCREEN	ED/OPEN IN	TERVAL:			·····
WELL PER	SW1.	T #			WELL I	DIAMETER:	<u> </u>	inches								
Pid/Fid R	EAD	DIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0.0 • 0.0	2	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>/4</u> R BEFORE	7 <u>.3</u> ft below PUMP INST	TOC ALLATION :	<u>/0.83</u> ft1	elow TOC		
1	RGING	MPLING	p (pH t	H Inits)	SPEC CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS OXY (m	DLVED /GEN /g/l)	TURE YST (N	IDITY TU) <i>Lq[</i> noffe	TEMPEI (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1240	X	•	6.09	NA	1.336	NA	99.9	• NA	2.13	NA	114.9	5NA.5	24.23	NA	125	11.30
1248	Y		6.07		1.354		99.9		2.08		102.4	47.8	24.20		125	11.30
250	X		6.05		1,363		100.1		1.99		93.6	4511	24.69		128	11.30
1255	X		6.04		1.369		100.5	· ·	1.93		82.3	34.3	24.72		125	11.30
1300	X		6.03		1.372		100.1		1.93		68.8	33.7	24.67		125	11.30
1305	X		6.03		1.377		99.9		1.89		67.1	28.4	24.61		125	11.30
1310	X		6.01		1.375		100.7		1.81		59.5	Z7.3	24.63		-125-	11.30
1315	x	<u>.</u>	6.00		1.371		100.6	·	1.77		61.4	24.0	24.60		125	11.30
1320		x	Samp	e												
			-													
COMMEN	т <b>s</b> ;	ับ 29	sing La 5-0900	motter	120207	<i>iubidit</i>	2 meter	Fine	1 420	leve1=1	1.30			· · · · ·		

NEW JERSE PARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Pure and Sampling Guidance Page 15 of 18



# LOW FLOW SAMPLING

SHEET

OF

DATA SHEET

	<u> </u>														·
SITE:		MAYWE	000	·			_ (	CONSULTIN	G FIRM:	CID+I					
DATE:		<u> </u>	-16	08				FIELD PERS	ONNEL:	20					
WEAT HE	:R:	111 3	01 20	~ <u>r</u>						<u></u>					
MONITO	R WEL	∟#: _ <u>Ми</u> #:	1-85	WELL I	IL DEPTH: DIAMETER:	15.0.	N. 1987 Dinches	. que	1 his uro	) SCREEN	ed/open in	ITERVAL:	5.0	-15.0	, pp
PID/FID	READI	IGS (ppm):	BACKGR	OUND:	0.0	<u> </u>	PUM	P INTAKE D	ЕРТН: 13	5 ft below	TOC , bas				
			BENEATH	I OUTER CA	P: 0.0	2	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION :	774 m	below TOC		
			BENEATH	I INNER CAP	* <u>0.</u> .	<u> </u>									
5	U U		-44	SPE		RE	DOX	DISS		TUDE		TEMBE	ATUDE		<b>DEPTH TO</b>
	NIQ	pH	units)	(mS	/cm)	(1	171 IAL NV)	(m	g/l)	(N	FU)	(degr	ees C)	PUMPING RATE	WATER (ft below
TIME	PUF	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mi/min)	TOC)
1035	χ	START	NA		NA		NA		NA		NA		NA		
1040	X	6.83		1.433		158.8		5.49		198.0		20.95		200	7.95
1045	X	660		1.432		163.6		1.53		135.5		19.61		200	8.00
1050	X	6.56		1.435		164.7		1.14		107.4		19.24		200	8.00
1055	X	6.56		1.438		165.2	1	1.04		73.6		18.92		200	8.03
1100	X	656		1.437	- -	145.5	·	0.96		56.9		19.17		200	8.05
1105	×	6.56		1.441		166.1		0.99		49.9	LAMOTTE	19.34	· .	200	8.05
1110	X	6.56		1,435		167.1		1.03		50.3	19.3	19.57		200	8.05
1115	X	6.57		1.434		168.6		1.00		50.2	19.7	19.89		200	8.05
1120	X	6.57		1.425		169.6		0.98		52.7	20,2	20.11		200	8.05
1125	- )	SAMPI	E.									•		ANAL	8.05
COMME	NTS:	1302-	- 0900	<b></b>											•

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

 $\pm\,10$  mv for Redox Potential; and  $\pm\,10\%$  for Dissolved Oxygen and Turbidity

NEW JERSE PARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18

# LOW FLOW SAMPLING **DATA SHEET**

SITE: DATE: WEATHER MONITOR WELL PEI	E C WELL RMIT #	25 K All ept 21, 1000, # WW?	2016 2016 85°F 525	WELL I	LL DEPTH: DIAMÉTER:	(i.o 		CONSULTIN FIELD PERS	G FIRM:	USI F RD/J SCREEN	ED/OPEN IP	Q Sen u	<u>.</u> 		
	-		BENEATH BENEATH	OUTER CAI INNER CAF	<u>0.19</u>	Pm	DEPT	H TO WATE	R BEFORE	PUMP INST	ALLATION	<u>5,70</u> n 1	elow TOC	• •	
	RGING	p (pH u	H inits)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (#	DOX NTIAL IV)	DISSO OXY (m	LVED GEN g/ł)	TURB (NT	IDITY TU)	TEMPER (degre	RATURE 4 BOS C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	D S	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1015	X	4.04		1941	NA	35.4	NA	2.05	NA	6963	NA	23.65	NA	0.0	5.70
1020	N N	+.14		1.960	· ·	32.1		1.79		577.5		2377	•	210	5.75
1025	X_	4.14	- · · ·	2.019		34.0		1.44		326.4		23.90	· · ·	210	5.75
1030	X	7.09		2.136		36.9		1.08		115.1		23,89		210	5.75
1035	X	7.10		2.159		39.1		098		80.7		23.96		210	5.75
1040	X	7.05		2.180		42.2	· \	0.88		29.13		24.03		210	5.75
1045	X	7.06		2-196		44.7		0.81		18.0		24.07		210	26.2
1050	K	7.03		2.209		47.5	• •	0.77		13.9		24.09		20	tf.2
1055	X	700		2.221		50.1		0.73		132		24.15		210	575
1100	X	101		2.29		53.1		0.71		8.81	· .	24.10		210	5.75
1105	X	6.97	·	2.293		55.0		0.68		4.12		24.07		210	3.73
commen 1110	т <u>з:</u> Х	6.99	-	2.231	-	70.1		છ.બ્રે		603	Final	24.05 wei-c	low	210 -	5,75

ITS SAMPLE OUR UNOTO

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

* Lalus He 2020 E Tiriade Weter.

SHEET ____ OF _

NEW JERS DEPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18



# LOW FLOW SAMPLING

QUEET

DATA SHEET

		<b>A A A A A</b>								<u> </u>	<u>,</u>				
SITE: DATE:	. : <del></del>	9-21-	001 <u>)</u> 1/2				Y	FIELD PERS	ONNEL:	JCI	RD				
WEATHE	R;	PC 75	°₽							· · · · ·					
MONITOR WELL PE	t WELL RMIT #	# <u>MW</u>	52D	WELL I	LL DEPTH: DIAMETER:	62.0	bp ( inches(	tush re	502+).	SCREEN	ED/OPEN IP	ITERVAL:	37.0	- 52,0	
PID/FID R	EADIN	GS (ppm):	BACKGRO BENEATH BENEATH	UND: OUTER CAI INNER CAP	0,0	PPM	PUMI DEPT	H TO WATE	EPTH: <u>5</u> R BEFORE	0 ft below PUMP INST	TOC ALLATION	3.96	below TOC		•
	APLING APLING	p (pH)	H units)	SPE CONDU (mS	CIFIC CTIVITY /cm)	REI POTE (n	DOX NTIAL IV)	DISS( OXY (m	DLVED 'GEN g/i)	TURE (N	NDITY TU)	TEMPEI (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PUF	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0905	X	START	NA		NA	•	NA		NA		NA		NA	-	
0910	X	6.83		0.983		4.8		2.37		43.1		20.31		160	3,97
OPIS	X	7.08		1.027		10.9		1.51		19.3		19:38		225	23,97
0920	X	728		1.030		2.6	-	0.75		18.0		19.15		225	3.97
0925	X	7.33		1.031		1.6		6.65		20.7		19.20		225	3.97
0930	X	7:35		1.031		0.6		0.61		25.1		19.19		225	3.97
0935	X	1.33		1.03		-5.6		0.57		11.33	ŧ	19.20		225	3.97
0940	X	7.39		1031		-11.5		0.54		13.00		19.17		225	3.97
045	X	736		1.031		-14-6		0.52		2.40		19.23		225	3.92
<u> ৰে</u> থি	8	7.39		1.031		-18.3		0.21		1.46		19.19		225	397
09:55	X	7.41		1.032	1 - A	-19.2	-	0.49		1.00		19.11		225	<b>५१</b> २
COMMEN	нт <u>я:</u> So	uple.	204	-0900	)71	-			×L	Final	wale 20201	Llevel E Torta	8.9°	7. eta	

NEW JERSE PARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purging and Sampling Guidance Page 15 of 18

# LOW FLOW SAMPLING DATA SHEET

SHEFT

	•	λ/	ANG DO A	<u> </u>					C EIDM.	CAL	$\overline{\tau}$				
DATE:		9-2	2-16				- 1	FIELD PERS	ONNEL	<u></u>					
WEATHER	t:	, Su	IN 75°	F									······	, , , , , , , , , , , , , , , , , , ,	
MONITOR	WELL RMIT #	#: <u>[/]</u> ]	<u>55-ø41</u>	AR WE WELL I	LL DEPTH: DIAMETER:	15.0 2	up., il	0.98	TITIC	SCREEN	ED/OPEN II	NTERVAL:	<u>.0.2</u> 11.98	- 15-0	4000
PID/FID R	EADIN	GS (ppm):	BACKGRO Beneath Beneath	UND: OUTER CAI INNER CAP	<u>0.0</u> 0.0	2 2	PUMI DEPT	P INTAKE D H TO WATE	EPTH: <u>15</u> R BEFORE	D ft below PUMP INST	TOC/TIL	). <u>11.52</u> m	below TOC		
•	RGING	q (pH a	H units)	SPEC CONDU (mS	SIFIC CTIVITY (cm)	REI POTE (n	DOX NTIAL IV)	DISS OXY (m	DLVED 'GEN g/l)		IDFTY (U)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	J A	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0855	Х	START	NA		NA .		NA		NA		NA	<u> </u>	NA		
0900	X	6.77		2.392	•	-642		1.84		469.4	۹.	19.45		200	11.70
0905	X	679		2.364		- 77.2		1.81		257.6		19.56		200	11.70
0910	X	6.78	, · ·	2.384		-82.9		1.67		184.8		19.57		200	11.70
0915	X	6.77		2402		-86.3		1.58	-	151.2		P.61		200	11.70
0920	X	6.78		2.420		-89.4	. \	1.42		125.1		1.9.59		200	1).70
0925	X	6.77		2.422		-90.6		1.53		.97.9		19.69		200	11.70
0930	X	678		2.426		-91.3	× .	1.57		. 89.7		19.70		200	11.70
0935	X	6.76		2.425		-91.1		1.65		70.7		19.70		200	11.70
0940	ΪX	6.76		2.423		-911		1.60		63.6		19.74		200	11.70
0945	X	6.76		2.437		-91.5	···· ·	1.42		56.)		19.71		200	11.70
COMMEN	TS:	104	-09006	-9			• • •					· •	·······	•	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

NEW JERSE SPARTMENTAL OF ENVIRONMENTAL PROTECTION Low Flow Purgad and Sampling Guidance Page 15 of 18



LOW FLOW SAMPLING

DATA SHEET

ite: Ate: /EATHER	t:	MAYI 9-22 SUN	NOOD 2-16 75°F	0 44	н рерти			CONSULTIN FIELD PER:	IG FIRM: SONNEL:	CB+Z JC SCREEN	IED/OPEN I	NTERVAL:			
/ELL PEI ID/FID R	MIT #	GS (ppm):	BACKGRO BENEATH BENEATH	WELL	DIAMETER:	<u>2</u>	inches PUMI DEPT	NTAKE D	EPTH:	ft below PUMP INST	TOC	: <u>11.52</u> m	below TOC		<u></u>
	RGING	l (pH	oH units)	SPE CONDU (mS	CIFIC CTIVITY ‰m)	RE POTE (n	DOX NTIAL IV)	DISS OX (n	OLVED YGEN 1g/l)	TURI (N	BIDITY ITU)	TEMPE (degr	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	DA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1955		675	1	2.433		-95.1	<u> </u>	1.14		15.7	-	19.82		200	1/70
1000	Ń	6.75		2.426		-95.9		1.07		14.0	*	19.89		200	11.70
005	/ χ	SAMOL										· ·		FINAL	11.70
							1 A.	ſ		e					
														· .	
										-					
										-	1				

SURFACE WATER ENVIRONMENTAL DATA

# FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION SURFACE WATER AND SEDIMENT SAMPLING COLLECTION RECORD

Femperature	:_75°1	¢	Weather Win	Conditions ad Speed / Dira	ection: <u>5-</u>	10	
Sunny Dther:	Cloudy		oggy	Rainy	Hu	mid	Snowin
······	·····	•					· · · · · · · · · · · · · · · · · · ·
		Sur	face Water (	Sample Inform	ation		
Surface Wat	ter ID#: <u>23</u>	A-0260	SF		Collecti	on Date:	-7-16
Sample Time	Temp °C	Specific Cond. (mS/cm)	рН	Eh (mv)	DO (ml/L)	Turbidity (NTU)	Hardnes (mg/L)
110	21.43	0:738	7.68	128.4	6.05	0	
Remarks:			· · · · · · · · · · · · · · · · · · ·				
			Salesana ana ana a				
		S	ediment San '	iple Informati	on Time (M	Bitant) ///	5
Sediment ID	#· 22 μΔ-	O'LLO(0Y)				intal 3). //	
Sediment ID Fine	#: <u>22A-</u> Course		adv	Muddy	Odors	Oil	Y .
Sediment ID Fine Remarks:	#: <u>23</u> A- Course	026064	ndy	Muddy	Odors	Oil	<b>y</b>

EMP Surface Water & Sediment Sampling Record

# FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION SURFACE WATER AND SEDIMENT SAMPLING COLLECTION RECORD

Sampling Location: $\underline{S} \psi \phi \phi \phi$				
Temperature: <u>75° F</u>	ather Conditions Wind Speed / Dire	ection: <u>S</u>	-10	
Sunny Cloudy Foggy Other:	Rainy		mid	Snowing
Surface Wa	ater Sample Inform	nation		
Surface Water ID#: 23A - 026058	• 	Collecti	on Date: <u>9</u>	-7-16
SampleTempSpecificSampleTempCond.Time°C(mS/cm)pH	Eh I (mv)	DO (ml/L)	Turbidity (NTU)	Hardness (mg/L)
1000 20.11 1940 7.1	9 133.1	17.4	1.7	- · · • • • · · · · · · · · · · · · · ·
Muddy Clear Sediment	Odors	Oily	Sta	gnant
Remarks: <u>ALSO COLLECT</u> USACE DUPULATE (23A-0260	SPUT, MS 068 @ 1005	s/msd	AND	· 
······································	· · · · ·		-	
Sediment ID#:NA	t Sample Informati -	ion Time (Mi	litary):	
Fine Course Sandy	Muddy	Odors	Oily	7
Remarks: No souple collector	d.	·		
······				
Samplers: Must Sign and Date	C.4-	_ Date	-7-16	

EMP Surface Water & Sediment Sampling Record

# APPENDIX E Groundwater, Surface Water and QA/QC Analytical Data Tables

Table E-1 – Overburden GW Analytical Data Table E-2 – Bedrock GW Analytical Data Table E-3 – Surface Water Analytical Data Table E-4 – Adjusted Gross Alpha Data Sheet Table E-5 – Adjusted Gross Beta Data Sheet Table E-5 – Adjusted Gross Beta Data Sheet Table E-6 – Trip Blank Analytic Data Table E-7 – Field Blank Analytic Data Table E-8 – Rinsate Blank Analytical Data

	B38W01 12A-0900 08/22/1	S 52 6				B38	3W01S Dup 12A-09007 08/22/16	licate 77 5					B38W14 19A-0900 08/17/2	4S 040 16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)		<u>.</u>				GW COCs (ug/L)	•					GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.23	J	0.5	-	1
Arsenic	1.8	J	3	-	3	Arsenic	2.1	J	3	-	3	Arsenic	3	U	3	-	3
Lithium	874		500	-	730	Lithium	864		500	-	730	Lithium	106	J	500	-	730
Geochemical Parameters (mg/L, unlo	ess otherwis	se not	ed)			Geochemical Parameters (mg/L, unles	ss otherwis	e note	ed)			Geochemical Parameters (mg/L, un	less otherwis	e note	d)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unle	ss otherwis	se not	ed)			Radiological Constituents (pCi/L, ur	nless otherwis	se note	d)		
Gross Alpha	4.55	J	1.07	0.81	15	Gross Alpha	4.49	J	1.1	0.83	15	Gross Alpha	5.51	J-	2.5	2.39	15
Gross Beta	25.69		1.39	1.46	50	Gross Beta	26.71		1.37	1.47	50	Gross Beta	12.43	J	2.70	2.23	50
Ra-226	0.105	U	0.261	0.161	-	Ra-226	0	U	0.111	0.346	-	Ra-226	0.227	J	0.196	0.198	-
Ra-228	0.246	J	0.184	0.235	-	Ra-228	0.649		0.167	0.253	-	Ra-228	0.149	U	0.203	0.357	-
Total Radium	0.351		-	-	5	Total Radium	0.649		-	-	5	Total Radium	0.376		-	-	5
Thorium-228	-0.011	U	0.233	0.079	-	Thorium-228	0.185	U	0.185	0.082	-	Thorium-228	-0.01	U	0.147	0.063	-
Thorium-230	1.11	J	0.161	0.421	-	Thorium-230	0.251	J	0.081	0.184	-	Thorium-230	0.178	J	0.092	0.172	-
Thorium-232	0	U	0.089	0.069	-	Thorium-232	0	U	0.071	0.055	-	Thorium-232	0.03	U	0.081	0.063	-
Total Thorium	1.095		-	-	-	Total Thorium	0.436		-	-	-	Total Thorium	0.198		-	-	-
U-234	0.144	J	0.078	0.131	-	U-234	0.049	U	0.176	2.01	-	U-234	0.455		0.082	0.24	-
U-235	0.019		0.142	0.061	-	U-235	0.029	U	0.143	0.085	-	U-235	0.03	U	0.082	0.064	-
U-238	0.029		0.078	0.061	-	U-238	0.116	J	0.079	0.119	-	U-238	0.383		0.148	0.223	-
Total Uranium	0.192		-	-	-	Total Uranium	0.194		-	-	-	Total Uranium	0.868		-	-	-
Total Uranium (ug/L)	0.086		-	-	30	Total Uranium (ug/L)	0.345		-	-	30	Total Uranium (ug/L)	1.14		-	-	30
Radon-222	381		16.90	16.4	-	Radon-222	NS		_	-	-	Radon-222	95.3		21.2	14.3	-
Potassium (ug/L)	30,400		10,000	-	-	Potassium (ug/L)	NS		-	-	-	Potassium (ug/L)	17,200		10,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	B38W2 20A-090 08/17/	15S 0044 /16				B3	8W15S Du 20A-0900 08/17/1	plicat )75 L6	e				B38W1 20A-090 08/29/2	7A 064 16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3.3		3	-	3	Arsenic	2.1	J	3	-	3	Arsenic	0.96	J+	3	-	3
Lithium	1,820		500	-	730	Lithium	864		500	-	730	Lithium	309	J	500	-	730
Geochemical Parameters (mg/L, unl	ess otherw	ise no	ted)			Geochemical Parameters (mg/L, unles	ss otherwi	se not	ed)		-	Geochemical Parameters (mg/L, ur	less otherv	vise n	oted)	-	
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	44.2		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	33.4		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	233		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	22.4	J	100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.06	J	0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.06	J	0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.20	U	0.20	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	81.7		10	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	6.90		0.11	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.05	U	0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	5.20		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	23.4		20	-	-
Radiological Constituents (pCi/L, un	less otherw	ise no	ted)		T	Radiological Constituents (pCi/L, unle	ss otherwi	ise no	ted)		•	Radiological Constituents (pCi/L, u	nless other	wise n	oted)		T
Gross Alpha	6.9	J-	2.5	3.045	15	Gross Alpha	0.822	U	1.55	0.945	15	Gross Alpha	3.76		2.50	2.56	15
Gross Beta	74.68		2.44	5.263	50	Gross Beta	26.71		1.37	1.47	50	Gross Beta	21.27		3.15	3.94	50
Ra-226	0.192	U	0.201	0.186	-	Ra-226	0	U	0.111	0.346	-	Ra-226	0.113	U	0.207	0.149	-
Ra-228	0.532	J	0.205	0.279	-	Ra-228	0.649		0.167	0.253	-	Ra-228	0.243	J	0.172	0.215	-
Total Radium	0.724		-	-	5	Total Radium	0.649		-	-	5	Total Radium	0.356		-	-	5
Thorium-228	0.027	U	0.073	0.057	-	Thorium-228	0.017	U	0.185	0.082	-	Thorium-228	-0.019	U	0.163	0.062	-
Thorium-230	0.154	J	0.084	0.155	-	Thorium-230	0.251	J	0.081	0.184	-	Thorium-230	0.302	J	0.087	0.207	-
Thorium-232	0	U	0.073	0.057	-	Thorium-232	0	U	0.071	0.055	-	Thorium-232	0.056	U	0.076	0.082	-
Total Thorium	0.181		-	-	-	Total Thorium	0.268		-	-	-	Total Thorium	0.339		-	-	-
U-234	0.480		0.081	0.246	-	U-234	0.049	U	0.143	0.085	-	U-234	0.223		0.075	0.16	-
U-235	0.030	U	0.082	0.064	-	U-235	0.029	U	0.079	0.062	-	U-235	0.056	U	0.076	0.081	-
U-238	0.360		0.081	0.212	-	U-238	0.116	J	0.079	0.119	-	U-238	0.186		0.136	0.15	-
Total Uranium	0.870		-	-	-	Total Uranium	0.194		-	-	-	Total Uranium	0.465		-	-	-
Total Uranium (ug/L)	1.07		-	-	30	Total Uranium (ug/L)	0.345		-	-	30	Total Uranium (ug/L)	0.553		-	-	30
Radon-222	431		22.2	20.3	-	Radon-222	NS	-	-	-	-	Radon-222	573		21.2	21.5	-
Potassium (ug/L)	127,000		50,000	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	27,900		10,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	B38W249 10A-09001 08/09/16	5 L1 5					B38W255 12B-09000 08/08/16	R )0 5					MISS0 12B-09 08/10	)1AR )0016 )/16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)			-	-	-	GW COCs (ug/L)					-	GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	1.6	J	3	-	3	Arsenic	3		3	-	3	Arsenic	3.5		3	-	3
Lithium	34.8	J	500	-	730	Lithium	1,780		500	-	730	Lithium	369	J	500	-	730
Geochemical Parameters (mg/L, unle	ess otherwis	e note	ed)	-	-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		-	Geochemical Parameters (mg/L, u	nless othe	erwise	e noted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	1,420		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	1,430		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	2,300		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	1,960		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.035	J	0.110	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	υ	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.035	J	0.100	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	5.3		0.600	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	781		40	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	0.29		0.110	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	14.5	J	20	-	-
Radiological Constituents (pCi/L, unle	ess otherwis	e note	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless oth	erwis	e noted)		
Gross Alpha	5.4		1.65	1.18	15	Gross Alpha	10.22		1.62	1.32	15	Gross Alpha	6.17		1.40	1.08	15
Gross Beta	18.23		1.87	1.58	50	Gross Beta	77.52		1.76	2.62	50	Gross Beta	34.963	J	1.30	1.52	50
Ra-226	0.105	U	0.192	0.138	-	Ra-226	0.45		0.11	0.272	-	Ra-226	0.195	J	0.132	0.197	-
Ra-228	1.20		0.196	0.306	-	Ra-228	0.71	J-	0.218	0.318	-	Ra-228	0.862		0.132	0.197	-
Total Radium	1.30		-	-	5	Total Radium	1.16		-	-	5	Total Radium	1.06		0.247	0.379	5
Thorium-228	0.041	UJ	0.112	0.087	-	Thorium-228	0.06	U	0.079	0.085	-	Thorium-228	-0.064	υ	0.290	0.096	-
Thorium-230	0.048	UJ	0.202	0.145	-	Thorium-230	0.23		0.090	0.187	-	Thorium-230	0.281		0.248	0.248	-
Thorium-232	0	IJ	0.111	0.087	-	Thorium-232	-0.01		0.142	0.061	-	Thorium-232	0	υ	0.103	0.08	-
Total Thorium	0.089		-	-	-	Total Thorium	0.28		-	-	-	Total Thorium	0.22		-	-	-
U-234	0.027	U	0.215	0.102	-	U-234	0.09	J	0.085	0.111	-	U-234	0.078	U	0.143	0.104	-
U-235	0	U	0.072	0.225	-	U-235	0.03	U	0.085	0.067	-	U-235	-0.01	U	0.144	0.062	-
U-238	0.018	U	0.13	0.056	-	U-238	0.13	J	0.085	0.128	-	U-238	0.107	U	0.143	0.119	-
Total Uranium	0.045		-	-	-	Total Uranium	0.25		-	-	-	Total Uranium	0.18		-	-	-
Total Uranium (ug/L)	0.053		-	-	30	Total Uranium (ug/L)	0.37		-	-	30	Total Uranium (ug/L)	0.32		-	-	30
Radon-222	377		16.9	16.4	-	Radon-222	377.00		19.2	17.9	-	Radon-222	517		18.6	19.4	-
Potassium (ug/L)	19,600		10,000	-	-	Potassium (ug/L)	77,500		10,000	-	-	Potassium (ug/L)	40,200		10,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MISS02A 12B-09002 08/10/16	R 19 6				MIS	S02AR Dupl 12B-090072 08/10/16	licate 2					MISS 10A-09 09/22	04A 90069 2/16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	2	U	2	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	135		3	-	3	Arsenic	131		3	-	3	Arsenic	2.7	J+	3	-	3
Lithium	4,090		500	-	730	Lithium	3,950		500	-	730	Lithium	23.5	J+	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwis	e note	d)			Geochemical Parameters (mg/L, unles	s otherwise	noted	I)			Geochemical Parameters (mg/L, ur	less other	wise no	oted)		
Manganese, Total (ug/L)	344		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	381		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	2,970		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	1,320		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	1.5		0.11	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	1.5		0.1	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	15.4		2	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	1,110		100	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	1	J	2	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	201		0.55	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	6.6		1.3	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	40.5		2	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	102		20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwis	se note	ed)			Radiological Constituents (pCi/L, unles	s otherwise	e noteo	d)			Radiological Constituents (pCi/L, u	nless other	wise no	oted)		
Gross Alpha	4.29		1.48	1.04	15	Gross Alpha	5.25		1.53	1.1	15	Gross Alpha	NS	-	-	-	-
Gross Beta	20.62		2.44	2.05	50	Gross Beta	23.42		2.56	2.18	50	Gross Beta	NS	-	-	-	-
Ra-226	0.05	U	0.463	0.223	-	Ra-226	0.049	U	0.398	0.189	-	Ra-226	NS	-	-	-	-
Ra-228	0.277	J	0.204	0.285	-	Ra-228	0.348	J	0.177	0.256	-	Ra-228	NS	-	-	-	-
Total Radium	0.327		-	-	5	Total Radium	0.397		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	0.042	U	0.243	0.121	-	Thorium-228	0.055	U	0.18	0.102	-	Thorium-228	NS	-	-	-	-
Thorium-230	0.30	J	0.186	0.227	-	Thorium-230	0.345		0.137	0.22	-	Thorium-230	NS	-	-	-	-
Thorium-232	0.021	U	0.156	0.067	-	Thorium-232	-0.01	U	0.136	0.058	-	Thorium-232	NS	-	-	-	-
Total Thorium	0.363		-	-	-	Total Thorium	0.39		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.172		0.077	0.143	-	U-234	0.03	U	0.238	0.113	-	U-234	NS	-	-	-	-
U-235	0.057	U	0.078	0.084	-	U-235	0.03	U	0.08	0.062	-	U-235	NS	-	-	-	-
U-238	0.076	U	0.14	0.101	-	U-238	-0.01	U	0.144	0.062	-	U-238	NS	-	-	-	-
Total Uranium	0.305		-	-	-	Total Uranium	0.05		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.23		-	-	30	Total Uranium (ug/L)	-0.03		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	145		19.3	14.2	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	30,900		10,000	-	-	Potassium (ug/L)	29,600		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

 $\mathsf{MDC}/\mathsf{MDA}\ \text{-}\ \mathsf{Minimum}\ \mathsf{Detectable}\ \mathsf{Concentration}/\mathsf{Minimum}\ \mathsf{Detectable}\ \mathsf{Activity}.$ 

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect. J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MISS05A 12B-0900 08/15/1	R 32 6					MISS07AF 12B-09003 08/16/16	R 84 6					OVPZ: 12B-09 09/01	17R 0005 /16	-	-	-
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3.9	J+	3	-	3	Arsenic	65.4		3	-	3	Arsenic	3	U	3	-	3
Lithium	768		500	-	730	Lithium	1,300		500	-	730	Lithium	2,060		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwis	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, un	less other	wise n	oted)		
Manganese, Total (ug/L)	637		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	5,920		45	-	-
Manganese, Filtered (ug/L)	583		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	5,860		45	-	-
Iron, Total (ug/L)	2,070		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	15,000		100	-	-
Iron, Filtered (ug/L)	1,320		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	14,500		100	-	-
Nitrate (as N)	0.17		0.11	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.120		0.110	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	0.17		0.10	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.120		0.100	-	-
Ammonia (as N)	2.6		0.20	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	34		4	-	-
Sulfate	434		30	-	-	Sulfate	NS	-	-	-	-	Sulfate	796		40	-	-
Sulfide	2	U	2	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	63		0.11	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	3,710		5.5	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	1.6		0.25	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	7.8		1	-	-
Chemical Oxygen Demand (COD)	8.6	J	20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	46.7		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, ur	nless other	wise n	oted)		
Gross Alpha	2.60		1.62	1.08	15	Gross Alpha	6.74	J-	2.5	3.02	15	Gross Alpha	NS	-	-	-	-
Gross Beta	14.95		1.45	1.21	50	Gross Beta	40.42		2.14	3.72	50	Gross Beta	NS	-	-	-	-
Ra-226	0.167	U	0.224	0.185	-	Ra-226	0.135	J	0.122	0.159	-	Ra-226	NS	-	-	-	-
Ra-228	0.658		0.242	0.316	-	Ra-228	0.406	J	0.205	0.278	-	Ra-228	NS	-	-	-	-
Total Radium	0.825		-	-	5	Total Radium	0.54		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	0	U	0.092	0.072	-	Thorium-228	-0.011	U	0.153	0.066	-	Thorium-228	NS	-	-	-	-
Thorium-230	0.858		0.104	0.374	-	Thorium-230	0.622	J	0.095	0.304	-	Thorium-230	NS	-	-	-	-
Thorium-232	0.295		0.167	0.209	-	Thorium-232	0	U	0.084	0.065	-	Thorium-232	NS	-	-	-	-
Total Thorium	1.153		-	-	-	Total Thorium	0.611		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.302		0.222	0.209	-	U-234	0.33		0.152	0.209	-	U-234	NS	-	-	-	-
U-235	0.068	U	0.17	0.105	-	U-235	0	U	0.084	0.262	-	U-235	NS	-	-	-	-
U-238	0.136	U	0.143	0.132	-	U-238	0.155		0.084	0.141	-	U-238	NS	-	-	-	-
Total Uranium	0.506		-	-	_	Total Uranium	0.485		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.40		-	-	30	Total Uranium (ug/L)	0.46		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	299		16.20	14.8	-	Radon-222	602		18.5	20	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	18,300		10,000	-	-	Potassium (ug/L)	57,600		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	OVPW1 12B-0900 08/15/1	S 30 6					MW2S 23B-09004 08/18/16	9					MW3 12B-090 08/31	SR 0108 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.16	J	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	1.1	J	3	-	3	Arsenic	393		7.5	-	3
Lithium	1,210		500	-	730	Lithium	1,270		500	-	730	Lithium	1,430		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	d)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	2,470		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	2,500		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	2,930		100	I	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	2,380		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.07	J	0.11	I	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.07	J	0.100	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	1.5		0.200	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	757		40	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	14.4		0.110	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.28		0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	4.4		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	12.3	J	20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	4.35	J	1.8	1.34	15
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	31.19		1.921	2.462	50
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	0.105	U	0.193	0.139	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	0.303		0.177	0.225	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	0.408		-	-	5
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	0	U	0.087	0.067	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	0.002	U	0.098	0.093	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	0	U	0.086	0.067	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	0.002		-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	0.240		0.136	0.169	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	0.028	U	0.075	0.059	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	0.148	U	0.161	0.139	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	0.416		-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	0.440		-	-	30
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	133		17.3	12.7	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	46,300		10,000	-	-

#### Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect. J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW6S 23B-0900 08/30/1	67 6					MW8S 23B-09006 09/08/16	0					MW2 12B-090 08/15,	4S 0028 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.25	J	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	12		3	-	3	Arsenic	1.6	J	3	-	3	Arsenic	11		3	-	3
Lithium	11.89	J+	500	-	730	Lithium	3.7	J	500	-	730	Lithium	200	J+	500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	nless other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	noted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	3.00		2.5	2.11	15
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	20.24	J-	2.90	2.90	50
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	0.214	U	0.441	0.278	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	1.45		0.286	0.407	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	1.66		-	-	5
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	-0.009	U	0.131	0.056	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	0.223	J	0.132	0.181	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	0.026	U	0.072	0.056	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	0.24		-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	0.04	U	0.229	0.114	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	0.02	U	0.148	0.064	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	0.03	U	0.081	0.064	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	0.09		-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	0.09		-	-	30
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	89.9		16.4	11.4	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	24,600		10,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW255 12B-0900 09/01/1	S )20 16	-				MW2 12B-09 08/08	285 0002 /16		-			MW3 12B-09( 08/18,	3S 0047 /16			-
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	47.2		0.5	-	1
Arsenic	0.819	J	3	-	3	Arsenic	5.9		3	-	3	Arsenic	296		7.5	-	3
Lithium	18.29	J+	500	-	730	Lithium	2,270		500	-	730	Lithium	12,900		2,500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se note	ed)	-		Geochemical Parameters (mg/L, unles	s otherwis	e note	d)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		-
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	6.79		1.74	1.28	15	Gross Alpha	NS	•	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	26.10		1.84	1.73	50	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	0.108	U	0.197999999	0.143	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	0.662	J-	0.206	0.302	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	0.770		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	0.03	U	0.082	0.064	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	0.272	J	0.093	0.205	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	0.04	U	0.175999999	0.091	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	0.342		-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	0.353		0.180999994	0.221	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	0.052	U	0.152999997	0.091	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	0.342		0.202000007	0.221	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	0.747		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	1.02		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	295		19.2	16.7	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	25,900		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW43S 12B-0900 08/24/1	R 66 6	_				MW44S 12B-09003 08/16/16	9	_				MW4 12B-09 08/11	6S 0022 /16			-
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	11.6		0.5	-	1
Arsenic	1.6	J	3	-	3	Arsenic	357		7.5	-	3	Arsenic	1.4	J	3	-	3
Lithium	668		500	-	730	Lithium	707		500	-	730	Lithium	3,400		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	900		15	-	-	Manganese, Total (ug/L)	1,770		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	937		15	-	-	Manganese, Filtered (ug/L)	1,860		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	2,920		100	-	-	Iron, Total (ug/L)	38,400		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	2,530		100	-	-	Iron, Filtered (ug/L)	40,200		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.042	J	0.10	-	-	Nitrate (as N)	0.093	J	0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.011		0.010	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.053	J	0.10	-	-	Nitrate and Nitrite (as N)	0.093	J	0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.71		0.20	-	-	Ammonia (as N)	7.8		1	-	-
Sulfate	NS	-	-	-	-	Sulfate	558		30	-	-	Sulfate	940		50	-	-
Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	1.1		0.11	-	-	Methane (ug/L)	720		1.1	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.023	J	0.05	-	-	Phosphorus, Total	0.045	J	0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	5.5		1	-	-	Total Organic Carbon (TOC)	61.2		3	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	12.5	J	20	-	-	Chemical Oxygen Demand (COD)	238		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	•	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	•	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	•	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	•	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW479 12B-0900 08/11/1	5 24 6					MW48S 12B-09002 08/11/16	26					MW48S D 12B-09 08/11	uplicat 0073 /16	e		
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	2.7	J	3	-	3	Arsenic	1.6	J	3	-	3	Arsenic	1.6	J	3	-	3
Lithium	1,960		500	-	730	Lithium	241	J	500	-	730	Lithium	221	J	500	-	730
Geochemical Parameters (mg/L, unle	ess otherwis	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	1,070		15	-	-	Manganese, Total (ug/L)	529		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	1,080		15	-	-	Manganese, Filtered (ug/L)	466		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	4,770		100	-	-	Iron, Total (ug/L)	133		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	4,660		100	-	-	Iron, Filtered (ug/L)	100	U	100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	0.038	J	0.11	-	-	Nitrate (as N)	4		0.11	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	0.006	J	0.01	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	0.038	J	0.100	-	-	Nitrate and Nitrite (as N)	4		0.10	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	7.19		1	-	-	Ammonia (as N)	0.10	J	0.20	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	700		30	-	-	Sulfate	217		10	-	-	Sulfate	NS	-	-	-	-
Sulfide	2	U	2	-	-	Sulfide	2	U	2	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	25.1		0.11	-	-	Methane (ug/L)	0.67		0.11	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	0.24		0.05	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	3.5		1	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	30		20	-	-	Chemical Oxygen Demand (COD)	12.5	J	20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	noted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect. J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW519 20A-0900 08/23/1	S 155 .6					MW52S 20A-09007 09/21/16	70					MW5 23B-09 08/24	3S 0058 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	1.7	J	3	-	3	Arsenic	1.2	J+	3	-	3	Arsenic	25.3		3	-	3
Lithium	25.1	J	500	-	730	Lithium	132		500	-	730	Lithium	500	U	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	noted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### Notes

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect. J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW549 23B-0900 08/25/1	6 61 6			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1
Arsenic	1.5	J	3	-	3
Lithium	4.9	J+	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwis	se note	ed)		
Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ss otherwi	se not	ed)		
Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-
U-235	NS	-	-	-	-
U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

- UJ Estimated non-detect.
- J Estimated concentration.
- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.
- R Rejected result.

	B38W02 12A-0900 08/22/1	2D 153 .6					B38W03B 10A-09003 08/16/16	7					B38W 10A-09 08/16	07B 0036 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	0.87	J	3	-	3	Arsenic	0.42	J	3	-	3	Arsenic	0.5	J	3	-	3
Lithium	11.5	J+	500	-	730	Lithium	41	J	500	-	730	Lithium	121	J	500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)	-	-	Geochemical Parameters (mg/L, unles	ss otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	nless other	wise n	oted)	-	-
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	ise not	ed)	-	-	Radiological Constituents (pCi/L, unle	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	oted)	-	-
Gross Alpha	2.00	UJ	2.5	1.99	15	Gross Alpha	2.28	UJ	2.50	1.78	15	Gross Alpha	NS	-	-	-	-
Gross Beta	0.918	U	2.39	1.42	50	Gross Beta	6.72	J	2.15	1.71	50	Gross Beta	NS	-	-	-	-
Ra-226	0.287		0.097	0.204	-	Ra-226	0.217	U	0.35	0.24	-	Ra-226	NS	-	-	-	-
Ra-228	0.396	J	0.186	0.25	-	Ra-228	1.107		0.184	0.30	-	Ra-228	NS	-	-	-	-
Total Radium	0.683		-	-	5	Total Radium	1.324		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	0.062	U	0.201	0.113	-	Thorium-228	0.029	U	0.079	0.062	-	Thorium-228	NS	-	-	-	-
Thorium-230	0.557	J	0.095	0.287	-	Thorium-230	0.347	J	0.090	0.224	-	Thorium-230	NS	-	-	-	-
Thorium-232	0	U	0.084	0.065	-	Thorium-232	0	U	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	0.619		-	-	-	Total Thorium	0.376		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.336	J	0.141	0.203	-	U-234	0.052	U	0.152	0.09	-	U-234	NS	-	-	-	-
U-235	0.058	U	0.078	0.084	-	U-235	0.031	U	0.152	0.084	-	U-235	NS	-	-	-	-
U-238	0.134	U	0.141	0.131	-	U-238	0.062	U	0.084	0.066	-	U-238	NS	-	-	-	-
Total Uranium	0.528		-	-	-	Total Uranium	0.145		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.40		-	-	30	Total Uranium (ug/L)	0.18		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	1,010		17	23.6	-	Radon-222	1,070		18.4	24.8	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	1,090	J	10,000	-	-	Potassium (ug/L)	10,200		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	B38W14 19A-090 08/17/2	4D 041 16					B38W150 20A-09004 08/17/16	D 45 5					B38W 20A-09 08/29	17B 0065 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	ά	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	0.77	J	3	-	3	Arsenic	9.1		3	-	3	Arsenic	1.3	J+	3	-	3
Lithium	32.7	J	500	-	730	Lithium	1,970		500	-	730	Lithium	1,290		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	se note	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	616		15	-	-	Manganese, Total (ug/L)	4,860		45	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	608		15	-	-	Manganese, Filtered (ug/L)	4,860		45	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	249		100	-	-	Iron, Total (ug/L)	10,300		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	17.2		100	-	-	Iron, Filtered (ug/L)	9,940		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.34		0.11	-	-	Nitrate (as N)	0.056	J	0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.34		0.1	-	-	Nitrate and Nitrite (as N)	0.056	J	0.1	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	1.6		0.2	-	-	Ammonia (as N)	16.2		2	-	-
Sulfate	NS	-	-	-	-	Sulfate	477	U	20	-	-	Sulfate	611		30	-	-
Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	0.33		0.11	-	-	Methane (ug/L)	238		0.550		-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.05	U	0.05	-	-	Phosphorus, Total	0.12		0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	3.9		1	-	-	Total Organic Carbon (TOC)	7.9		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	10.2	J	20	-	-	Chemical Oxygen Demand (COD)	89.8		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	oted)		
Gross Alpha	3.77	J-	2.5	2.64	15	Gross Alpha	6	J-	2.5	2.82	15	Gross Alpha	11.04	J	1.76	1.66	15
Gross Beta	3.82	J	3.19	2.25	50	Gross Beta	27.22	J	3.70	3.82	50	Gross Beta	105.68		1.875	3.174	50
Ra-226	1.40	U	0.246	0.094	-	Ra-226	-0.012	U	0.263	0.089	-	Ra-226	0.255		0.234	0.217	-
Ra-228	1.502		0.23	0.369	-	Ra-228	0.44	J	0.207	0.276	-	Ra-228	1.624		0.201	0.336	-
Total Radium	2.902		-	-	5	Total Radium	0.428		-	-	5	Total Radium	1.879		-	-	5
Thorium-228	0.018	U	0.134	0.058	-	Thorium-228	-0.041		0.214	0.073	-	Thorium-228	0.064	U	0.161	0.1	-
Thorium-230	0.047	U	0.085	0.111	-	Thorium-230	0.71		0.148	0.322	-	Thorium-230	0.345	J	0.137	0.22	-
Thorium-232	0.054	U	0.074	0.080	-	Thorium-232	0		0.081	0.063	-	Thorium-232	0.027	U	0.075	0.059	-
Total Thorium	0.119		-	-	-	Total Thorium	0.669		-	-	-	Total Thorium	0.436		-	-	-
U-234	0.904		0.082	0.343	-	U-234	4.12		0.142	0.814	-	U-234	0	U	0.072	0.223	-
U-235	0.091	J	0.082	0.107	-	U-235	0.09	J	0.079	0.103	-	U-235	0	U	0.072	0.224	-
U-238	0.421		0.081	0.230	-	U-238	1.48		0.079	0.442	-	U-238	0	U	0.072	0.223	-
Total Uranium	1.416		-	-	-	Total Uranium	5.69		-	-	-	Total Uranium	0		-	-	-
Total Uranium (ug/L)	1.25		-	-	30	Total Uranium (ug/L)	4.40		-	-	30	Total Uranium (ug/L)	0		-	-	30
Radon-222	968		21.1	26	-	Radon-222	951		22.20	26.6	-	Radon-222	299		20.80	17.5	-
Potassium (ug/L)	4,450	J	10,000	-	-	Potassium (ug/L)	38,000		10,000		-	Potassium (ug/L)	144,000		30,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

B3	8W17B Du 20A-0900 08/29/1	plicate 78 6					B38W18D 12B-09000 08/09/16	R 8				B	38W18DR 12B-09( 08/09	Duplic 0010 /16	ate		
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	1.1	J+	3	-	3	Arsenic	1.7	J	3	-	3	Arsenic	1.8	J	3	-	3
Lithium	1,350		500	-	730	Lithium	127	J	500	-	730	Lithium	132	J	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)		-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)		-	Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	•	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise n	oted)		
Gross Alpha	12.05	J	1.82	1.72	15	Gross Alpha	5.33		2.50	2.67	15	Gross Alpha	2.53	J-	2.50	2.03	15
Gross Beta	117.93		2.43	3.47	50	Gross Beta	4.63		1.83	1.53	50	Gross Beta	2.09	J	1.82	1.29	50
Ra-226	0.204	U	0.265	0.205	-	Ra-226	0.217		0.118	0.197	-	Ra-226	0.036	U	0.234	0.11	-
Ra-228	1.687		0.18	0.312	-	Ra-228	1.504		0.214	0.346	-	Ra-228	0.932		0.219	0.321	-
Total Radium	1.891		-	-	5	Total Radium	1.721		-	-	5	Total Radium	0.968		-	-	5
Thorium-228	0.09	U	0.196	0.126	-	Thorium-228	0.056		0.076	0.082	-	Thorium-228	0.056	U	0.165	0.098	-
Thorium-230	0.109	U	0.149	0.15	-	Thorium-230	0.069		0.139	0.128	-	Thorium-230	0.039	U	0.103	0.119	-
Thorium-232	-0.01	U	0.148	0.064	-	Thorium-232	0		0.076	0.059	-	Thorium-232	-0.012	U	0.165	0.071	-
Total Thorium	0.189		-	-	-	Total Thorium	0.125		-	-	-	Total Thorium	0.083		-	-	-
U-234	0.171		0.077	0.142	-	U-234	1.93		0.08	0.508	-	U-234	2.12		0.233	0.564	-
U-235	0.048	U	0.14	0.083	-	U-235	0.173		0.078	0.144	-	U-235	0.051	U	0.15	0.089	-
U-238	0.057	U	0.077	0.083	-	U-238	1.69		0.078	0.472	-	U-238	2.20		0.083	0.568	-
Total Uranium	0.28		-	-	-	Total Uranium	3.79		-	-	-	Total Uranium	4.37		-	-	-
Total Uranium (ug/L)	0.17		-	-	30	Total Uranium (ug/L)	5.03		-	-	30	Total Uranium (ug/L)	6.53		-	-	30
Radon-222	NS	-	-	-	-	Radon-222	200		16.9	13.7	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	2,090		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	B38W24 10A-0900 08/09/1	D 12 6					B38W25D 12B-09002 08/08/16	R 1					MISS0 12B-09 08/10	1BR 0017 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	5	U	5	-	1	Benzene	1.3		0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	2.9	J	3	-	3	Arsenic	1.4	J	3	-	3	Arsenic	2		3	-	3
Lithium	142	J	500	-	730	Lithium	958		500	-	730	Lithium	128	J	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwis	se not	ted)		-	Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)		-	Geochemical Parameters (mg/L, ur	less other	wise r	noted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	•	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	•	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	•	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	I	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	•	-	-	-	Total Organic Carbon (TOC)	NS	-	-	I	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	oted)		
Gross Alpha	10.859	J-	2.50	3.547	15	Gross Alpha	9.71		1.65	1.33	15	Gross Alpha	0.88	UJ	2.50	1.47	15
Gross Beta	18.004	J	2.49	2.642	50	Gross Beta	400.39		2.35	6.78	50	Gross Beta	3.48	J	2.25	1.71	50
Ra-226	0.322		0.109	0.23	-	Ra-226	0.28		0.206	0.225	-	Ra-226	0.03	U	0.22	0.095	-
Ra-228	1.251		0.212	0.332	-	Ra-228	0.476	J-	0.239	0.329	-	Ra-228	0.40	J	0.209	0.301	-
Total Radium	1.573		-	-	5	Total Radium	0.756		-	-	5	Total Radium	0.430		-	-	5
Thorium-228	0	U	0.087	0.068	-	Thorium-228	0.028	U	0.076	0.059	-	Thorium-228	-0.01	U	0.143	0.061	-
Thorium-230	0.002	U	0.099	0.094	-	Thorium-230	0.246	J	0.087	0.189	-	Thorium-230	-0.043	U	0.143	0.062	-
Thorium-232	-0.011	U	0.158	0.068	-	Thorium-232	0	U	0.076	0.059	-	Thorium-232	0.029	U	0.079	0.061	-
Total Thorium	-0.009		-	-	-	Total Thorium	0.274		-	-	-	Total Thorium	-0.024		-	-	-
U-234	0.072	U	0.132	0.095	-	U-234	0.529		0.084	0.263	-	U-234	0.194		0.143	0.157	-
U-235	-0.009	U	0.133	0.057	-	U-235	0.031	U	0.084	0.066	-	U-235	0.059	U	0.079	0.085	-
U-238	0.018	U	0.132	0.057	-	U-238	0.497		0.084	0.255	-	U-238	0.233		0.079	0.168	-
Total Uranium	0.08		-	-	-	Total Uranium	1.06		-	-	-	Total Uranium	0.49		-	-	-
Total Uranium (ug/L)	0.05		-	-	30	Total Uranium (ug/L)	1.48		-	-	30	Total Uranium (ug/L)	0.69		-	-	30
Radon-222	685		17	20.3	-	Radon-222	694		19.2	22.1	-	Radon-222	723		18.5	21.8	-
Potassium (ug/L)	20,000		10,000	-	-	Potassium (ug/L)	454,000		100,000	-	-	Potassium (ug/L)	1,860	J	10,000	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MISS02B 12B-0900 08/10/1	R 18 6					MISS04B 10A-09004 08/18/16	IB 5					MISS05 12B-090 08/15/	BR 033 16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	137		0.5	-	1
Arsenic	1.6		3	-	3	Arsenic	0.57	J	3	-	3	Arsenic	3	U	3	-	3
Lithium	4,280		500	-	730	Lithium	51.1	J+	500	-	730	Lithium	7,980		2,500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	less otherw	ise no	ted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	2,370		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	2,420		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	6,370		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	2,490		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.11		0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.11		0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	2.5		0.20	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	1,380		100	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	1.5	J	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	4,000		5.5	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.021	J	0.050	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	20.5		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	190		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	ss otherwi	se not	ed)			Radiological Constituents (pCi/L, u	nless otherw	vise no	ted)		
Gross Alpha	6.61		1.36	1.05	15	Gross Alpha	NS	-	-	-	-	Gross Alpha	9.80		2.07	1.59	15
Gross Beta	26.58		2.09	1.93	50	Gross Beta	NS	-	-	-	-	Gross Beta	1,094.89	J	7.38	18.01	50
Ra-226	0.188	U	0.306	0.217	-	Ra-226	NS	-	-	-	-	Ra-226	0.228		0.123	0.206	-
Ra-228	0.508	J	0.199	0.297	-	Ra-228	NS	-	-	-	-	Ra-228	1.0930001		0.245	0.35	-
Total Radium	0.696		-	-	5	Total Radium	NS	-	-	-	-	Total Radium	1.321		-	-	5
Thorium-228	0.02	U	0.217	0.096	-	Thorium-228	NS	-	-	-	-	Thorium-228	0.032	U	0.088	0.068	-
Thorium-230	0.152	J	0.094	0.164	-	Thorium-230	NS	-	-	-	-	Thorium-230	-0.04	U	0.159	0.069	-
Thorium-232	0.03	U	0.083	0.064	-	Thorium-232	NS	-	-	-	-	Thorium-232	0.021	U	0.158	0.068	-
Total Thorium	0.202		-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	0.013		-	-	-
U-234	0.807		0.225	0.332	-	U-234	NS	-	-	-	-	U-234	0.104	U	0.139	0.115	-
U-235	-0.02	U	0.172	0.065	-	U-235	NS	-	-	-	-	U-235	0.028	U	0.077	0.06	-
U-238	0.363		0.171	0.218	-	U-238	NS	-	-	-	-	U-238	0	U	0.076	0.238	-
Total Uranium	1.15		-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	0.132		-	-	-
Total Uranium (ug/L)	1.08		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	0		-	-	30
Radon-222	502		18.8	19.3	-	Radon-222	NS	-	-	-	-	Radon-222	210		16.9	13.9	-
Potassium (ug/L)	33,800		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	1,560,000		400,000		-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

MI	SS05BR Du 12B-0900 08/15/1	plicato 74 6	2				MISS07 12B-0900 08/16/2	'B )35 L6					BRP2 12B-090 08/17,	22 0042 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	146		0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	46.9		0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	51.6		3	-	3	Arsenic	1.4	J	3	-	3
Lithium	8,090		2,500	-	730	Lithium	5,420		1,000	-	730	Lithium	1,500		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)		-	Geochemical Parameters (mg/L, unles	s otherwis	e note	d)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)	-	-
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	3,970		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	3,900		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	6,910		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	734		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.096	J	0.11	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.096	J	0.10	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.71		0.20	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	2,230		100	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	18.4		0.11	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.43		0.05	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	5.2		1	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	15	J	20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ted)		I	Radiological Constituents (pCi/L, unles	ss otherwi	se note	ed)	T	T	Radiological Constituents (pCi/L, u	nless other	wise n	oted)	1	T
Gross Alpha	11.65		1.97	1.59	15	Gross Alpha	8.64		1.29	1.08	15	Gross Alpha	NS	-	-	-	-
Gross Beta	1,145.51		6.07	18.26	50	Gross Beta	20.65		4.21	3.02	50	Gross Beta	NS	-	-	-	-
Ra-226	0.087	U	0.352	0.188	-	Ra-226	-0.09	U	0.40	0.123	-	Ra-226	NS	-	-	-	-
Ra-228	1.027		0.204	0.297	-	Ra-228	0.44	J	0.21	0.289	-	Ra-228	NS	-	-	-	-
Total Radium	1.114		-	-	5	Total Radium	0.35		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	0.065	U	0.089	0.096	-	Thorium-228	0.01	U	0.18	0.069	-	Thorium-228	NS	-	-	-	-
Thorium-230	0.267	J	0.101	0.212	-	Thorium-230	0.28	J	0.09	0.21	-	Thorium-230	NS	-	-	-	-
Thorium-232	0	U	0.089	0.069	-	Thorium-232	0	U	0.08	0.065	-	Thorium-232	NS	-	-	-	-
Total Thorium	0.332		-	-	-	Total Thorium	0.29		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.018	U	0.135	0.058	-	U-234	2.87		0.15	0.674	-	U-234	NS	-	-	-	-
U-235	0	U	0.075	0.233	-	U-235	0.19		0.09	0.157	-	U-235	NS	-	-	-	-
U-238	0.037	U	0.16	0.082	-	U-238	1.81		0.09	0.514	-	U-238	NS	-	-	-	-
Total Uranium	0.05		-	-	-	Total Uranium	4.87		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.11		-	-	30	Total Uranium (ug/L)	5.39		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	548		18.5	19.3	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	33,400		10,000	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	BRPZ3 12B-0900 08/17/1	43 6					BRPZ4 12B-09000 09/01/16	3					BRP2 12B-09( 08/08,	25 0004 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	15.4		0.5	-	1	Benzene	22.1		0.5	-	1	Benzene	2,610		13	-	1
Arsenic	3	U	3	-	3	Arsenic	6	U	6	-	3	Arsenic	2	J	3	-	3
Lithium	756		500	-	730	Lithium	1,410		500	-	730	Lithium	2,400		500	-	730
Geochemical Parameters (mg/L,unles	ss otherwis	e note	ed)			Geochemical Parameters (mg/L,unless	otherwise	e note	d)			Geochemical Parameters (mg/L,un	less otherv	vise n	oted)		-
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	7,180		30	-	-	Manganese, Total (ug/L)	6,660		75	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	7,640		75	-	-	Manganese, Filtered (ug/L)	6,610		75	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	26,300		200	-	-	Iron, Total (ug/L)	29,700		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	22,900		100	-	-	Iron, Filtered (ug/L)	24,100		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.11		0.11	-	-	Nitrate (as N)	4.4		0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.11		0.11	-	-	Nitrate and Nitrite (as N)	4.4		0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	4.1		0.40	-	-	Ammonia (as N)	2.3		0.20	-	-
Sulfate	NS	-	-	-	-	Sulfate	1,880		100	-	-	Sulfate	1,480		50	-	-
Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-	Sulfide	0.31	J	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	56.8		0.11	-	-	Methane (ug/L)	1,030		2.2	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	2.4		0.25	-	-	Phosphorus, Total	0.54		0.10	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	24.8		1	-	-	Total Organic Carbon (TOC)	45.8		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	140		20	-	-	Chemical Oxygen Demand (COD)	123		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	BRPZ9 12B-0900	13					MW2D 23B-09005	60					MW3 12B-090	DR 0038			
Analyte	08/09/1 Result	.6 Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	08/18/16 Result	Q	MDC/MDA	Error (Rads)	Cleanup	Analyte	08/16, Result	Q	MDC/MDA	Error (Rads)	Cleanup
GW COCs (ug/L)				(1000)		GW COCs (ug/L)				(12.22)		GW COCs (ug/L)				(	
Benzene	5.9		0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	1.2		0.5	-	1
Arsenic	1.2	J	3	-	3	Arsenic	2.4	J	3	-	3	Arsenic	3	U	3	-	3
Lithium	2,540		500	-	730	Lithium	1,460		500	-	730	Lithium	5,110		1,000	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	ise not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	se not	ed)		•	Geochemical Parameters (mg/L, un	less other	wise r	noted)		
Manganese, Total (ug/L)	6,700		75	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	2,430		15	-	-
Manganese, Filtered (ug/L)	6,480		75	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	2,390		15	-	-
Iron, Total (ug/L)	14,600		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	98,000		200	-	-
Iron, Filtered (ug/L)	12,900		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	96,400		200	-	-
Nitrate (as N)	0.093	J	0.11	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.15		0.11	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	0.093	J	0.10	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.15		0.10	-	-
Ammonia (as N)	2.1		0.20	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.85		0.20	-	-
Sulfate	1,810		100	-	-	Sulfate	NS	-	-	-	-	Sulfate	1,770		100	-	-
Sulfide	0.31	J	2	-	-	Sulfide	NS	-	-	-	-	Sulfide	0.30	J	2	-	-
Methane (ug/L)	2,070		2.2	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	539		1.1	-	-
Phosphorus, Total	0.014	J	0.05	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.019	J	0.05	-	-
Total Organic Carbon (TOC)	15.6		1	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	46.2		1	-	-
Chemical Oxygen Demand (COD)	51		20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	40		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	s otherwis	se not	ed)			Radiological Constituents (pCi/L, ur	less other	wise n	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	5.81		1.88	1.34	15
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	12.88		2.47	1.83	50
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	-0.043	U	0.28	0.10	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	0.383	J	0.17	0.23	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	0.34		-	-	5
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	-0.013	U	0.261	0.088	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	0.22	J	0.181	0.212	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	0.036	U	0.099	0.078	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	0.24		-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	2.27		0.175	0.575	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	0.111	U	0.148	0.123	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	2.08		0.08	0.543	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	4.46		-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	6.17		-	-	30
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	115		19.10	13.4	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	13,400		10,000		-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW6D 23B-0900 08/30/1	68 6					MW23D 12B-09005 08/22/16	4					MW2 12B-090 08/15,	4D 0029 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	1.5		0.5	-	1
Arsenic	1.9	J	3	-	3	Arsenic	2.3	J	3	-	3	Arsenic	3	U	3	-	3
Lithium	19.7	J+	500	-	730	Lithium	1,020		500	-	730	Lithium	2,120		500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	2,810		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	2,570		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	716		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	356		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.041	J	0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.041	J	0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.24		0.2	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	1,270		50	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	476		1.1	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.014	J	0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	7.1		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	23.4		20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	s otherwis	e note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	14.2		1.79	1.74	15
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	4.56		2.24	1.49	50
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	0.065	U	0.282	0.145	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	1.01		0.180	0.274	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	1.07		-	-	5
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	0.03	U	0.083	0.065	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	0.174	J	0.152	0.177	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	0.03	U	0.083	0.065	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	0.23		-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	6.39		0.172	1.10	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	0.06	U	0.081	0.087	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	2.45		0.145	0.597	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	8.90		-	-	-
Total Uranium (ug/L)	NS		-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	7.27		-	-	30
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	1,130		16.7	25.1	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	7,370	J	10,000		-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

# **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.
	MW250	)			MW31D								MW3	2D			
	12B-0900	21					20A-09005	51					20A-09	0057			
	08/10/1	.6					08/18/16	i					08/23	/16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	0.87		3	-	3	Arsenic	5.2		3	-	3	Arsenic	23.2		3	-	3
Lithium	1,210		500	-	730	Lithium	2,660		500	-	730	Lithium	5,310		2,500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)		-	Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)	-	-	Geochemical Parameters (mg/L, un	less other	wise n	oted)		
Manganese, Total (ug/L)	2,890		15	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	2,910		15	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	41,700		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	33,700		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	0.069	J	0.11	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	0.069	J	0.10	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	3.8		0.40	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	598		30	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	2	U	2	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	404		0.55	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	0.034	J	0.05	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	6.2		1	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	26.6		20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)		1	Radiological Constituents (pCi/L, unles	ss otherwis	se not	ed)			Radiological Constituents (pCi/L, ur	less other	wise n	oted)		-
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW340 12B-0900 08/15/1	) 31 6					MW39D 23B-09006 08/30/16	3					MW4 12B-09( 08/09,	2D 0014 /16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	14.2		0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	7.3		3	-	3	Arsenic	1.4	J	3	-	3	Arsenic	0.7	J	3	-	3
Lithium	3,410		500	-	730	Lithium	45.8	J+	500	-	730	Lithium	36	J	500	-	730
Geochemical Parameters (mg/L, unle	ss otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)		-	Geochemical Parameters (mg/L, ur	less other	wise n	oted)		-
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	1,620		15	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	1,580		15	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	3,830		100	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	1,640		100	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	0.046	J	0.11	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	0.01	U	0.01	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	0.046	J	0.10	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	0.12	J	0.20	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	339		10	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	2	U	2	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	23.4		0.11	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	0.05	U	0.05	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	2.1		1	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	20	U	20	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	s otherwis	e note	ed)		-	Radiological Constituents (pCi/L, u	nless other	wise r	oted)		-
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW43 12B-0900 08/09/1	D )15 L6					MW451 12B-0900 08/18/1	D )46 16					MW45D D 12B-09 08/18	uplica 0076 /16	te		
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	192		0.5	-	1	Benzene	171		0.5	-	1
Arsenic	71.6		3	-	3	Arsenic	2.2	J	3	-	3	Arsenic	1.9	J	3	-	3
Lithium	1,930		500	-	730	Lithium	2,230		500	-	730	Lithium	2,330		500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)		-	Geochemical Parameters (mg/L, unles	s otherwis	se note	d)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	1,250		15	-	-	Manganese, Total (ug/L)	12,300		75	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	1,150		15	-	-	Manganese, Filtered (ug/L)	13,600		75	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	4,550		100	-	-	Iron, Total (ug/L)	51,500		100	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	30.2	J	100	-	-	Iron, Filtered (ug/L)	61,000		100	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	0.64		0.11	-	-	Nitrate (as N)	0.094	J	0.11	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	0.01	U	0.01	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	0.64		0.10	-	-	Nitrate and Nitrite (as N)	0.094	J	0.1	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	0.13	J	0.20	-	-	Ammonia (as N)	6.4		0.80	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	540		30	-	-	Sulfate	2,350		100	-	-	Sulfate	NS	-	-	-	-
Sulfide	2	U	2	-	-	Sulfide	2	U	2	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	8.4		0.11	-	-	Methane (ug/L)	2,630		5.5	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	0.05	U	0.05	-	-	Phosphorus, Total	0.016	J	0.05	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	1.8		1	-	-	Total Organic Carbon (TOC)	34.2		1	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	7	J	20	-	-	Chemical Oxygen Demand (COD)	105		20	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	ise not	ed)			Radiological Constituents (pCi/L, unles	ss otherwi	se note	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	noted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW46	)			MW47D							MW4	8D				
	12B-0900	23					12B-09002	5					12B-090	0027			
	08/11/1	.6					08/11/16	i					08/11,	/16			
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	219		5	-	1	Benzene	0.87		0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	0.98	J	3	-	3	Arsenic	214		7.5	-	3	Arsenic	13.6		3	-	3
Lithium	7,740		500	-	730	Lithium	14,600		500	-	730	Lithium	3,130		500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)		-	Geochemical Parameters (mg/L, unles	s otherwis	e note	ed)		-	Geochemical Parameters (mg/L, un	less other	wise n	oted)	-	
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	•	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	•	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unle	ess otherwi	ise not	ed)		-	Radiological Constituents (pCi/L, unles	ss otherwis	se not	ed)		-	Radiological Constituents (pCi/L, ur	nless other	wise n	oted)	-	-
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW510 20A-0900 08/23/1	) 56 6					MW52D 20A-09007 09/21/16	71 5					MW5 23B-09 08/24	3D 0059 /16			
	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	1.2	J	3	-	3	Arsenic	2.2	J+	3	-	3	Arsenic	1.4	J	3	-	3
Lithium	52.6	J	500	-	730	Lithium	28.5	J+	500	-	730	Lithium	32.1	J	500	-	730
Geochemical Parameters (mg/L, unle	ess otherwi	se not	ed)			Geochemical Parameters (mg/L, unles	s otherwis	se not	ed)			Geochemical Parameters (mg/L, ur	less other	wise n	oted)		
Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-	Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-	Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-	Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-	Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-	Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-	Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-	Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-	Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-	Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-	Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-	Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-	Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-	Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-	Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, unl	ess otherwi	se not	ted)			Radiological Constituents (pCi/L, unles	s otherwi	se not	ed)			Radiological Constituents (pCi/L, u	nless other	wise r	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-	Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-	Potassium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

J- - Result is estimated and may be biased low.

	MW540 23B-0900 08/25/1	) 62 6			
	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)		-			-
Benzene	0.5	U	0.5	-	1
Arsenic	4.4		3	-	3
Lithium	6.2	J+	500	-	730
Geochemical Parameters (mg/L, un	less otherwi	se note	ed)		
Manganese, Total (ug/L)	NS	-	-	-	-
Manganese, Filtered (ug/L)	NS	-	-	-	-
Iron, Total (ug/L)	NS	-	-	-	-
Iron, Filtered (ug/L)	NS	-	-	-	-
Nitrate (as N)	NS	-	-	-	-
Nitrite (as N)	NS	-	-	-	-
Nitrate and Nitrite (as N)	NS	-	-	-	-
Ammonia (as N)	NS	-	-	-	-
Sulfate	NS	-	-	-	-
Sulfide	NS	-	-	-	-
Methane (ug/L)	NS	-	-	-	-
Phosphorus, Total	NS	-	-	-	-
Total Organic Carbon (TOC)	NS	-	-	-	-
Chemical Oxygen Demand (COD)	NS	-	-	-	-
Radiological Constituents (pCi/L, un	less otherwi	ise not	ed)		
Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-
U-235	NS	-	-	-	-
U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-
Radon-222	NS	-	-	-	-
Potassium (ug/L)	NS	-	- 1	-	-

<u>Notes</u> NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.

## TABLE E-3SURFACE WATER SAMPLING RESULTSFUSRAP MAYWOOD SUPERFUND SITE

	SW-003 23A-0260 09/07/1	57 6					SW-004 23A-026058 09/07/16	8					SW-004 Du 23A-020 09/07,	uplicat 6068 /16	e		
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)		-				GW COCs (ug/L)						GW COCs (ug/L)		-	· · · · ·		
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	2.9	J	3	-	3	Arsenic	7.6		3	-	3	Arsenic	7.7		3	-	3
Lithium	15.4	J+	500	-	730	Lithium	556		500	-	730	Lithium	558		500	-	730
Radiological Constituents (pCi/L, unle	ss otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	s otherwis	e note	d)			Radiological Constituents (pCi/L, ur	less other	wise n	oted)		
Gross Alpha	3.47		2.50	2.29	15	15         Gross Alpha         3.98         2.50         2.41         15						Gross Alpha	NS	-	-	-	-
Gross Beta	3.88		1.93	1.55	50	Gross Beta	23.34		2.19	3.08	50	Gross Beta	NS	-	-	-	-
Ra-226	0.18	U	0.19	0.17	-	Ra-226	0.336		0.234	0.245	-	Ra-226	NS	-	-	-	-
Ra-228	0.65		0.25	0.34	-	Ra-228	1.64		0.240	0.388	-	Ra-228	NS	-	-	-	-
Total Radium	0.83		-	-	5	Total Radium	1.973		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	0.02	U	0.138	0.059	-	Thorium-228	0.242		0.082	0.175	-	Thorium-228	NS	-	-	-	-
Thorium-230	0.16	J	0.087	0.162	-	Thorium-230	0.24	J	0.093	0.195	-	Thorium-230	NS	-	-	-	-
Thorium-232	0.00	U	0.076	0.059	-	Thorium-232	0	U	0.082	0.064	-	Thorium-232	NS	-	-	-	-
Total Thorium	0.18		-	-	-	Total Thorium	0.482		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.38		0.145	0.218	-	U-234	0.50		0.156	0.262	-	U-234	NS	-	-	-	-
U-235	-0.02	U	0.173	0.066	-	U-235	0.064	U	0.087	0.093	-	U-235	NS	-	-	-	-
U-238	0.21		0.08	0.159	-	U-238	0.351		0.086	0.216	-	U-238	NS	-	-	-	-
Total Uranium	0.56		-	-	-	Total Uranium	0.915		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.62		-	-	30	Total Uranium (ug/L)	1.04		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-

#### **Notes**

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

J - Estimated concentration.

# TABLE E-4ADJUSTED GROSS ALPHA DATA SHEETFUSRAP MAYWOOD SUPERFUND SITE

122-090073         B38W015         GW         0.14         J         0.019         U         0.120         J         4.960         J         4.77           122.090077         (field duplicite)         GW         0.049         U         0.029         U         0.116         J         0.194         4.490         J         4.330           120-090073         B38W038         GW         0.032         U         0.031         U         0.622         U         0.145         2.281         UU         2.14           190-09004         B38W140         GW         0.455         C         0.091         J         0.421         1.416         5510         J         4.090           120-090041         B38W140         GW         0.480         C         0.030         U         0.383         C         8.287         J         1.666           20A-090054         B38W150         GW         0.430         C         0.200         U         0.200         D.2750         4.800         J         4.051           20A-090054         B38W178         GW         0.223         C         0.266         U         0.186         0.465         3.762         J         1.104 <th>Field Sample ID</th> <th>Well ID Number</th> <th>Media</th> <th>U-234 Activity (pCi/L)</th> <th>U-234 Qualifier</th> <th>U-235 Activity (pCi/L)</th> <th>U-235 Qualifier</th> <th>U-238 Activity (pCi/L)</th> <th>U-238 Qualifier</th> <th>Total U (pCi/L)</th> <th>Gross Alpha (pCi/L)</th> <th>Validation Qualifier</th> <th>Adjusted Gross Alpha (Gross Alpha - Total U)</th>	Field Sample ID	Well ID Number	Media	U-234 Activity (pCi/L)	U-234 Qualifier	U-235 Activity (pCi/L)	U-235 Qualifier	U-238 Activity (pCi/L)	U-238 Qualifier	Total U (pCi/L)	Gross Alpha (pCi/L)	Validation Qualifier	Adjusted Gross Alpha (Gross Alpha - Total U)
B38W015         Out         Out         Out         Out         Out         Out         Out         Out         Add           12A-090073         B38W020         GW         O.356         J         O.058         U         O.134         U         O.528         2.004         UJ         1.148           13A-090075         B38W035         GW         O.051         U         O.052         U         0.134         U         0.528         2.004         UJ         1.418           13A-090010         B38W1A5         GW         O.455         O.000         U         0.383         O.868         3.770         J         2.0921           20A-090045         B38W1A5         GW         O.430         U         O.360         D.870         6.8277         J         6.66           20A-090044         B38W17A         GW         O.233         O.020         U         0.200         D.756         4.800         J         1.405           20A-090044         B38W17A         GW         O.233         O.050         U         0.000         U         0.000         J         0.111           20A-090075         (field duplicate)         GW         0.171         O.048         U	12A-090052	B38W01S	GW	0.144	J	0.019	U	0.029	U	0.192	4.960	J	4.77
122-090077         (fried duplicate)         GW         0.049         U         0.058         U         0.116         J         0.134         U         0.528         2.004         UJ         1.4.8           120-090037         838W038         GW         0.032         U         0.031         U         0.062         U         0.145         2.281         UJ         2.14           130-090004         838W143         GW         0.904         0.091         J         0.421         1.146         5.510         J         4.09           130-09004         838W145         GW         0.480         U         0.381         0.868         3.770         J         2.092           20A-09005         838W155         GW         0.480         0.020         U         0.200         0.870         6.927         J         6.06           20A-090074         838W150         GW         0.431         0.086         U         0.186         0.465         3.762         3.30           20A-090074         838W177         GW         0.000         U         0.000         U         0.000         1.104         1.104           20A 090078         (fieid duplcate)         GW         0.171<		B38W01S											
12A-090053         B38W02D         GW         0.336         J         0.058         U         0.134         U         0.582         2.004         UJ         1.48           10A-090075         B38W135         GW         0.004         0.031         U         0.042         1.416         5.510         J         4.09           19A-090045         B38W145         GW         0.420         0.030         U         0.383         0.6868         3.770         J         2.062           20A-090045         B38W155         GW         0.480         0.030         U         0.360         0.870         6.927         J         6.66           20A-090075         (filed duplicate)         GW         0.530         0.020         U         2.000         0.750         4.800         J         4.05           20A-090075         (filed duplicate)         GW         4.118         0.056         U         0.166         0.465         3.762         3.30           20A-090076         B38W178         GW         0.0171         0.048         U         0.0276         12.050         J         11.77           20-090078         (filed duplicate)         GW         0.172         0.077         U </td <td>12A-090077</td> <td>(field duplicate)</td> <td>GW</td> <td>0.049</td> <td>U</td> <td>0.029</td> <td>U</td> <td>0.116</td> <td>J</td> <td>0.194</td> <td>4.490</td> <td>J</td> <td>4.30</td>	12A-090077	(field duplicate)	GW	0.049	U	0.029	U	0.116	J	0.194	4.490	J	4.30
10A-090037         B38W038         GW         0.052         U         0.031         U         0.062         U         0.145         2.281         UJ         2.14           19A-090041         B38W140         GW         0.455         0.030         U         0.383         0.868         3.770         J         2.082           20A-090045         B38W155         GW         0.450         0.360         U         0.366         5.927         J         6.06           20A-090045         B38W155         GW         0.430         U         0.360         U         0.3750         4.800         J         4.05           20A-090044         B38W175         GW         0.530         U         0.020         U         0.750         4.800         J         4.05           20A-090044         B38W177         GW         0.223         0.056         U         0.166         0.465         3.762         3.30           20A-090045         B38W178         GW         1.027         0.773         U         0.000         U         0.000         1.00         1.00         1.177           12A-090078         B38W150R         GW         1.027         0.773         U         0.	12A-090053	B38W02D	GW	0.336	J	0.058	U	0.134	U	0.528	2.004	UJ	1.48
19A-09001         B38W149         GW         0.994         0.091         J         0.421         1.16         5.510         J         4.09           19A-09004         B38W149         GW         0.480         0.030         U         0.383         0.686         3.770         J         2.022           20A-090075         (field duplicate)         GW         0.530         0.020         U         0.200         0.750         4.800         J         4.05           20A-09004         B38W178         GW         0.023         0.056         U         0.186         0.0455         3.762         3.30           20A-09004         B38W178         GW         0.020         U         0.000         U         0.000         U         0.000         J         1.140           20A-09004         B38W178         GW         0.171         0.048         U         0.057         U         0.0276         12.050         J         1.177           20A-090078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         1.177           128-090016         B38W180         GW         0.172         0.	10A-090037	B38W03B	GW	0.052	U	0.031	U	0.062	U	0.145	2.281	UJ	2.14
19A-90041       B38W14D       GW       0.455       0.030       U       0.383       0.868       3.770       J       2.092         20A-990045       B38W155       GW       0.480       0.030       U       0.3860       0.870       6.527       J       6.66         20A-990044       B38W155       GW       0.530       0.020       U       0.360       0.870       6.527       J       6.66         20A-990044       B38W17A       GW       0.4118       0.088       J       1.480       5.686       6.000       J       0.31         20A-990054       B38W17B       GW       0.223       0.055       U       0.186       0.465       3.762       J       3.30         20A-990058       B38W17B       GW       0.000       U       0.000       U       0.000       U       0.000       J       1.104       J       1.104         20A-990058       B38W17B       GW       1.127       0.048       U       0.057       U       0.276       12.050       J       1.177         128-090010       fileid duplicate)       GW       0.171       0.048       U       0.018       U       0.026       J       J.530	19A-090040	B38W14S	GW	0.904		0.091	J	0.421		1.416	5.510	J	4.09
20A 090045         B38W155         GW         0.480         0.030         U         0.360         0.870         6.927         J         6.06           20A 090075         (field duplicate)         GW         0.530         0.020         U         0.200         0.750         4.800         J         4.05           20A 090074         B38W17A         GW         0.223         0.056         U         0.186         0.465         3.762         3.30           20A 090075         B38W17A         GW         0.000         U         0.000         U         0.000         U         0.000         II         0.000         J         1.104           20A 090078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         1.177           128-090018         B38W180R         GW         1.927         0.73         1.0594         3.764         5.229         J         1.53           128-090011         B38W280R         GW         0.027         U         0.018         U         0.081         5.400         5.32           10A-090012         B38W250R         GW         0.027         U         <	19A-090041	B38W14D	GW	0.455		0.030	U	0.383		0.868	3.770	J	2.092
Date         Description         Description <thdescription< th=""> <thde< td=""><td>20A-090045</td><td>B38W15S</td><td>GW</td><td>0.480</td><td></td><td>0.030</td><td>U</td><td>0.360</td><td></td><td>0.870</td><td>6.927</td><td>J</td><td>6.06</td></thde<></thdescription<>	20A-090045	B38W15S	GW	0.480		0.030	U	0.360		0.870	6.927	J	6.06
20A.990075         (field duplicate)         GW         0.530         0.020         0.750         4.800         J         4.05           20A.990044         B38W17A         GW         0.223         0.056         U         0.186         0.465         3.762         3.30           20A.990045         B38W17B         GW         0.000         U         0.000         U         0.000         11.040         J         11.04           20A-990078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         1.177           128-990078         field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         1.177           128-99001         B38W180R         GW         1.927         0.173         1.1694         3.794         5.329         J         1.53           128-99001         B38W245         GW         0.027         U         0.050         U         2.200         4.370         2.530         J         1.84           10A-99011         B38W258         GW         0.027         U         0.01         0.018		B38W15S											
20A-99004         B38W15D         GW         4.118         0.088         J         1.480         5.66         6.000         J         0.31           20A-990064         B38W17A         GW         0.232         0.056         U         0.186         0.465         3.762         3.30           20A-990065         B38W17B         GW         0.000         U         0.000         U         0.000         U         0.000         J         11.040         J         11.04           B38W17B         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         11.77           128-090018         B38W18DR         GW         1.927         0.173         1.694         3.794         5.329         J         1.53           128-090010         (field duplicate)         GW         0.027         U         0.009         U         0.018         U         0.045         1.0859         J         1.081           128-090012         B38W24D         GW         0.027         U         0         U         0.018         U         0.045         1.0.252         9.16           128-090010         B38W25DR         GW	20A-090075	(field duplicate)	GW	0.530		0.020	U	0.200		0.750	4.800	J	4.05
20A.090064         B38W17A         GW         0.223         0.056         U         0.186         0.465         3.762         3.30           20A.090065         B38W17B         GW         0.000         U         0.000         U         0.000         II.04         J         11.04           20A.090078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         11.77           128-090078         B38W180R         GW         1.327         0.173         1.694         3.794         5.329         J         1.53           128-090010         (field duplicate)         GW         0.072         U         -0.009         U         0.018         U         0.081         5.400         5.32           10A-090011         B38W245         GW         0.027         U         0         U         0.018         U         0.045         10.859         J         10.81           128-090010         B38W250R         GW         0.027         U         0.012         U         0.126         J         0.252         9.710         9.46           128-090014         MISS01AR         GW         0.0	20A-090044	B38W15D	GW	4.118		0.088	J	1.480		5.686	6.000	J	0.31
20A-090065         B38W17B         GW         0.000         U         0.000         U         0.000         U         0.000         I1.040         J         11.04           20A-090078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         11.77           128-090018         B38W18DR         GW         1.927         0.173         1.694         3.794         5.329         J         1.53           128-090010         (field duplicate)         GW         2.120         0.050         U         2.200         4.370         2.530         J         -1.84           10A-090012         B38W24D         GW         0.027         U         0.009         U         0.018         U         0.045         10.859         J         10.81           128-090016         B38W25DR         GW         0.027         U         0.032         U         0.126         J         0.252         9.710         9.46           128-090016         MISS01AR         GW         0.078         U         -0.017         U         0.375         4.190         .3.98           128-090017         MISS02AR	20A-090064	B38W17A	GW	0.223		0.056	U	0.186		0.465	3.762		3.30
B38W178         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         11.77           12B-09008         B38W180R         GW         1.927         0.173         1.694         3.794         5.329         J         1.53           12B-09001         (field duplicate)         GW         2.120         0.050         U         2.200         4.370         2.530         J         -1.84           10A-090011         B38W245         GW         0.072         U         -0.09         U         0.018         U         0.081         5.400         5.32           10A-090012         B38W240         GW         0.027         U         0         U         0.018         U         0.045         10.859         J         10.81           12B-09000         B38W255R         GW         0.529         0.031         U         0.497         1.057         10.220         9.16         13.85           12B-090017         MISS01AR         GW         0.078         U         -0.01         U         0.175         6.170         5.99         13.88           12B-090017         MISS02AR         GW         0.302         0.057	20A-090065	B38W17B	GW	0.000	U	0.000	U	0.000	U	0.000	11.040	J	11.04
20A-090078         (field duplicate)         GW         0.171         0.048         U         0.057         U         0.276         12.050         J         11.77           12B-090008         B38W18DR         GW         1.927         0.173         1.694         3.794         5.329         J         1.53           12B-090010         (field duplicate)         GW         2.120         0.050         U         2.200         4.370         2.530         J         -1.84           10A-090012         B38W245         GW         0.072         U         0.009         U         0.018         U         0.045         10.859         J         10.81           12B-09000         B38W25DR         GW         0.027         U         0         U         0.126         J         0.252         9.710         9.46           12B-090016         MISS01AR         GW         0.078         U         -0.01         U         0.177         U         0.175         6.170         5.99           12B-090017         MISS01AR         GW         0.172         0.057         U         0.233         0.486         0.880         U         0.39           12B-09017         MISS02AR         G		B38W17B											
128-09008         B38W18DR         GW         1.927         0.73         1.694         3.794         5.29         J         1.53           128-090010         (field duplicate)         GW         2.120         0.050         U         2.200         4.370         2.530         J         -1.84           10A-090011         B38W245         GW         0.072         U         -0.009         U         0.018         U         0.045         10.859         J         10.81           128-090000         B38W25S         GW         0.027         U         0         U         0.018         U         0.045         10.859         J         10.81           128-090001         B38W25SR         GW         0.027         U         0.011         U         0.426         J         0.252         9.710         9.46           128-090016         MISS01AR         GW         0.078         U         -0.01         U         0.233         0.486         0.880         UJ         0.39           128-090017         MISS01AR         GW         0.172         0.057         U         0.363         1.150         6.10         5.460           128-090032         MISS02AR         GW	20A-090078	(field duplicate)	GW	0.171		0.048	U	0.057	U	0.276	12.050	J	11.77
B38W180W         GW         2.120         0.050         U         2.200         4.370         2.530         J         -1.84           10A-090011         B38W245         GW         0.072         U         -0.009         U         0.018         U         0.081         5.400         5.32           10A-090012         B38W240         GW         0.027         U         0         U         0.018         U         0.045         10.859         J         10.81           12B-090000         B38W258         GW         0.027         U         0.03         U         0.047         10.57         10.220         9.16           12B-09001         B38W258R         GW         0.094         J         0.032         U         0.126         J         0.252         9.710         9.46           12B-090016         MISS01AR         GW         0.078         U         -0.01         U         0.175         6.170         U         5.99           12B-090019         MISS02AR         GW         0.172         0.057         U         0.076         U         0.363         4.290         3.98           12B-090018         MISS02AR         GW         0.030         U	12B-090008	B38W18DR	GW	1.927		0.173		1.694		3.794	5.329	J	1.53
12b-090010         (neld duplicate)         GW         2.120         4.370         2.530         1         -1.84           10A-090011         B38W24D         GW         0.027         U         -0.009         U         0.018         U         0.045         10.859         J         10.81           12b-09000         B38W25SR         GW         0.529         0.031         U         0.497         1.057         10.220         9.16           12b-090001         B38W25DR         GW         0.094         J         0.032         U         0.126         J         0.252         9.710         9.46           12b-090016         MISS01AR         GW         0.078         U         -0.01         U         0.107         U         0.175         6.170         5.99           12b-090017         MISS02AR         GW         0.172         0.057         U         0.233         0.486         0.880         UJ         0.39           12b-090019         MISS02AR         GW         0.302         U         0.03         U         -0.010         U         0.056         5.250         5.20           12b-090018         MISS02AR         GW         0.302         0.002         U <td>120.000010</td> <td>B38W18DR</td> <td>CIN</td> <td>2 1 2 0</td> <td></td> <td>0.050</td> <td></td> <td>2 200</td> <td></td> <td>4.270</td> <td>2 5 2 0</td> <td></td> <td>1.0.4</td>	120.000010	B38W18DR	CIN	2 1 2 0		0.050		2 200		4.270	2 5 2 0		1.0.4
IDA-090011         B38W245         GW         0.072         U         0         0.018         U         0.081         5.40         5.32           10A-090012         B38W255R         GW         0.027         U         0         U         0.018         U         0.045         10.859         J         10.81           12B-090001         B38W255R         GW         0.094         J         0.032         U         0.126         J         0.252         9.710         9.46           12B-090016         MISS01AR         GW         0.078         U         -0.01         U         0.126         J         0.252         9.710         9.46           12B-090017         MISS01BR         GW         0.172         0.057         U         0.175         6.170         5.99           12B-090019         MISS02AR         GW         0.172         0.057         U         0.076         U         0.305         4.290         3.98           12B-090012         (field duplicate)         GW         0.302         0.057         U         0.076         U         0.305         4.290         2.9         2.9           12B-090012         (field duplicate)         GW         0.302 <td>12B-090010</td> <td>(field duplicate)</td> <td>GW</td> <td>2.120</td> <td></td> <td>0.050</td> <td>0</td> <td>2.200</td> <td></td> <td>4.370</td> <td>2.530</td> <td>J</td> <td>-1.84</td>	12B-090010	(field duplicate)	GW	2.120		0.050	0	2.200		4.370	2.530	J	-1.84
100-090012         B38W250         GW         0.027         U         U         U         0.018         U         0.045         10.859         J         10.81           12B-09000         B38W255R         GW         0.529         0.031         U         0.497         1.057         10.220         9.16           12B-09001         B38W255R         GW         0.078         U         -0.01         U         0.126         J         0.252         9.710         9.46           12B-090016         MISS01AR         GW         0.078         U         -0.01         U         0.107         U         0.175         6.170         5.99           12B-090017         MISS02AR         GW         0.172         0.057         U         0.036         U         0.305         4.290         3.98           12B-090012         (field duplicate)         GW         0.030         U         0.03         U         -0.010         U         0.050         5.250         5.20           12B-090018         MISS02BR         GW         0.302         -0.068         U         0.136         U         0.506         2.600         2.09           12B-090032         MISS05BR         GW	10A-090011	B38W245	GW	0.072	0	-0.009	0	0.018	<u> </u>	0.081	5.400		5.32
128-090000       B38W25SR       GW       0.529       0.031       0       0.497       1.057       10.220       9.16         128-090010       B38W25DR       GW       0.094       J       0.032       U       0.126       J       0.522       9.710       9.46         128-090016       MISS01AR       GW       0.078       U       -0.01       U       0.107       U       0.755       6.70       5.99         128-090017       MISS01BR       GW       0.194       0.059       U       0.233       0.486       0.880       UJ       0.39         128-090019       MISS02AR       GW       0.172       0.057       U       0.076       U       0.305       4.290       3.98         128-090072       (field duplicate)       GW       0.030       U       0.057       U       0.363       1.150       6.610       5.20         128-090032       MISS02BR       GW       0.302       -0.02       U       0.363       1.150       6.610       2.600       2.09         128-090032       MISS05BR       GW       0.302       -0.02       U       0.136       U       0.506       2.600       2.09         128-090033	10A-090012	B38W24D	GW	0.027	U	0	0	0.018	U	0.045	10.859	J	10.81
128-09001       B38W350R       GW       0.094       J       0.032       0       0.126       J       0.252       9.710       9.46         128-090016       MISS01AR       GW       0.078       U       -0.01       U       0.107       U       0.175       6.170       5.99         128-090017       MISS01BR       GW       0.194       0.059       U       0.233       0.486       0.880       U       0.39         128-09017       MISS02AR       GW       0.172       0.057       U       0.076       U       0.305       4.290       3.98         128-09072       (field duplicate)       GW       0.030       U       0.03       U       -0.010       U       0.050       5.250       5.20         128-090032       MISS05AR       GW       0.302       0.068       U       0.136       U       0.566       2.600       2.09         128-090033       MISS05BR       GW       0.104       U       0.028       U       0       U       0.132       9.800       9.67         128-090034       MISS05BR       GW       0.104       U       0.020       U       0.037       U       0.575       11.650 <t< td=""><td>12B-090000</td><td>B38W25SR</td><td>GW</td><td>0.529</td><td></td><td>0.031</td><td>U</td><td>0.497</td><td></td><td>1.057</td><td>10.220</td><td></td><td>9.16</td></t<>	12B-090000	B38W25SR	GW	0.529		0.031	U	0.497		1.057	10.220		9.16
12B-090016       MISS01AR       GW       0.078       U       -0.01       U       0.107       U       0.175       6.170       5.99         12B-090017       MISS01BR       GW       0.194       0.059       U       0.233       0.486       0.880       UJ       0.39         12B-090019       MISS02AR       GW       0.172       0.057       U       0.076       U       0.305       4.290       3.98         12B-090072       (field duplicate)       GW       0.030       U       0.033       U       -0.010       U       0.050       5.250       5.20         12B-090018       MISS02BR       GW       0.807       -0.02       U       0.363       1.150       6.610       5.46         12B-090032       MISS05AR       GW       0.302       0.068       U       0.136       U       0.506       2.600       2.09         12B-090033       MISS05BR       GW       0.104       U       0.028       U       0       U       0.132       9.800       9.67         12B-090034       MISS05BR       GW       0.020       U       0.000       U       0.037       U       0.057       11.650       11.59 <t< td=""><td>12B-090001</td><td>B38W25DR</td><td>GW</td><td>0.094</td><td>J</td><td>0.032</td><td>U</td><td>0.126</td><td>J</td><td>0.252</td><td>9.710</td><td></td><td>9.46</td></t<>	12B-090001	B38W25DR	GW	0.094	J	0.032	U	0.126	J	0.252	9.710		9.46
128-090017         MISS01BR         GW         0.194         0.059         U         0.233         0.486         0.880         UJ         0.39           128-090019         MISS02AR         GW         0.172         0.057         U         0.076         U         0.305         4.290         3.98           128-090072         (field duplicate)         GW         0.030         U         0.03         U         -0.010         U         0.050         5.250         5.20           128-090018         MISS02BR         GW         0.807         -0.02         U         0.363         1.150         6.610         5.46           128-090032         MISS05AR         GW         0.302         0.068         U         0.136         U         0.506         2.600         2.09           128-090033         MISS05BR         GW         0.104         U         0.028         U         0         U         0.132         9.800         9.67           128-090074         (field duplicate)         GW         0.020         U         0.000         U         0.037         U         0.057         11.650         11.59           128-090034         MISS07AR         GW         0.240	12B-090016	MISSO1AR	GW	0.078	U	-0.01	U	0.107	U	0.175	6.170		5.99
12B-090019         MISS02AR         GW         0.172         0.057         U         0.076         U         0.305         4.290         3.98           MISS02AR         MISS02AR         GW         0.030         U         0.037         U         0.305         4.290         3.98           12B-090072         (field duplicate)         GW         0.030         U         0.03         U         -0.010         U         0.050         5.250         5.20           12B-090018         MISS02BR         GW         0.807         -0.02         U         0.363         1.150         6.610         5.46           12B-090032         MISS05BR         GW         0.302         0.068         U         0.136         U         0.506         2.600         2.09           12B-090033         MISS05BR         GW         0.104         U         0.028         U         0         U         0.132         9.800         9.67           12B-090034         MISS07AR         GW         0.020         U         0.007         U         0.057         11.59           12B-090035         MISS07B         GW         2.871         0.189         1.813         4.873         8.640         3.77<	12B-090017	MISSO1BR	GW	0.194		0.059	U	0.233		0.486	0.880	UJ	0.39
12B-090072         (field duplicate)         GW         0.030         U         0.03         U         -0.010         U         0.050         5.250         5.20           12B-090018         MISS02BR         GW         0.807         -0.02         U         0.363         1.150         6.610         5.46           12B-090032         MISS05BR         GW         0.302         0.068         U         0.136         U         0.506         2.600         2.09           12B-090033         MISS05BR         GW         0.104         U         0.028         U         0         U         0.506         2.600         9.67           12B-090034         MISS05BR         GW         0.020         U         0.000         U         0.037         U         0.057         11.650         11.59           12B-090034         MISS07AR         GW         0.300         0         U         0.037         U         0.057         11.650         11.59           12B-090035         MISS07AR         GW         0.330         0         U         0.155         0.485         6.736         J         6.25           12B-090038         MISS07B         GW         2.871         0.189	12B-090019	MISSOZAR	GW	0.172		0.057	U	0.076	U	0.305	4.290		3.98
12B-090072         (Held diplicate)         GW         0.050         0         0.055         0         -0.010         0         0.050         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         3.230         0         0         0         0.0337         0         0.057         11.650         11.59         11.59           128-090034         MISS07AR         GW         0.330         0         0         0         0.057         11.650         J         6.25         3.303           128-090	128 000072	(field duplicate)	GW	0.020		0.02		0.010		0.050	E 2E0		E 20
128-090016       MISS026A       GW       0.807       -0.02       0       0.303       1150       0.010       5.46         12B-090032       MISS05AR       GW       0.302       0.068       U       0.136       U       0.506       2.600       2.09         12B-090033       MISS05BR       GW       0.104       U       0.028       U       0       U       0.132       9.800       9.67         12B-090074       (field duplicate)       GW       0.020       U       0.000       U       0.037       U       0.057       11.650       11.59         12B-090074       (field duplicate)       GW       0.200       U       0.000       U       0.037       U       0.057       11.650       11.59         12B-090074       (field duplicate)       GW       0.330       0       U       0.155       0.485       6.736       J       6.25         12B-090035       MISS07B       GW       2.871       0.189       1.813       4.873       8.640       3.77         12B-090038       MW3SR       GW       0.240       0.028       U       0.148       U       0.416       4.350       J       3.93         12B-090028 </td <td>12B-090072</td> <td></td> <td>GW</td> <td>0.030</td> <td>0</td> <td>0.03</td> <td>0</td> <td>-0.010</td> <td>0</td> <td>1 150</td> <td>5.230</td> <td></td> <td>5.20</td>	12B-090072		GW	0.030	0	0.03	0	-0.010	0	1 150	5.230		5.20
125-090032       MISSOSAR       GW       0.302       0.008       0       0.136       0       0.306       2.000       2.000       2.000         12B-090033       MISSOSBR       GW       0.104       U       0.028       U       0       U       0.132       9.800       9.67         12B-090074       (field duplicate)       GW       0.020       U       0.000       U       0.037       U       0.057       11.650       11.59         12B-090074       (field duplicate)       GW       0.330       0       U       0.037       U       0.057       11.650       11.59         12B-090034       MISSO7AR       GW       0.330       0       U       0.189       1.813       4.873       8.640       3.77         12B-090035       MISSO7B       GW       2.272       0.111       U       2.077       4.460       5.810       1.35         12B-090028       MW245       GW       0.040       U       0.022       U       0.033       U       0.090       3.002       J       2.91         12B-090028       MW24D       GW       6.390       0.06       U       2.45       8.898       14.200       5.30 </td <td>128-090018</td> <td>MISSOEAD</td> <td>GW</td> <td>0.807</td> <td></td> <td>-0.02</td> <td>0</td> <td>0.303</td> <td></td> <td>1.150</td> <td>2,600</td> <td></td> <td>2.00</td>	128-090018	MISSOEAD	GW	0.807		-0.02	0	0.303		1.150	2,600		2.00
12b-090033       MISSOBR       GW       0.104       0       0.028       0       0       0       0.132       9.800       0       9.807         MISSOBR       MISSOBR       GW       0.020       U       0.000       U       0.037       U       0.057       11.650       11.59         12B-090034       MISSO7AR       GW       0.330       0       U       0.155       0.485       6.736       J       6.25         12B-090035       MISSO7B       GW       2.871       0.189       1.813       4.873       8.640       3.77         12B-090038       MW3SR       GW       0.240       0.028       U       0.148       U       0.416       4.350       J       3.93         12B-090038       MW3SR       GW       0.240       0.028       U       0.148       U       0.416       4.350       J       3.93         12B-090038       MW3DR       GW       2.272       0.111       U       2.077       4.460       5.810       1.35         12B-090029       MW24S       GW       0.040       U       0.02       U       0.03       U       0.090       3.002       J       2.91         12B-	12B-090032		GW	0.302		0.008	0	0.150	0	0.500	2.000		2.09
12B-090074       (field duplicate)       GW       0.020       U       0.000       U       0.037       U       0.057       11.650       11.59         12B-090034       MISS07AR       GW       0.330       0       U       0.155       0.485       6.736       J       6.25         12B-090035       MISS07B       GW       2.871       0.189       1.813       4.873       8.640       3.77         12B-090038       MW3SR       GW       0.240       0.028       U       0.148       U       0.416       4.350       J       3.93         12B-090038       MW3DR       GW       2.272       0.111       U       2.077       4.460       5.810       1.35         12B-090028       MW24S       GW       0.040       U       0.02       U       0.03       U       0.090       3.002       J       2.91         12B-090029       MW24D       GW       6.390       0.06       U       2.45       8.898       14.200       5.30         12B-090029       MW24D       GW       6.390       0.06       U       2.45       8.898       14.200       5.30	120-090033	MISSO5BR	Gw	0.104	0	0.028	0	0	0	0.152	9.000		9.07
12B-090034         MISS07AR         GW         0.330         0         U         0.155         0.485         6.736         J         6.25           12B-090035         MISS07B         GW         2.871         0.189         1.813         4.873         8.640         3.77           12B-090108         MW3SR         GW         0.240         0.028         U         0.148         U         0.416         4.350         J         3.93           12B-090038         MW3DR         GW         2.272         0.111         U         2.077         4.460         5.810         1.35           12B-090028         MW24S         GW         0.040         U         0.02         U         0.03         U         0.090         3.002         J         2.91           12B-090029         MW24D         GW         6.390         0.06         U         2.45         8.898         14.200         5.30	12B-090074	(field duplicate)	GW	0.020	U	0.000	U	0.037	U	0.057	11.650		11.59
12B-090035       MISSO7B       GW       2.871       0.189       1.813       4.873       8.640       3.77         12B-090108       MW3SR       GW       0.240       0.028       U       0.148       U       0.416       4.350       J       3.93         12B-090038       MW3DR       GW       2.272       0.111       U       2.077       4.460       5.810       1.35         12B-090028       MW24S       GW       0.040       U       0.02       U       0.03       U       0.090       3.002       J       2.91         12B-090029       MW24D       GW       6.390       0.06       U       2.45       8.898       14.200       5.30	12B-090034	MISS07AR	GW	0.330		0	U	0.155		0.485	6 736	1	6 25
12B-090108         MW3SR         GW         0.240         0.028         U         0.148         U         0.416         4.350         J         3.93           12B-090038         MW3DR         GW         2.272         0.111         U         2.077         4.460         5.810         1.35           12B-090028         MW24S         GW         0.040         U         0.02         U         0.03         U         0.090         3.002         J         2.91           12B-090029         MW24D         GW         6.390         0.06         U         2.45         8.898         14.200         5.30	12B-090035	MISS078	GW	2 871		0 189		1 813		4 873	8.640	, ,	3 77
12B-090038         MW3DR         GW         2.272         0.111         U         2.077         4.460         5.810         1.35           12B-090028         MW24S         GW         0.040         U         0.02         U         0.03         U         0.090         3.002         J         2.91           12B-090029         MW24D         GW         6.390         0.06         U         2.45         8.898         14.200         5.30	12B-090108	MW3SR	GW	0 240		0.028	U	0 148	U	0.416	4 350	1	3.93
12B-090028         MW24S         GW         0.040         U         0.02         U         0.03         U         0.090         3.002         J         2.91           12B-090029         MW24D         GW         6.390         0.06         U         2.45         8.898         14.200         5.30	12B-090038	MW3DR	GW	2 272		0.111	U	2 077		4 460	5 810		1 35
12B-090029         MW24D         GW         6.390         0.06         U         2.45         8.898         14.200         5.30	12B-090028	MW24S	GW	0.040	IJ	0.02	U U	0.03	U	0.090	3.002	1	2.91
	12B-090029	MW24D	GW/	6 390		0.02	11	2 45		8 898	14 200		5 30
1 12B-09002 L MW28S L GW L 0 353 L L 0 052 L L L 0 34 L L 0 747 L 6 790 L L 6 04	12B-0900023	MW/285	GW	0 353		0.052	11	0.34		0.747	6 790		6.04
23A-026057 SW003 SW 0.375 -0.02 II 0.207 0.562 3.470 2.91	23A-026057	SW/003	SW/	0.335		-0.02	11	0.207		0.562	3 470		2 91
23A-026058 SW004 SW 0.5 0.064 U 0.351 0.915 3.980 3.06	23A-026058	SW003	SW	0.5		0.064	U U	0.351		0.915	3,980		3.06

<u>Notes</u>

The MCL for Gross Alpha is 15.0 pCi/L, but exlcudes radon and uranium (40 CFR 141.66) (EPA 2004B)

#### **Qualifiers**

U - Non-detect

J - Estimated concentration

UJ - Estimated non-detect

## TABLE E-5ADJUSTED GROSS BETA DATA SHEETFUSRAP MAYWOOD SUPERFUND SITE

Field Sample ID	Well ID Number	Potassium Concentration (ug/L)	Potassium Concentration (mg/L)	Specific Activity of K- 40 per mg of natural K(pCi/mg) ⁽²⁾	Activity of K-40 (pCi/L)	Gross Beta Activity (pCi/L)	Adjusted Gross Beta Activity (pCi/L) ⁽³⁾
12A-090052	B38W01S	30,400	30.4	0.754	22.92	25.7	2.78
	B38W01S	(1)					
12A-090077	(field duplicate)	30,400 (1)	30.4	0.754	22.92	26.7	3.78
22A-090053	B38W02D	1,090	1.09	0.754	0.82	0.92	0.098
10A-090037	B38W03B	10,200	10.2	0.754	7.69	6.72	-0.97
19A-090040	B38W14S	17,200	17.2	0.754	12.97	12.43	-0.54
19A-090041	B38W14D	4,450	4.45	0.754	3.36	3.82	0.46
20A-090044	B38W15S	127,000	127	0.754	95.76	74.7	-21.06
	B38W15S	(1)					
20A-090075	(field duplicate)	127,000 (1)	127	0.754	95.76	83.6	-12.16
20A-090045	B38W15D	38,000	38	0.754	28.65	27.2	-1.45
20A-090064	B38W17A	27,900	27.9	0.754	21.04	21.3	0.26
20A-090065	B38W17B	144,000	144	0.754	108.6	106	-2.58
	B38W17B	(1)					
20A-090078	(field duplicate)	144,000 (1)	144	0.754	108.6	118	9.42
12B-090008	B38W18DR	2,090	2.09	0.754	1.58	4.63	3.05
	B38W18DR						
12B-090010	(field duplicate)	2,090 (1)	2.09	0.754	1.58	2.08	0.50
10A-090011	B38W24S	19,600	19.6	0.754	14.78	18.2	3.42
10A-090012	B38W24D	20,000	20	0.754	15.08	18	2.92
12B-090000	B38W25SR	77,500	77.5	0.754	58.44	77.5	19.07
12B-090001	B38W25DR	454,000	454	0.754	342.3	400	57.68
12B-090016	MISS01AR	40,200	40.2	0.754	30.31	35	4.69
12B-090017	MISS01BR	1,860	1.86	0.754	1.40	3.48	2.08
12B-090019	MISS02AR	30,900	30.9	0.754	23.30	20.6	-2.70
	MISS02AR						
12B-090072	(field duplicate)	30,900 ⁽¹⁾	30.9	0.754	23.30	23.4	0.10
12B-090018	MISS02BR	33,800	33.8	0.754	25.49	26.6	1.11
12B-090032	MISS05AR	18,300	18.3	0.754	13.80	15	1.20
12B-090033	MISS05BR	1,560,000	1,560	0.754	1176	1,095	-81.24
	MISS05BR						
12B-090074	(field duplicate)	1,560,000 ⁽¹⁾	1,560	0.754	1176	1,146	-30.24
12B-090034	MISS07AR	57,600	57.6	0.754	43.43	40.4	-3.03
12B-090035	MISS07B	33,400	33.4	0.754	25.18	20.6	-4.58
12B-090108	MW3SR	46,300	46.3	0.754	34.91	31.2	-3.71
12B-090038	MW3DR	13,400	13.4	0.754	10.10	12.9	2.80
12B-090028	MW24S	24,600	24.6	0.754	18.55	20.2	1.65
12B-090029	MW24D	7,370	7.37	0.754	5.56	4.56	-1.00
12B-090002	MW28S	25,900	25.9	0.754	19.53	26.1	6.57

#### <u>Notes</u>

Federal /NJDEP gross beta screening value is 50 pCi/L. The Federal screening value does not consider gross beta asociated with naturally occurring Potassium - 40 (K-40) when developing the standard (40 CFR 141.66). The gross beta activity in Table 3-5 is adusted for the detected potassium (K-40 activity) in each sample.

1. Please note that the potassium value shown is the value from the regular field sample associated with the field duplicate since the field dupe was not analyzed for potassium

2. Specific Activity for K-40 per mg of natural K is 0.847 pCi K-40/mg. This value is modfied to account fo K-40 decay by beta emission, which occurs 89% of the time. The 0.847 pCi K-40/mg of natural K is multiplied by 0.89 to obtain the applied specific activity of 0.754 pCi K-40/mg of natural K.

3. Net negative adjusted gross beta values may occur if potassium-40 is the primary or sole contributor to the gross beta due to the uncertainties associated with the gross beta and potassium measurements.

	12B-090006 08/08/16	5				12B-090079 08/09/16					12B-090080 08/10/16	)				12B-090081 08/11/16			
Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW
Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW
	12B-090082	2				12B-090083					12B-090084	Ļ				12B-090085			
	08/15/16					08/16/16					08/17/16					08/18/16			
Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW
Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW
	12B-090086 08/22/16	5				12B-090087 08/23/16	,			12B-090088 08/24/16						12B-090089 08/25/16			
Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW
Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW
	12B-090090	)				12B-090104					12B-090105	5				12B-090106			
	08/29/16					08/30/16					08/31/16					09/01/16			
Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW
Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW

1	2B-026071					12B-090107	1			1	12B-090110	)			1	2B-090109	)		
09/07/16 09/08/						09/08/16					09/21/16					09/22/16			
Analyte	Result	Q	MDC	GW/SW	Analyte	Result	Q	MDC	GW/SW	GW/SW Analyte Result Q MDC GW/S					Analyte	Result	Q	MDC	GW/SW
Benzene	0.5	U	0.5	SW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW	Benzene	0.5	U	0.5	GW

#### Notes

Q - Qualifier.

U - Non-detect.

**Qualifiers** 

MDC - Minimum Detectable Concentration.

GW- Associated Groundwater Sample.

SW - Associated Surface Water Sample.

	12E GROUN 0E	3-0900 IDWA 3/08/1	09 FER FB 6				12 SURFA 0	3-0260 CE WA 9/07/1	073 TER FB .6		
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3
Lithium	21	J	500	-	730	Lithium	5.7	J	500	-	730
Radiological Constituent	s (pCi/L, un	less ot	herwise note:	ed)		Radiological Constituent	s (pCi/L, un	less ot	herwise note:	d)	
Gross Alpha	0.741	UJ	1.28	0.872	15	Gross Alpha	0		4.32	-	15
Gross Beta	-0.356	U	1.97	1.09	50	Gross Beta	2		36.73	-	50
Ra-226	0.034	U	0.22	0.104	-	Ra-226	NS	1	-	-	-
Ra-228	0.247	J-	0.163	0.22	-	Ra-228	NS	1	-	-	-
Total Radium	0.281		-	I	5	Total Radium	NS	-	-	-	-
Thorium-228	-0.012	U	0.168	0.072	-	Thorium-228	NS	1	-	-	-
Thorium-230	0.43		0.2	0.275	-	Thorium-230	NS	1	-	-	-
Thorium-232	0.034	U	0.093	0.072	-	Thorium-232	NS	1	-	-	-
Total Thorium	0.452		-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.038	U	0.165	0.085	-	U-234	NS	1	-	-	-
U-235	-0.01	U	0.14	0.06	-	U-235	NS	-	-	-	-
U-238	0	U	0.077	0.24	-	U-238	NS	-	-	-	-
Total Uranium	0.028		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC/MDA - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

- UJ Estimated non-detect.
- J Estimated concentration.

	12B-090007 08/08/16					12B-090091 08/09/16						12B-090092 08/10/16					
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)						GW COCs (ug/L)		•				GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3
Lithium	14.6	J	500	-	730	Lithium	2.3	J-	500	-	730	Lithium	12.2	J	500	-	730
Radiological Constituents (pCi/L, unless otherwise noted)					Radiological Constituents (pCi/L, unles	ss otherwis	se not	ed)			Radiological Constituents (pCi/L, unless otherwise noted)						
Gross Alpha	0.431	UJ	1.23	0.716	15	Gross Alpha	0.045	UJ	1.25	0.507	15	Gross Alpha	0.80	IJ	1.41	0.942	15
Gross Beta	1.76	U	2.00	1.35	50	Gross Beta	0.405	U	1.93	1.09	50	Gross Beta	1.23		2.15	1.34	50
Ra-226	0.045	U	0.198	0.102	-	Ra-226	0.038	U	0.245	0.115	-	Ra-226	0.045	U	0.293	0.138	-
Ra-228	0.843	J-	0.251	0.365	-	Ra-228	0.435	J	0.19	0.256	-	Ra-228	0.102	U	0.265	0.355	-
Total Radium	0.888		-	-	5	Total Radium	0.473		-	-	5	Total Radium	0.147		-	-	5
Thorium-228	0.035	U	0.152	0.078	-	Thorium-228	-0.01	U	0.207	0.07	-	Thorium-228	0.05	U	0.216	0.113	-
Thorium-230	0.034	U	0.129	0.106	-	Thorium-230	0.298	J	0.17	0.216	-	Thorium-230	0.364		0.094	0.234	-
Thorium-232	0	U	0.071	0.055	-	Thorium-232	0	U	0.079	0.061	-	Thorium-232	-0.01	U	0.149	0.064	-
Total Thorium	0.069		-	-	-	Total Thorium	0.288		-	-	-	Total Thorium	0.404		-	-	-
U-234	-0.018	U	0.156	0.059	-	U-234	0.02	U	0.144	0.062	-	U-234	0.052	U	0.152	0.09	-
U-235	0.054	U	0.073	0.079	-	U-235	0	U	0.08	0.249	-	U-235	0.052	U	0.152	0.09	-
U-238	0.072	U	0.132	0.095	-	U-238	0.029	U	0.079	0.062	-	U-238	0.021	U	0.151	0.065	-
Total Uranium	0.108		-	-	-	Total Uranium	0.049		-	-	-	Total Uranium	0.125		-	-	-
Total Uranium (ug/L)	0.214		-	-	30	Total Uranium (ug/L)	0.086		-	-	30	Total Uranium (ug/L)	0.06		-	-	30

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

	12B-090093 08/11/16					12B-090094 08/15/16						12B-090095 08/16/16					
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)				•		GW COCs (ug/L)		•	•			GW COCs (ug/L)					
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3
Lithium	9.5	J	500	-	730	Lithium	34.3	J	500	-	730	Lithium	6.6	J	500	-	730
Radiological Constituents (pCi/L, unless otherwise noted)					Radiological Constituents (pCi/L, unles	ss otherwis	se not	ed)			Radiological Constituents (pCi/L, unless otherwise noted)						
Gross Alpha	NS	-	-	-	-	Gross Alpha	0.603	UJ	1.25	0.805	15	Gross Alpha	-0.134	U	1.30	0.582	15
Gross Beta	NS	-	-	-	-	Gross Beta	1.07		2.43	1.47	50	Gross Beta	0.251		1.88	1.02	50
Ra-226	NS	-	-	-	-	Ra-226	0.126	U	0.274	0.175	-	Ra-226	-0.046	U	0.37	0.118	-
Ra-228	NS	-	-	-	-	Ra-228	0.116	U	0.225	0.258	-	Ra-228	0.191	U	0.194	0.249	-
Total Radium	NS	-	-	-	-	Total Radium	0.242		-	-	5	Total Radium	0.145		-	-	5
Thorium-228	NS	-	-	-	-	Thorium-228	-0.039	U	0.203	0.069	-	Thorium-228	0	U	0.214	0.076	-
Thorium-230	NS	-	-	-	-	Thorium-230	0.158	J	0.141	0.165	-	Thorium-230	1.65		0.101	0.523	-
Thorium-232	NS	-	-	-	-	Thorium-232	0	U	0.078	0.06	-	Thorium-232	0	U	0.089	0.069	-
Total Thorium	NS	-	-	-	-	Total Thorium	0.119		-	-	-	Total Thorium	1.65		-	-	-
U-234	NS	-	-	-	-	U-234	0	U	0.087	0.271	-	U-234	0	U	0.086	0.268	-
U-235	NS	-	-	-	-	U-235	0.032	U	0.087	0.068	-	U-235	-0.021	U	0.185	0.071	-
U-238	NS	-	-	-	-	U-238	0	U	0.087	0.27	-	U-238	0	U	0.086	0.268	-
Total Uranium	NS	-	-	-	-	Total Uranium	0.032		-	-	-	Total Uranium	-0.021		-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	0		-	-	30	Total Uranium (ug/L)	0		-	-	30

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

	12B-090096 08/17/16					12B-090097 08/18/16						12B-090098 08/22/16					
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)						GW COCs (ug/L)						
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3
Lithium	500	U	500	-	730	Lithium	14.6	J	500	-	730	Lithium	6.4	J	500	-	730
Radiological Constituents (pCi/L, unless otherwise noted)						Radiological Constituents (pCi/L, unless otherwise noted)						Radiological Constituents (pCi/L, unless otherwise noted)					
Gross Alpha	0.258	UJ	1.18	0.604	15	Gross Alpha	NS	-	-	-	-	Gross Alpha	NS	1	-	-	-
Gross Beta	0.192		2.31	1.27	50	Gross Beta	NS	-	-	-	-	Gross Beta	NS	-	-	-	-
Ra-226	0.217	-	0.187	0.189	-	Ra-226	NS	-	-	-	-	Ra-226	NS	-	-	-	-
Ra-228	0.892	-	0.243	0.348	-	Ra-228	NS	-	-	-	-	Ra-228	NS	-	-	-	-
Total Radium	1.11	-	-	-	5	Total Radium	NS	-	-	-	-	Total Radium	NS	-	-	-	-
Thorium-228	-0.01	U	0.202	0.068	-	Thorium-228	NS	-	-	-	-	Thorium-228	NS	1	-	-	-
Thorium-230	0.156	J	0.14	0.163	-	Thorium-230	NS	-	-	-	-	Thorium-230	NS	1	-	-	-
Thorium-232	0	U	0.077	0.06	-	Thorium-232	NS	-	-	-	-	Thorium-232	NS	-	-	-	-
Total Thorium	0.146	-	-	-	-	Total Thorium	NS	-	-	-	-	Total Thorium	NS	-	-	-	-
U-234	0.009	U	0.162	0.062	-	U-234	NS	-	-	-	-	U-234	NS	-	-	-	-
U-235	0	U	0.076	0.236	-	U-235	NS	-	-	-	-	U-235	NS	-	-	-	-
U-238	0.019	U	0.136	0.059	-	U-238	NS	-	-	-	-	U-238	NS	-	-	-	-
Total Uranium	0.028	-	-	-	-	Total Uranium	NS	-	-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	0.056	-	-	-	30	Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

12B-090099 08/24/16					12B-090100 08/29/16						12B-090102 09/01/16						
Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level	Analyte	Result	Q	MDC/MDA	Error (Rads)	Cleanup Level
GW COCs (ug/L)					GW COCs (ug/L)						GW COCs (ug/L)						
Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1	Benzene	0.5	U	0.5	-	1
Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3	Arsenic	3	U	3	-	3
Lithium	4.2	J	500	-	730	Lithium	10.4	J	500	-	730	Lithium	6	J	500	-	730
Radiological Constituents (pCi/L, unle	ess otherwi	se not	ed)			Radiological Constituents (pCi/L, unles	s otherwis	e note	d)			Radiological Constituents (pCi/L, ur	less other	wise n	oted)		
Gross Alpha	NS	-	-	-	-	Gross Alpha	0.34	U	1.11	0.621	15	Gross Alpha	NS	-	-	-	-
Gross Beta	NS	-	-	-	-	Gross Beta	2.40		2.32	1.59	50	Gross Beta	NS	-	-	-	-
Ra-226	NS	-	-	-	-	Ra-226	0.024	U	0.178	0.077	-	Ra-226	NS	-	-	-	-
Ra-228	NS	-	-	-	-	Ra-228	0.27		0.195	0.242	-	Ra-228	NS	-	-	-	-
Total Radium	NS	-	-	-	-	Total Radium	0.294		-	-	5	Total Radium	NS	-	-	-	-
Thorium-228	NS	-	-	-	-	Thorium-228	0.018	U	0.20	0.088	-	Thorium-228	NS	-	-	-	-
Thorium-230	NS	-	-	-	-	Thorium-230	0.098	U	0.139	0.14	-	Thorium-230	NS	-	-	-	-
Thorium-232	NS	-	-	-	-	Thorium-232	-0.01	U	0.138	0.059	-	Thorium-232	NS	-	-	-	-
Total Thorium	NS	-	-	-	-	Total Thorium	0.106		-	-	-	Total Thorium	NS	-	-	-	-
U-234	NS	-	-	-	-	U-234	0.027	U	0.073	0.057	-	U-234	NS	-	-	-	-
U-235	NS	-	-	-	-	U-235	-0.009	U	0.132	0.057	-	U-235	NS	-	-	-	-
U-238	NS	-	-	-	-	U-238	-0.009	U	0.132	0.057	-	U-238	NS	-	-	-	-
Total Uranium	NS	-	-	-	-	Total Uranium	0.009		-	-	-	Total Uranium	NS	-	-	-	-
Total Uranium (ug/L)	NS	-	-	-	-	Total Uranium (ug/L)	-0.027		-	-	30	Total Uranium (ug/L)	NS	-	-	-	-

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration/Minimum Detectable Activity.

Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

U - Non-detect.

UJ - Estimated non-detect.

J - Estimated concentration.

J+ - Result is estimated and may be biased high.

	128 0001	02						
09/21/16								
00, 21, 20								
Analyta	Pocult	0		Error	Cleanup			
Analyte	Result	ų	IVIDC/IVIDA	(Rads)	Level			
GW COCs (ug/L)								
Benzene	0.5	U	0.5	-	1			
Arsenic	3	U	3	-	3			
Lithium	8.7	J	500	-	730			
Radiological Constituents (pCi/L, unle	ss otherwi	se note	ed)					
Gross Alpha	NS	-	-	-	-			
Gross Beta	NS	-	-	-	-			
Ra-226	NS	-	-	-	-			
Ra-228	NS	-	-	-	-			
Total Radium	NS	-	-	-	-			
Thorium-228	NS	-	-	-	-			
Thorium-230	NS	-	-	-	-			
Thorium-232	NS	-	-	-	-			
Total Thorium	NS	-	-	-	-			
U-234	NS	-	-	-	-			
U-235	NS	-	-	-	-			
U-238	NS	-	-	-	-			
Total Uranium	NS	-	-	-	-			
Total Uranium (ug/L)	NS	-	-	-	-			

#### <u>Notes</u>

NS - Not Sampled.

- - Not Applicable.

Q - Qualifier.

MDC - Minimum Detectable Concentration/Minimum Detectable Activity. Bolded text indicates Groundwater Cleanup exceedance.

Please see Table 1 for description of Groundwater Cleanup Levels.

#### **Qualifiers**

- U Non-detect.
- UJ Estimated non-detect.
- J Estimated concentration.
- J+ Result is estimated and may be biased high.
- J- Result is estimated and may be biased low.

### APPENDIX F Quality Control Summary Report for the Annual Long-Term Groundwater Monitoring Report, 2016 (Note: The QCSR Data Package and Validation Report Attachments

are provided on CD)

### QUALITY CONTROL SUMMARY REPORT FOR THE ANNUAL LONG TERM GROUNDWATER MONITORING REPORT, 2016

#### FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

#### SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. W912DQ-13-D-3016 TASK ORDER 0002

Prepared for



Department of the Army U.S. Army Engineer New York District 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer Kansas City District 700 Federal Building Kansas City, Missouri 64106

Prepared by



100 West Hunter Avenue Maywood, New Jersey 07607

> April 2017 Revision B

This page intentionally left blank.

### QUALITY CONTROL SUMMARY REPORT FOR THE ANNUAL LONG TERM GROUNDWATER MONITORING REPORT, 2016

#### FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

#### SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. W912DQ-13-D-3016 TASK ORDER 001

Prepared for



Department of the Army U.S. Army Engineer New York District 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer Kansas City District 700 Federal Building Kansas City, Missouri 64106

Prepared by



100 West Hunter Avenue Maywood, New Jersey 07607

> April 2017 Revision B

Prepared by: Dr. Brian Tucker

Chemical Quality Control Coordinator Date: _____

This page intentionally left blank.

#### **Table of Contents**

ABB	REVIA	TIONS AND ACRONYMS	6
1.0	INTE	RODUCTION	9
2.0	DAT	A COLLECTION	9
	2.1	SAMPLE HANDLING AND CUSTODY – RADIOLOGICAL LABORATORY	10
	2.2	SAMPLE HANDLING AND CUSTODY – CHEMICAL LABORATORY	10
	2.3	EQUIPMENT CAUBRATION AND MAINTENANCE	10
	2.5	2.3.1 Field Instrument Measurement and Calibration	10
		2.3.2 Onsite Laboratory – Radiological Analyses	
		2.3.3 Offsite Laboratory – Chemical Analyses	
	2.4	ANALYTICAL METHODS	
	2.5	MODIFICATIONS TO THE WORK PLAN	
3.0	DAT	A ANALYSIS AND VALIDATION	13
4.0	DAT	A SUMMARIES	13
5.0	ANA	LYTICAL AND QUALITY ASSURANCE / QUALITY CONTROL	
	PRO	BLEMS ENCOUNTERED AT LABORATORIES	13
	5.1	BLANK ANALYSES	16
	5.2	SAMPLE SPECIFIC CHEMICAL (TRACER) RECOVERIES (RADIOLOGICAL RESULTS	ONLY)
	5.3	MATRIX SPIKE AND MATRIX SPIKE/MATRIX SPIKE DUPLICATE	
	5.4	LABORATORY CONTROL SAMPLES	
	5.5	FIELD REPLICATES AND LABORATORY REPLICATES	
		5.5.1 Field Replicates - Radiological	
		5.5.2 Field Replicates - Chemical	
		5.5.3 Laboratory Replicates – Radiological	
		5.5.4 Laboratory Replicates – Chemical	
	5.6	QUALITY ASSURANCE (QA) SPLIT SAMPLES	
	5.7	RADIONUCLIDE QUANTITATION AND IMPLIED DETECTION LIMITS (RADIOLOGICA	L)31
	5.8	CHEMICAL SEPARATION SPECIFICITY (RADIONUCLIDES)	
	5.9	MISCELLANEOUS METALS QC	
	5.10	MISCELLANEOUS VOC QC	
	5.11	HOLDING TIMES	
6.0	DISC	CUSSION	34
7.0	REF	ERENCES	34
Attac	chment	A Radiological Data Packages	36
Attac	chment	B Chemical Data Packages	37
Attac	chment	C Data Validation Reports	38

#### ABBREVIATIONS AND ACRONYMS

%	percent
μ	method uncertainty
σ	sigma
ANSI	American National Standards Institute
Aq	Aqueous
As	arsenic
ASTM	ASTM International
Ba-133	barium 133
Cabrera	Cabrera Services, Inc.
CCC	Calibration check compound
COC	chain-of-custody
Conc	Concentration
CRDL	Contract Required Detection Limit
%D	percent difference
DOE	U.S. Department of Energy
EB	Equipment blank
Eh	oxidation / reduction potential
EPA	U.S. Environmental Protection Agency
FB	Field blank
FMSS	FUSRAP Maywood Superfund Site
FREP	field replicate
FUSRAP	Formerly Utilized Sites Remedial Action Program
GFPC	gas-flow proportional counting
ICP-MS ID	Inductively-coupled plasma mass spectrometer identification
J	estimated value
keV	kiloelectron volt
LCS	laboratory control sample
Li	lithium
LREP	laboratory replicate
LTGWMP	Long Term Groundwater Monitoring Program
MDA	minimum detectable activity
MS	matrix spike
MSD	matrix spike duplicate
NJDEP	New Jersey Department of Environmental Protection
pCi/L	picocuries per liter
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
QCSR	Quality Control Summary Report

R	rejected data
Ra-226	radium 226
Ra-228	radium 228
Rn-222	radon 222
RL	reporting limit
ROI	radionuclides of interest
RPD	relative percent difference
SDG	sample delivery group
SPCC	system performance check compound
STF	Sample Tracking Form
Th-228	thorium 228
Th-230	thorium 230
Th-232	thorium 232
U	non-detected (undetected)
U-234	uranium 234
U-235	uranium 235
U-238	uranium 238
UFML	USACE FUSRAP Maywood Laboratory
UJ	non-detected estimated
USACE	U.S. Army Corps of Engineers
VOC	Volatile organic compound

This page intentionally left blank.

#### 1.0 INTRODUCTION

Cabrera Services, Inc., (Cabrera) conducted monitoring of the FUSRAP Maywood Superfund Site (FMSS) groundwater, and some of the surface waters (two of ten), as part of the Long Term Groundwater Monitoring (LTGWM) Program for 2016 during August and September of 2016.

This Quality Control Summary Report (QCSR) for the Annual Long Term Groundwater Monitoring Report, 2016 addresses data collected from analysis of all groundwater and some surface water samples collected between August 7, 2016 and September 21, 2016.

Approximately 40% of the groundwater samples and all surface water samples were tested for radium 226 (Ra-226), radium 228 (Ra-228), thorium 228 (Th-228), thorium 230 (Th-230), thorium 232 (Th-232), uranium 234 (U-234), uranium 235 (U-235), uranium 238 (U-238), gross alpha, gross beta, potassium (K) and radon 222 (Rn-222). All groundwater samples were also tested for benzene, lithium (Li) and arsenic (As). All of the radiological data except Rn-222, as well as As, Li and benzene data, were validated. Approximately 30% of the groundwater samples were tested for the bioacceptor analytes total iron (Fe), field filtered Fe, total manganese (Mn), field filtered Mn, ammonia, nitrate, sulfide, sulfate and methane, as well as the bionutrient parameters total phosphorus and chemical oxygen demand (COD). The bionutrient, bioacceptor and potassium data were not validated and therefore are not discussed within this QCSR.

This QCSR will only discuss deviations in quality control (QC) criteria for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood Superfund Site (FMSS) parameter results that were validated. A project QCSR will be prepared at the conclusion of the project. This QCSR for the 2016 LTGWM Program will support preparation of the project QCSR.

The QCSR for the 2016 LTGWM Program is organized into seven sections as follows:

- Section 1.0, Introduction;
- Section 2.0, Data Collection;
- Section 3.0, Data Analysis and Validation;
- Section 4.0, Data Summaries;
- Section 5.0, Analytical and Quality Assurance / Quality Control Problems Encountered at Laboratories;
- Section Error! Reference source not found., Error! Reference source not found.; and,
- Section 7.0, References.

#### 2.0 DATA COLLECTION

LTGWM data collection procedures were evaluated for any deviations or modifications that may have occurred in the areas of sample handling and custody, equipment calibration and maintenance, and analytical methods. Within this report, the terms batch, package, and Sample Delivery Group (SDG) are synonymous. An SDG is a data report that contains the various test results of one or more sample batches plus associated QC data such as calibrations, blank spike and matrix spike (MS) results, blanks, etc.

There were no sample collection anomalies during the 2016 sampling effort.

#### 2.1 SAMPLE HANDLING AND CUSTODY – RADIOLOGICAL LABORATORY

Custody seals were not provided on samples provided to the onsite radiological laboratory since they were hand-delivered to the laboratory on the sampling date. The onsite laboratory does not generate condition upon receipt forms. All onsite laboratory chain-of-custodies (COCs) were properly signed and dated. All water samples for radiological analysis were preserved with nitric acid. All COCs indicate that aqueous (aq) sample pHs were less than 2.

#### 2.2 SAMPLE HANDLING AND CUSTODY – CHEMICAL LABORATORY

All offsite chemical laboratory chain-of-custodies (COCs) were properly signed and dated and all samples were received in good condition. Custody seals were present on the sample coolers. The sample receipt checklist indicates that samples were received in good shape and were shipped on ice. Sample pHs were < 2. There were no offsite laboratory data package anomalies.

#### 2.3 EQUIPMENT CALIBRATION AND MAINTENANCE

#### 2.3.1 Field Instrument Measurement and Calibration

Field measurements were made for dissolved oxygen, oxidation/reduction potential (Eh), turbidity, temperature, specific conductivity, and pH in the 69 groundwater and two surface water samples. There were no discrepancies observed in the area of field equipment calibration and measurement for the 2016 Long Term Groundwater Monitoring Program.

#### 2.3.2 Onsite Laboratory – Radiological Analyses

For radiological analyses conducted at the onsite laboratory, all criteria were met for initial and continuing instrument calibrations.

#### 2.3.3 Offsite Laboratory – Chemical Analyses

For elements, the laboratory did provide initial calibration data for the inductively-coupled plasma mass spectrometer (ICP-MS) analyses and the inductively-coupled plasma atomic emission spectrometer (ICP-AES) analyses. Initial calibration verification results were submitted. All acceptance criteria were between 90-110% for all analyses. All ICP-MS and ICP-AES bracketing continuing calibration results supplied by the laboratory also met acceptance criteria for elemental analyses.

Also for elements, the laboratory analyzed an elements standard at or near 2 X the laboratory's reporting limit (Contract Required Detection Limit (CRDL) standard). The CRDL recoveries are between 70-130% for all data packages.

For VOC benzene analysis, all system performance check compound (SPCC) and calibration check compound (CCC) results are within the method acceptance criteria for both initial and continuing calibrations. In addition, all %RSD values for initial calibration response factors and %D values between the continuing calibration response factor and the initial calibration mean response factor are less than 20% with one exception. For the data package JC28136 closing continuing calibration, the benzene result had a %D value of 24.6%. For the closing continuing calibration, the %D limit is  $\pm$ 50%. Therefore, no data was qualified.

#### 2.4 ANALYTICAL METHODS

Three laboratories were employed for radiological analysis and two were employed for chemical analysis.

#### Radiological Analysis

U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML) 100 West Hunter Avenue Maywood, NJ 07607

Test America 13715 Rider Trail North Earth City, MO 63045

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407

#### Chemical Analysis

Accutest Laboratory 2235 US Highway 130 Dayton, NJ 08810

Test America 13715 Rider Trail North Earth City, MO 63045

UFML, operated by Cabrera Services, Inc., analyzed all groundwater and surface water samples using alpha spectroscopy and gas-flow proportional counting (GFPC).

The first offsite radiological laboratory, Test America in St. Louis, Missouri, analyzed USACE Quality Assurance (QA) split samples for the same radiological parameters analyzed by UFML as well as the groundwater chemical contaminants of concern. The QA split sample collection frequency is at least 5 percent (%).

The second offsite radiological laboratory, GEL Laboratories, LLC, analyzed all groundwater samples for Rn-222.

Accutest Laboratory analyzed groundwater samples for the chemical contaminants of concern benzene, arsenic, and lithium as well as potassium. Accutest also analyzed selected groundwater samples for bioremedial parameters. The methods employed by these laboratories are noted in the table below.

Analyte	Analysis Method
	UFML
Ra-226	Method 903.0 modified
Ra-228	Method 904.0
Isotopic Uranium	SM-7500-U
Isotopic Thorium	HASL-300
Gross Alpha/Gross Beta	Method 900.0 modified
Gross Alpha	SM 7110C
	Test America
Ra-226	Method 903.0
Ra-228	Method 904.0
Isotopic Uranium	A01R-U
Isotopic Thorium	A01R-Th
Gross Alpha/Gross Beta	Method 900.0
As and Li	SW-846 6020A
Benzene	SW-846 8260C
	GEL
Rn-222	SM 7500 Rn-B
	Accutest - COCs
As	SW-846 6020A
Li and K	SW-846 6010C
Benzene	SW-846 8260B
Accute	est - Biogeochemical Analytes
Manganese (Mn), total	SW-846 6010C
Manganese (Mn), filtered	SW-846 6010C
Iron (Fe), total	SW-846 6010C
Iron (Fe), filtered -	SW-846 6010C
Nitrate	MCA 353.2
Ammonia	SM4500NH3 H-11
Sulfate	MCA 300.0 / SW 9056A
Sulfide	SM4500S2 C,F-11/SW846 9034
Methane	SW-846 8015C modif.
Phosphorus (total)	MCA 365.3

#### 2.5 MODIFICATIONS TO THE WORK PLAN

There were no modifications to the radiation measurement techniques or analytical methods described in the *General Environmental Protection Plan* (USACE 2013) and *Uniform Federal Projects – Quality Assurance Project Plan* (USACE, 2015).

#### 3.0 DATA ANALYSIS AND VALIDATION

Kestrel Environmental Technologies, Inc. performed data evaluation of the radiological and chemical data. They evaluated 100% of the onsite laboratory radiological sample results and all of the non-QA split offsite laboratory sample results except for potassium, radon and bioremedial parameters. Radiological data were evaluated using the USACE's *Radionuclide Data Quality Evaluation Guidance* (USACE 2009), and chemical data were validated using EPA Region II Standard Operating Procedures (SOP)(USEPA 2012). In those instances where professional judgment was used by the data validator, the Maywood project's Chemical Quality Control Coordinator concurs with the data qualifications performed.

#### 4.0 DATA SUMMARIES

Data summaries for the onsite and offsite laboratories' radiological and chemical data are presented in the *Annual Long Term Groundwater Monitoring Report, 2016* (USACE 2017).

### 5.0 ANALYTICAL AND QUALITY ASSURANCE / QUALITY CONTROL PROBLEMS ENCOUNTERED AT LABORATORIES

Included in the 69 groundwater and two surface water samples were eight groundwater field duplicates and one field duplicate for surface water. Four groundwater split samples and one surface water split sample were also collected. Thirteen rinsate blanks and one field blank sample were also collected. The frequency of split sample collection (5.8% for groundwater and 50% for surface water) met the required minimum frequency of 5% for this project (percentage based on total number of non-QC field samples).

All samples were analyzed for radiological and chemical parameters. The groundwater and surface water radiological samples were analyzed for Ra-226, Ra-228, Th-228, Th-230, and Th-232, U-234, U-235, U-238, gross alpha and gross beta at the onsite laboratory. All groundwater samples were analyzed for arsenic, lithium and benzene, and approximately one third of the groundwater samples were analyzed for either bioacceptor or bionutrient parameters at the Accutest offsite laboratory. All groundwater samples that were analyzed for radiological parameters at the onsite laboratory were also analyzed for Rn-222 at the GEL offsite laboratory, and for potassium at the Accutest offsite laboratory. The surface water chemical samples were only analyzed for arsenic, lithium and benzene at the Accutest offsite laboratory. All of the results from testing of these samples except for potassium, Rn-222, bioacceptors and bionutrients were validated. The validator noted the following general findings as discussed in Sections 5.1 through 5.13. A summary of the data qualifications is presented as follows:

#### **Summary of Data Qualifications**

А.	Data	Qual	lifier	Definitions
----	------	------	--------	-------------

Data Qualifier	Definition
U	A normal, non-detected (< critical value (radiological) or < MDL (chemical)) result

J	An uncertain or estimated result
R	A rejected result: the problems (quantitative or qualitative) are severe; rejected data may still be usable depending upon the intended use of the data and the reason for data rejection
UJ	A non-detect result that has an uncertain MDA value (for radiological results) or MDL value (for chemical results)

#### B. Qualification Reasons

*Qualify a result rejected (R) for one of the following reasons:* None

*Qualify the following results non-detect (U) for one of the following reasons:* 

• The arsenic results for 12B-090029, 12B-090030, 12B-090033, 12B-090074 and 12B-090094 are reported as non-detected (U) at the RL, 3.0 ug/L due to arsenic levels in the rinsate blanks and/or method blanks.

Qualify the following results estimated non-detect (UJ) for one of the following reasons:

- The Th-228, Th-230 and Th-232 results for 10A-090011 due to low Th-229 tracer recovery of 79.9%.
- The GA results for 12B-090009, 12B-090007 and 12B-090091 (data package 16G-0316 and -0320); the Gross Alpha results for 12B-090017, 12B-090092, and 12B-090094 (data package 16G-0325 and -0332); the Gross Alpha results for 10A-090037, 12B-090095 and 12B-090096 (data package 16G-0335 and -0338); and the GA results for 12A-090053 and 20A-090098 (data package 16G-0344, -0360, etc.), since the MS recovery in each case is below the laboratory acceptance criteria.

*Qualify a result estimated (J) for one of the following reasons:* 

- 1. The reported result is within the analytical window of the daily blank, the method blank, the field blank and/or the rinsate blank result.
- 2. Low LCS recovery.
- 3. The result is greater than the MDA and less than the 2 sigma uncertainty.
- 4. The absolute difference or relative percent difference between replicate pair results (field replicates, lab replicates, or QA split samples) exceeds the control limit for a given analyte.
- 5. Low Z score and low MS recovery for matrix spike results.
- 6. Result falls between the detection limit (DL) and the reporting limit (RL).

Reason	Sample Numbers	Analyte(s)
1	12B-090000, 12B-090001, 12B-090002, 12B-090016, 12B-	Th-230
	090019, 12B-090018, 12B-090072, 12B-090028, 12B-090029,	
	12B-090034, 12B-090034 LREP, 12B-090035, 10A-090037, 12B-	
	090038, 19A-090040, 20A-090044, 20A-090045, 12A-090052,	
	12A-090053, 23A-026055, 23A-026056, 23A-026057, 23A-	

#### **Reasons for Qualifying Sample Analyte Results Estimated J**

Reason	Sample Numbers	Analyte(s)
	026058, 23A-026055 LREP, 22A-026059, 22A-026060, 22A-	
	026060 LREP 20A-090064, 20A-090065, 20A-090064 LREP,	
	22A-026069, 12B-090074, 20A-090075, 12A-090077, 12B-	
	090091, 12B-090092, 12B-090094, 12B-090096, 12B-090098,	
1	12B-090009, 12B-090002, 12B-090001, 12B-090000, 12B-	Ra-228
	090017, 12B-090019, 12B-090018, 12B-090034, 12B-090035,	
	12B-090038, 12B-090034 LREP, 20A-090044, 20A-090045,	
	20A-090044 LREP, 12B-090072, 12B-090091, 12A-090052,	
	12A-090053, 12A-090053 LREP, 20A-090064,	
1	19A-090040	Ra-226
1	12A-090052 LREP, 12A-090052 and 12A-090077	Gross Alpha
1	12A-090052, 12A-090053 and 12A-090053 LREP	U-234
1	12B-090032, 20A-090064, 20A-090065, 20A-090078, 20A-	Arsenic
	090070, 20A-090071, 10A-090069	
1	12B-090009, 12B-090007, 12B-090091, 12B-090028, 10A-	Lithium
	090037. 10A-090048. 12A-090053. 20A-090055. 23B-090059.	
	23B-090061, 23B-090062, 23B-090067, 23B-090068, 23B-	
	090063, 12B-090020, 23A-026057, 20A-090071, 10A-090069	
2	12B-090000, 12B-090001, 12B-090002, 12B-090009 and 12B-	Ra-228
	090007	
2	20A-090065, 20A-090078, 20A-090065 LREP and 12B-090108	Gross Alpha
3	12B-090000 and 12B-090019 LREP	U-234
3	19A-090041 and 20A-090045	U-235
3	12B-090000, 12B-090034 LREP and 12A-090077	U-238
3	12B-090016, 12B-090034 and 20A-090064 LREP	Ra-226
3	12B-090019	Ra-228
3	12B-090018, 12B-090029, 12B-090094, 12B-090096 and 20A-	Th-230
	090044	
4	12B-090001, 12B-090001 LREP, 12B-090002, 10A-090012 and	Gross Beta
	12B-090010, 12B-090016, 12B-090017, 12B-090033, 12B-	
	090033 LREP, 10A-090037, 19A-090040, 19A-090041, 20A-	
	090045 and 20A-090075	
4	12a-090052 and 12b-090008	Ra-228
4	12b-090008	Th-228
4	All samples except for field replicate pairs that met criteria	Th-230
4	20A-090064	Gross Alpha
5	12B-090008, 12B-090008 LREP, 10A-090012, 12B-090010, 12B-	Gross Alpha
	090028, 12B-090034, 12B-090034 LREP, 19A-090040, 19A-	
	090041, 20A-090044, 20A-090044 LREP, 20A-090045, 12A-	
	090052, 12A-090052 LREP, 12A-090053 LREP, 20A-090075 and	
	12A-090077	
6	12B-090009, 12B-090007, 12B-090008, 10A-090011, 10A-	Lithium
	090012, 12B-090014, 12B-090010, 12B-090016, 12B-090017,	
	12B-090092, 12B-090026, 12B-090073, 12B-090093, 12B-	
	090094, 10A-090036, 12B-090095, 19A-090040, 19A-090041,	
	10A-090048, 12B-090097, 12A-090053, 12B-090098, 20A-	
	090055, 20A-090056, 12B-090099, 23B-090061, 23B-090062,	
	20A-090064, 12B-090100, 12B-090102, 12B-026073, 23B-	

Reason	Sample Numbers	Analyte(s)
	090060, 12B-090103, and 10A-090069	
6	12B-090001, 12B-090004, 12B-090008, 10A-090011, 10A-	ARSENIC
	090012, 12B-090013, 12B-090014, 12B-090010, 12B-090017,	
	12B-090018, 12B-090021, 12B-090022, 12B-090023, 12B-	
	090024, 12B-090026, 12B-090073, 10A-090036, 10A-090037,	
	19A-090041, 12B-090042, 12B-090046, 10A-090048, 23B-	
	090049, 23B-090050, 12B-090076, 12A-090052, 12A-090053,	
	12B-090054, 12A-090077, 20A-090055, 20A-090056, 23B-	
	090059 and 12B-090066, 23B-090061, 23B-090068, 23B-090063,	
	12B-090020, 23A-026057, 23B-090060, and 10A-090069	
6	12B-090030, 19A-090040 and 23B-090060	BENZENE

#### 5.1 BLANK ANALYSES

#### ONSITE LABORATORY

In accordance with the USACE Radiological Data Evaluation Guidance, if a method blank result is within  $\pm 3\mu$ , where  $\mu$  is the required method uncertainty, the blank result is within control limits. However, the validator may still choose to qualify a sample result using the following rationale: if the lower one sigma ( $\sigma$ ) activity of the sample result (sample result – one sigma) is less than the upper one sigma activity of the blank (blank result + one sigma), then the result is qualified estimated J.

For daily blanks, a result is acceptable if it falls within the control limits of the mean  $\pm 3\sigma$ . Similar to the method blanks, the validator may still choose to qualify sample results if it is thought that they may be impacted by the blank result. Daily blanks were analyzed on each day that analyses were performed for gamma spectroscopy analyses and gross alpha/gross beta analyses. For alpha spectroscopy, there is no daily blank; only a preparation (or method) blank is analyzed. All daily blank results were within the mean  $\pm 3\sigma$  criterion for gamma spectroscopy analyses and gross alpha/gross beta analyses. All acceptance criteria were also met for all weekly backgrounds. Some results for the radionuclides of interest (ROI) were qualified due to preparation (method) blank contamination, or using professional judgment, as described below.

#### Data Package 16G-0316 and -0320

All method blank results are reported as non-detected (U).

Rinsate blank sample 12B-090007 is associated with samples collected on 08/08/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc	2 sigma	MDA
		pCi/L	uncertainty pCi/L	pCi/L
Ra-228	16-2004	0.843	0.365	0.251

Based upon the Ra-228 rinsate blank result, the Ra-228 results for 12B-090009, 12B-090002, 12B-090001 and 12B-090000 are qualified as estimated (J).

Rinsate blank sample 12B-090091 is associated with samples collected on 08/09/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Ra-228	16-2005	0.435	0.256	0.190
Th-230	16-5005	0.298	0.216	0.170

No Ra-228 field sample results are qualified based upon the Ra-228 rinsate blank results since all associated Ra-228 results are substantially greater than the blank result. No Th-230 results are qualified because all Th-230 field sample results are reported as non-detected (U).

Field blank 12B-090009 was collected on 08/08/2016. These results are reported in laboratory data package 16G-0316. Positive field blank results are summarized below.

Radionuclide	STF	Lab ID	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Ra-228	16-2004	16-05613	0.247	0.220	0.163
Th-230	16-5004	16-05613	0.430	0.275	0.200

Based upon the field blank results, the Ra-228 result for rinsate blank sample 12B-090091 is qualified as estimated (J), and the Th-230 results for samples 12B-090000, 12B-090001, 12B-090002 and 12B-090091 are qualified as estimated (J).

#### Data Package 16G-0325 and -0332

Positive method blank results are summarized below.

Radionuclide	STF	Conc	2 sigma	MDA
		pCi/L	uncertainty pCi/L	pCi/L
Th-228	16-5006	0.105	0.107	0.071

No Th-228 results are qualified based upon the method blank result.

Rinsate blank sample 12B-090092 is associated with samples collected on 08/10/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Th-230	16-5006	0.364	0.234	0.094

Based upon the Th-230 rinsate blank result, the Th-230 results for 12B-090016, 12B-090019, 12B-090018 and 12B-090072 are qualified as estimated (J).

Rinsate blank sample 12B-090094 is associated with samples collected on 08/15/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Th-230	16-5007	0.158	0.165	0.141

Based upon the Th-230 rinsate blank result, the Th-230 results for 12B-090028, 12B-090029 and 12B-090074 are qualified as estimated (J).

Field blank 12B-090009 was collected on 08/08/2016. These results are reported in laboratory data package 16G-0316. Positive field blank results are summarized below.

Radionuclide	STF	Lab ID	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Ra-228	16-2004	16-05613	0.247	0.220	0.163
Th-230	16-5004	16-05613	0.430	0.275	0.200

Based upon the field blank results, the Ra-228 result for 12B-090017, 12B-090019, 12B-090018 and 12B-090072 are qualified as estimated (J), and the Th-230 results for samples 12B-090016, 12B-090019, 12B-090018, 12B-090072, 12B-090092, 12B-090028, 12B-090029, 12B-090074 and 12B-090094 are qualified as estimated (J).

#### Data Package 16G-0335 and -0338

Positive method blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Th-230	16-5008	0.317	0.215	0.090
Th-230	16-5009	0.139	0.155	0.089

Based upon the STF 16-5008 result the Th-230 results for 12B-090034 LREP, 12B-090035, 10A-090037 and 12B-090038 are qualified as estimated (J).

Based upon the STF 16-5009 result the Th-230 results for 19A-090040, 20A-090044, 12B-090096 and 20A-090075 are qualified as estimated (J).

Rinsate blank sample 12B-090095 is associated with samples collected on 08/16/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Th-230	16-5008	1.647	0.523	0.101

Based upon the Th-230 rinsate blank result, the Th-230 results for 12B-090034, 12B-090035, 10A-090037, 12B-090038 and 12B-090034 LREP are qualified as estimated (J).

Rinsate blank sample 12B-090096 is associated with samples collected on 08/17/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Ra-228	16-2009	0.892	0.348	0.243
Ra-226	16-3010	0.217	0.189	0.187

Based upon the Ra-228 rinsate blank result, the Ra-228 results for 20A-090044, 20A-090045 and 20A-090044 LREP are qualified as estimated (J).

Based upon the Ra-226 rinsate blank result, the Ra-226 result for 19A-090040 is qualified as estimated (J).

Field blank 12B-090009 was collected on 08/08/2016. These results are reported in laboratory data package 16G-0316. Positive field blank results are summarized below.

Radionuclide	STF	Lab ID	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Ra-228	16-2004	16-05613	0.247	0.220	0.163
Th-230	16-5004	16-05613	0.430	0.275	0.200

Based upon the field blank result, the Ra-228 results for 12B-090034, 12B-090035, 12B-090038, 20A-090044, 20A-090045 and 12B-090034 LREP are qualified as estimated (J).

Based upon the field blank result, the Th-230 results for samples 12B-090034, 12B-090035, 10A-090037, 12B-090038, 19A-090040, 20A-090044, 20A-090045, 12B-090096, 20A-090075 and 12B-090034 LREP are qualified as estimated (J).

#### Data Package 16G-0344, 0360, etc.

Positive method blank results are summarized below.

Radionuclide	STF	Conc	2 sigma	MDA
		pCi/L	uncertainty pCi/L	pCi/L
Gross Alpha	16-1046	-0.183	0.296	0.683
Ra-228	16-2010	0.240	0.286	0.228
U-234	16-4019	0.189	0.152	0.139
Th-230	16-5011	0.834	0.351	0.095
Th-230	16-5012	0.216	0.179	0.086
Th-230	16-5013	1.256	0.425	0.142

Based upon the STF 16-1046 method blank result the Gross Alpha results for 12A-090052, 12A-090077 and 12A-090052 LREP are qualified as estimated biased low (J-).

Based upon the STF 16-2010 method blank result the Ra-228 results for 12A-090052, 12A-090053 and 12A-090053 LREP are qualified as estimated (J).

Based upon the STF 16-4019 method blank result the U-234 results for 12A-090052, 12A-090053 and 12A-090053 LREP are qualified as estimated (J).

Based upon the STF 16-5011 method blank result the Th-230 results for 12A-090052, 12A-090053, 12A-090077, 12B-090098, 20A-090064, 20A-090065 and 20A-090064 LREP are qualified as estimated (J).

Based upon the STF 16-5012 method blank result the Th-230 results for 23A-026055, 23A-026056, 23A-026057, 23A-026058 and 23A-026055 LREP are qualified as estimated (J).
Based upon the STF 16-5013 method blank result the Th-230 results 22A-026059, 22A-026060, 22A-026069 and 22A-026060 LREP are qualified as estimated (J).

Rinsate blank sample 12B-090098 is associated with samples collected on 08/22/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc	2 sigma	MDA
		pCi/L	uncertainty pCi/L	pCi/L
Th-230	16-5011	0.827	0.353	0.153

The Th-230 result for 12B-090098 is qualified as estimated (J) based upon the Th-230 method blank result. No Th-230 results are qualified based upon the Th-230 rinsate blank result.

Rinsate blank sample 12B-090100 is associated with samples collected on 08/29/2016. Positive equipment rinsate blank results are summarized below.

Radionuclide	STF	Conc pCi/L	2 sigma uncertainty pCi/L	MDA pCi/L
Gross Beta	16-1048	2.399	1.591	2.324
Ra-228	16-2011	0.270	0.242	0.195

Gross Beta field sample results associated with this rinsate blank are at concentrations significantly greater than the field rinsate blank result. No Gross Beta results are qualified.

Based upon the Ra-228 rinsate blank result, the Ra-228 result for 20A-090064 is qualified as estimated (J).

Field blank 12B-028073 was collected on 09/07/2016. The sample is a smear sample and Gross Alpha and Gross Beta are the only target analytes. No results are qualified based upon the field blank results.

### OFFSITE LABORATORY

Thirteen equipment rinsate blanks were collected with the 69 samples for the chemical contaminants of concern, while field blank results were reported in data packages JC25414 and JC27145.

All VOC trip blank, equipment rinsate blank, field blank and method blank results were reported as nondetected (U) in all chemical data packages.

For elements in several data packages, low level concentrations of arsenic, lithium and/or potassium were detected in the preparation blanks (also called method blanks), rinsate blanks, field blanks and/or laboratory instrument blanks (also known as initial calibration blanks (ICB) and continuing calibration blanks (CCB)). In most cases, the arsenic, lithium and potassium field sample concentrations are significantly greater than the blank results such that their results are not qualified. The exceptions to these are as follows:

• For data packages JC25414 and JC25502, the lithium method blank concentration, detection limit (DL) and reporting limit (RL) are shown below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	MP26625 Prep	1.8 ug/L	-5.2 ug/L	500 ug/L

Based upon the method blank result and using the professional judgment of the validator, the lithium results for field blank 12B-090009 and rinsate blank 12B-090007 (JC25414) and rinsate blank 12B-090091 (JC25502) are qualified as estimated (J). The results may be biased low.

• For data package JC25869, the maximum concentration of the contaminants detected in the method blanks, laboratory instrument blanks and rinsate blanks (RB) are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Arsenic	MP95494A Prep	0.41 ug/L	0.53 ug/L	3.0 ug/L
Arsenic	12B-090094 RB	0.41 ug/L	0.53 ug/L	3.0 ug/L
Lithium	12B-090094 RB	5.2 ug/L	34.3 ug/L	500 ug/L

The arsenic results for 12B-090029, 12B-090030, 12B-090033, 12B-090074 and 12B-090094 are reported as non-detected (U) at the RL, 3.0 ug/L. The arsenic result for 12B-090032 is qualified as estimated (J); the result may be biased high. The lithium result for 12B-090028 is qualified as estimated (J). The result may be biased high.

• For data package JC25918, the lithium rinsate blank concentration, DL and RL are shown below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	12B-090095 RB	5.2 ug/L	6.1 ug/L	500 ug/L
771 11.1	1.6 104 00000	1.0.1	1 (T) TT1	1. 1.1.1

The lithium result for 10A-090037 is qualified as estimated (J). The result may be biased high.

• For data package JC26108, the lithium rinsate blank concentration is shown below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	Rinsate (12B-090097 RB)	250 ug/L	14.6 ug/L	500 ug/L

The lithium result for sample 10A-090048 is qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC26264, the maximum concentration of the contaminants detected in the method blanks (MB), CCB and rinsate blanks are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	CCB	1.8 ug/L	5.9 ug/L	500 ug/L
Lithium	Rinsate (12B-090098 RB)	1.8 ug/L	6.4 ug/L	500 ug/L
Lithium	MB	1.8 ug/L	2.6 ug/L	500/L

The lithium result for sample 12A-090053 is qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC26347, the maximum concentration of the contaminants detected in the MB, CCB and rinsate blanks are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	ССВ	1.8 ug/L	4.4 ug/L	500 ug/L
Lithium	Rinsate (12B-090098 RB)	1.8 ug/L	6.4 ug/L	500 ug/L

Lithium	MB	1.8 ug/L	2.6 ug/L	500 ug/L
---------	----	----------	----------	----------

The reported rinsate blank is sample 12B-090098 from package JC26264. The lithium result for sample 20A-090055 is qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC26422, the maximum concentration of the contaminants detected in the method blanks, CCB and rinsate blanks and the reporting limit (RL) concentrations are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	RB (12B-090099)	1.8 ug/L	4.2 ug/L	500 ug/L
Lithium	ССВ	1.8 ug/L	2.3 ug/L	500 ug/L

The lithium result for sample 23B-090059 is qualified as estimated high (J) based upon the potential for blank contamination.

• For data package JC26506, the maximum concentration of the contaminants detected in the method blanks, CCB and rinsate blanks is shown below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	CCB	1.8 ug/L	2.3 ug/L	500 ug/L

The rinsate blank and field blank associated with JC26506 samples are sample 12B-090099 from package JC26422, and 12B-090009 from package JC25414, respectively.

The lithium results for samples 23B-090061 and 23B-090062 are qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC26684, the maximum concentration of the contaminants detected in the method blanks, laboratory instrument blanks, rinsate blank and field blank are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Arsenic	MB	0.41 ug/L	0.46 ug/L	3.0 ug/L
Lithium	RB	1.8 ug/L	10.4 ug/L	500 ug/L

The field blank associated with JC26684 results is sample 12B-090009 from package JC25414.

The arsenic results for samples 20A-090064, 20A-090065, and 20A-090078 are qualified as estimated high (J) due to the potential for blank contamination. Using professional judgement, lithium sample results are not qualified by the validator based upon the rinsate blank results.

• For data package JC26747, the maximum concentration of the contaminants detected in the preparation blanks, method blanks, rinsate blanks and field blanks are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL

Lithium RB (JC26684)	1.8 ug/L	10.4 ug/L	500 ug/L
----------------------	----------	-----------	----------

The rinsate blank and field blank samples associated with the JC26747 samples are 12B-090100 from package JC26684, and 12B-09009 from package JC25414.

The lithium results for samples 23B-090067, 23B-090068, and 23B-090063 are qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC26941, the maximum concentration of the contaminants detected in the method blanks, laboratory instrument blanks and field blanks and the reporting limit (DL) concentrations are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Lithium	ICB	1.8 ug/L	1.9 ug/L	500 ug/L
Lithium	Opening CCB	1.8 ug/L	2.1 ug/L	500 ug/L
Lithium	RB	1.8 ug/L	6.0 ug/L	500 ug/L

The RB is sample 12B-090102 and the field blank associated with JC26941 samples is 12B-090009 from package JC25414. Based upon the blank results, the lithium result for sample 12B-090020 is qualified as estimated high (J) due to the potential for blank contamination.

- For data package JC27145, the lithium result for sample 23A-026057 is qualified as estimated high (J) due to the potential for blank contamination from field blank 12B-026073, which contained lithium at a concentration of 5.7 ug/L.
- For data package JC28136, the maximum concentration of the contaminants detected in the method blanks, laboratory instrument blanks (CCB and ICB), RB and field blanks are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Arsenic	MB	0.41 ug/L	1.1 ug/L	3.0 ug/L
Lithium	ICB	1.8 ug/L	4.4 ug/L	500 ug/L
Lithium	ССВ	1.8 ug/L	4.9 ug/L	500 ug/L
Lithium	ССВ	1.8 ug/L	5.1 ug/L	500 ug/L
Lithium	MB	1.8 ug/L	5.4 ug/L	500 ug/L
Lithium	RB	1.8 ug/L	8.7 ug/L	500 ug/L

The field blank associated with this data package is sample 12B-090009 from package JC25414.

The arsenic results for samples 20A-090070 and 20A-090071, and the lithium result for sample 20A-090071 are qualified as estimated high (J) due to the potential for blank contamination.

• For data package JC28211, the maximum concentration of the contaminants detected in the method blanks, laboratory instrument blanks (ICB and CCB), RB and field blanks are summarized below:

Analyte	Type of Blank	DL	Blank Conc	RL
Arsenic	MB	0.41 ug/L	1.1 ug/L	3.0 ug/L

Lithium	ICB	1.8 ug/L	4.4 ug/L	500 ug/L
Lithium	ССВ	1.8 ug/L	5.1 ug/L	500 ug/L
Lithium	ССВ	1.8 ug/L	3.1 ug/L	500 ug/L
Lithium	MB	1.8 ug/L	5.4 ug/L	500 ug/L
Lithium	RB (JC28136)	1.8 ug/L	8.7 ug/L	500 ug/L

The rinsate blank and field blank associated with JC28211 samples are 12B-090100 (from JC28136) and 12B-090009 (from JC25414), respectively.

Based upon the blank results, the arsenic and lithium results for sample 10A-090069 are qualified as estimated high (J) due to the potential for blank contamination.

# 5.2 SAMPLE SPECIFIC CHEMICAL (TRACER) RECOVERIES (RADIOLOGICAL RESULTS ONLY)

The laboratory did tabulate the radioisotope tracer recoveries on the Form 1s. Laboratory derived tracer recoveries were used for this evaluation. The laboratory derived tracer acceptance criteria are summarized below.

Tracer	% Recovery
Th-229	85.4-134.5%
U-232	84.0-136.3%
Ba-133	50.0-90.0%

All tracer recoveries fell within these limits in all groundwater and surface water radiological data packages except for the following: within data package 16G-0316 and -0320, the Th-229 tracer recovery for 10A-090011 is 79.9%, below the laboratory derived acceptance limit. The Th-228, Th-230 and Th-232 results for 10A-090011 are therefore qualified as non-detected estimated (UJ).

### 5.3 MATRIX SPIKE AND MATRIX SPIKE/MATRIX SPIKE DUPLICATE

### ONSITE LABORATORY - RADIOLOGICAL

For all water analyses except gross alpha and gross beta, a chemical tracer is added that serves as an MS (see Section 5.2 for a discussion of tracer recoveries). Matrix spikes were performed for gross alpha and gross beta samples in all water sample batches. Gross alpha and gross beta MS recoveries were within laboratory acceptance criteria; i.e., had a Z-score between -3 and +3, in all water packages with the following exceptions.

• Within data package 16G-0316 and -0320, matrix spike results that do not meet the acceptance criteria are summarized below.

Radionuclide	STF ID	Lab ID	Z Factor	% Recovery
Gross Alpha	16-1039	12B-090008	-5.43	64%

The gross alpha results for 12B-090008, 12B-090008 LREP, 10A-090012 and 12B-090010 are qualified as estimated biased low (J-). The gross alpha results for 12B-090009, 12B-090007 and

12B-090091 are qualified as non-detected estimated (UJ). The MS recovery is below the laboratory acceptance criteria. The MS recovery is 64%.

• Within data package 16G-0325 and -0332, matrix spike results that do not meet the acceptance criteria are summarized below.

Radionuclide	STF ID	Lab ID	Z Factor	% Recovery
Gross Alpha	16-1039	12B-090008	-5.43	64%
Gross Beta	16-1039	12B-090019	-8.81	74%
Gross Alpha	16-1042	16-05944	-6.72	59%
Gross Alpha	16-1042	16-06013	-4.52	69%

The Gross Beta MS recovery for 12B-090019 (STF 16-1039) is 74%. No Gross Beta results in STF 16-1039 are qualified. The Gross Alpha results for 12B-090017 and 12B-090092 (STF 16-1039) are qualified as non-detected estimated (UJ).

Based upon the Gross Alpha MS results for STF 16-1042, the Gross Alpha result for 12B-090028 is qualified as estimated biased low (J-) and the Gross Alpha result for 12B-090094 is qualified as non-detected estimated (UJ).

• Within data package 16G-0335 and -0338, matrix spike results that do not meet the acceptance criteria are summarized below.

Radionuclide	STF ID	Lab ID	Z Factor	% Recovery
Gross Alpha	16-1042	12B-090034	-6.72	59%
Gross Alpha	16-1042	20A-090044	-4.52	69%

Based upon the Gross Alpha MS result for STF 16-1042 the Gross Alpha results for 12B-090034, 12B-090034 LREP, 19A-090040, 19A-090041, 20A-090044, 20A-090044 LREP, 20A-090045 and 20A-090075 are qualified as estimated biased low (J-) and the Gross Alpha results for 10A-090037, 12B-090095 and 12B-090096 are qualified as non-detected estimated (UJ).

• Within data package 16G-0344, -0360, etc., matrix spike results that do not meet the acceptance criteria are summarized below.

Radionuclide	STF ID	Lab ID	Z Factor	% Recovery
Gross Alpha	16-1046	12A-090052	-6.38	64%
Gross Alpha	16-1045	12A-090053	-3.93	71%

Based upon the Gross Alpha MS result for STF 16-1046, the Gross Alpha results for 12A-090052, 12A-090077 and 12A-090052 LREP are qualified as estimated biased low (J-).

Based upon the Gross Alpha MS result for STF 16-1045 the Gross Alpha results for 12A-090053 and 20A-090088 are qualified as non-detected estimated (UJ) and the Gross Alpha result for 12A-090053 LREP is qualified as estimated biased low (J-).

### OFFSITE LABORATORY – CHEMICAL

For elements, the following Maywood samples were the aqueous MS/MSD pairs for arsenic using ICP-MS and/or lithium using ICP-AES:

- 12B-090002 (data package JC25414, arsenic only);
- 12B-090008 (data package JC25502, arsenic and lithium);

- 12B-090019 (data package JC25584, arsenic and lithium);
- 12B-090022 (data package JC25696, arsenic only);
- 12B-090028 (data package JC25869, arsenic and lithium);
- 20A-090044 (data package JC26014, arsenic and lithium);
- 12B-090046 (data package JC26108, arsenic only);
- 12A-090052 (data package JC26264, arsenic and lithium);
- 23B-090059 (data package JC26422, lithium only);
- 20A-090064 (data package JC26684, arsenic and lithium);
- 12B-090108 (data package JC26821, arsenic only);
- 12B-090005 (data package JC26941, arsenic only);
- 23A-026058 (data package JC27145, arsenic and lithium); and
- 12B-090103, arsenic; and 20A-090070, lithium (data package JC28136);

All acceptance criteria were met with recoveries between 75-125% and relative percent differences (RPDs) less than 20%. For all other chemical elements data packages (or the packages listed above that only report Maywood sample MS/MSD results for one of the two analytes), a non-Maywood sample was analyzed as the MS sample or the MS/MSD pair, or an MS/MSD was analyzed from a LTGWM Maywood groundwater sample associated with another data package. In those other packages, no results were qualified based upon the absence of MS or MS/MSD results.

For VOCs, the following Maywood samples were analyzed as aqueous MS/MSD pairs, unless noted as MS only:

- 12B-090008 (data package JC25502);
- 12B-090019 (data package JC25584; specifically for the analytical batch associated with samples 12B-090019 and 12B-090072);
- 12B-090035 (data package JC25918 (MS sample associated with analytical batch VC7807));
- 20A-090044 (data package JC26014);
- 23B-090049 (data package JC26108, MS only);
- 12B-090066 (data package JC26422);
- 20A-090064 (data package JC26684);
- 23A-026058 (data package JC27145);
- 20A-090071 (data package JC28136, MS only);
- 10A-090069 (data package JC28211, MS only);

All VOC MS/MSD results met acceptance criteria with recoveries within laboratory-derived acceptance criteria of 46-141% and relative percent differences (RPDs) less than 20%. For VOC data packages JC25414, JC25696, JC26264, JC26506, JC26941 and JC27219, a non-Maywood sample was analyzed as the MS/MSD pair. In addition, for data packages JC25869, JC26347, JC26747 and JC26821, there were no VOC MS/MSD results. No results were qualified based upon the absence of MS/MSD results. The project-required collection frequency for VOC MS/MSD samples was met.

## 5.4 LABORATORY CONTROL SAMPLES

### ONSITE LABORATORY - RADIOLOGICAL

All LCS recoveries for aqueous sample alpha spectrometry and gross alpha/gross beta analyses (groundwater and surface water samples) were within the laboratory's acceptance criteria with the following exceptions:

- For data package 16G-0316 and -0320, the Ra-228 LCS recovery for STF 16-2004 is -30.0% (acceptance range -26.1% to 28.5%). Based upon the low biased LCS recovery the Ra-228 results for 12B-090000, 12B-090001, 12B-090002, 12B-090009 and 12B-090007 are qualified as estimated (J-). The reported results may be biased low.
- For data package 16G-0344, -0360, etc., LCS recoveries that exceed the laboratory derived acceptance criteria are summarized below.

Radionuclide	STF ID	Lab ID	% Deviation Range	% Deviation
Gross Alpha	16-1049	16-06303	12.4%-32.2%	-39.2%
Gross Alpha	16-1049 Rerun	16-06423	12.4%-32.2%	-19.0%

The first LCS run was outside of control limits while the rerun was within control limits. Using professional judgment, the Gross Alpha results for 20A-090065, 20A-090078, 20A-090065 LREP and 12B-090108 are qualified as estimated biased low (J-) by the validator.

For alpha spectroscopy LCS results, Th-228 and Th-232 are not reported because Th-230 is the only thorium isotope in the LCS.

### OFFSITE LABORATORY - CHEMICAL

For elements analyzed using ICP-AES or ICP-MS, all aqueous LCS results were within the laboratory's acceptance criteria of 80-120%.

For VOCs, all LCS and LCSD recoveries were within acceptance limits of 79-117% and the RPDs between LCS and LCSD recoveries, for those data packages in which LCS/LCSD results were reported, were all less than the not-to-exceed value of 20%.

## 5.5 FIELD REPLICATES AND LABORATORY REPLICATES

### 5.5.1 Field Replicates - Radiological

There are no replicate precision QC limits for thorium isotopes in water since there are no action levels for these analytes. The control limits of  $4.24\mu$ , where  $\mu$  is the required method uncertainty, are shown in the "Control Limits when Mean of the Replicate Pair less than Action Level" tables (hereafter referred to as the Tables) below. A more detailed discussion of the origin of these limits is described within the *Radionuclide Data Quality Evaluation Guidance* (USACE 2009). For thorium isotopes, the validator compared the difference between a given set of results relative to the method blank results. If the difference between the field replicate results was less than the method blank result, the data were not qualified.

Please note that the radiological control limits shown in the Tables are applied to both the field replicate and laboratory replicate results and are only applicable when the mean of the replicate results is less than the action level. If the mean is greater than the action level, the control limit value will be presented in the narrative bullets below.

Sediment				
Radionuclide	Control Limit Difference			
	Factor 4.24µ (pCi/g)			
Pb-214	0.464			
Ac-228	0.689			
Th-234	8.65			

#### Control Limits when Mean of the Replicate Pair less than Action Level

Water					
Radionuclide	Control Limit Difference				
	Factor 4.24µ (pCi/L)				
Ra-226	1.17				
Ra-228	1.93				
U-234	3.24				
U-238	1.99				
Gross Alpha (900.0)	6.11				
Gross Beta (900.0)	5.91				
Gross Alpha (7110C)	4.73				

The following field replicate (FREP) pairs were submitted for both radiological and chemical parameters (except for groundwater pairs 12B-090026/ 12B-090073 and 12B-090046/ 12B-090076, and surface water pair 23A-026058 / 23A-026068, which were only analyzed for chemical contaminants of concern).

Field Replicate Pairs Submitted					
12B-090008 / 12B-090010	12B-090019 / 12B-090072	12B-090033 / 12B-090074			
20A-090044 / 20A-090075	12A-090052 / 12A-090077	20A-090065 / 20A-090078			
23A-026058 / 23A-026068	12B-090026 / 12B-090073	12B-090046 / 12B-090076			

All field replicate pair radiological results were within USACE QC limits shown in the Tables for the ROI.

### 5.5.2 Field Replicates - Chemical

For the chemical testing, the MISS groundwater field replicate sample pairs are listed above in the Field Replicate Pairs Submitted table. Field duplicate RPDs are less than 20% for all positive elements results greater than 5X the reporting limit or differ by less than the reporting limit for all positive elements results less than 5X the reporting limit. For VOC (benzene) analyses, all RPD values are less than 50%.

## 5.5.3 Laboratory Replicates – Radiological

The following aqueous laboratory replicate pairs were submitted for radiological analyses.

Laboratory Replicate Pairs Submitted					
12B-090000 12B-090001 12B-090008					
10A-090011 12B-090018 12B-090019					

12B-090029	12B-090032	12B-090033
12B-090072	12B-090074	12B-090034
12B-090035	12B-090038	12B-090044
12A-090052	12A-090053	20A-090064
20A-090065	20A-090078	23A-090055
22A-090060		

All laboratory replicate difference factors are within the control limits except for the following: a. Within data package 16G-0316 and -320, sample 12B-090001 was analyzed as a laboratory replicate sample for gross beta isotopic analyses. Results are summarized below.

Analyte	12B-090001			12B-0	90001 LREP	
	Result pCi/L	Uncertainty	MDA	Result pCi/L	Uncertainty	MDA
Gross Beta	400.395	6.778	2.345	282.259	5.548	2.226

The gross beta difference factor is 34.6% and the control limit is  $\leq 11.8\%$ . Using professional judgment, the gross beta results for 12B-090001, 12B-090001 LREP, 12B-090002, 10A-090012 and 12B-090010 in this data package, as well as the 12B-090016 and 12B-090017 gross beta results in data package 16G-0325 and -0332 are qualified as estimated (J) by the validator.

b. Within data package 16G-0325 and -0332, sample 12B-090033 was analyzed as a laboratory replicate sample for Gross Beta analyses. Results are summarized below.

Analyte	12B-090033			12B-0	90033 LREP	
	Result pCi/L	Uncertainty	MDA	Result pCi/L	Uncertainty	MDA
Gross Beta	1094.894	18.008	7.381	1252.178	19.485	8.192

The Gross Beta difference factor is 13.4%, exceeding the 11.8% upper control limit. Using professional judgment, the Gross Beta results for 12B-090033 and 12B-090033 LREP in this data package, as well as the Gross Beta results for samples 10A-090037, 19A-090040, 19A-090041, 20A-090045 and 20A-090075 in data package 16G-0335 and -0338, are qualified as estimated (J) by the validator. Other Gross Beta laboratory replicate results in STF 16-1042 were within acceptance criteria.

## 5.5.4 Laboratory Replicates – Chemical

For VOCs, the following Maywood samples were analyzed as laboratory duplicate samples:

- 12B-090022 in data package JC25696. Both results were reported as non-detected (U). Also in JC25696, a non-Maywood sample was analyzed as a laboratory duplicate associated with analytical batch VC7807. Sample matrices may not be comparable.
- In data package JC25869, Maywood sample 12B-090028 was analyzed as a laboratory duplicate sample. Both results were reported as non-detected (U).
- In data package JC25918, Maywood sample 12B-090034 was analyzed as a laboratory duplicate sample. Both results were reported as non-detected (U).

- 12B-090047 in data package JC26108. The laboratory duplicate relative percent difference (RPD) is acceptable at 4%.
- 20A-090070 in data package JC28136. Results for both runs were reported as non-detect (U). No results are qualified based upon these results.

In each case, the method acceptance criterion was met.

For elements, there were no laboratory replicate analyses performed on Maywood samples. In most cases, an MS/MSD was performed to evaluate analytical precision.

## 5.6 QUALITY ASSURANCE (QA) SPLIT SAMPLES

In addition to field replicates, there were four QA split groundwater samples collected and sent to an independent laboratory, Test America-St. Louis, (TA) which performed the same radiological analyses as the samples sent to UFML, as well as arsenic, lithium and benzene analyses. The four samples are: 12B-090008, 12B-090019, 12A-090052, and 20A-090064.

QA split sample results for surface water samples are addressed in the 2016 Annual Environmental Monitoring Report QCSR.

The QC acceptance criteria for the QA split sample pairs are that the results must be within a factor of two for aqueous pairs. Split pair results between a factor of two and three of each other should be considered as a minor discrepancy and data greater than a factor of three should be considered a major discrepancy. If one result was non-detect and the other a low-level positive detect, professional judgment was used to evaluate and qualify the data if needed.

Please also note that split samples for GA and GB will no longer be collected since the Ra-224 and its alpha and beta-emitting progeny will begin decaying away when the sample has been collected. Since the GA must be analyzed by the onsite lab within 48 hours of collection, the difference in the analysis times translates to a difference in the degree of decay of these radioisotopes making comparison less meaningful. Therefore, the GA and GB QA split results are not discussed here. All split results were within the QC limits noted above with the following exceptions. Please note that for the split results, all data qualification recommendations are made by the Maywood project Chemical Quality Control Coordinator (CQCC).

### Radiological

- For groundwater split sample 12b-090008, the Ra-228 results from the UFML and TA labs are 1.5 pCi/L and 0.39 U pCi/L, respectively. The MDC for the TA result is 0.57 pCi/L. The UFML result is between a factor of two and three of the TA MDC and so the UFML result is qualified estimated J. Using professional judgment, no additional qualification is made to other Ra-228 results. The UFML and TA results for Th-228 are 0.06 U pCi/L and 0.14 pCi/L, respectively; and for Th-230 are 0.07 U pCi/L and 0.24 pCi/L, respectively. The TA Th-228 and Th-230 results should be considered estimated. No additional qualifications are made to the UFML results.
- For groundwater split sample 12b-090019, the Ra-228 results from the UFML and TA labs are 0.28 J pCi/L and 0.88 U pCi/L, respectively. The positive UFML is near the MDL of 0.20 and is already qualified estimated J. No additional qualifiers are applied. The isotopic thorium and uranium results are shown in the table below.

Parameter	Test America				UFML	
	Result	Uncertainty	MDA	Result	Uncertainty	MDA
Th-228	1.1	0.56	0.57	0.04 U	0.12	0.24
Th-230	1.0	0.50	0.40	0.3	0.23	0.19
Th-232	0.16	0.19	0.16	0.02 U	0.07	0.16
U-234	0.34 U	0.37	0.54	0.17	0.14	0.08
U-238	0.22	0.25	0.22	0.076 U	0.10	0.14

The TA Th-228 result is within a factor of two of its MDA and should be considered estimated as the UFML result is non-detect. The UFML result may have a small low bias. The Th-230 results are different by a factor of 3.3. The UFML Th-230 result should be estimated J and may be biased low. The TA Th-232 and U-238 results are at their respective MDA values and the UFML results for Th-232 and U-238 are non-detect. No additional qualifiers are applied to these results. The UFML U-234 result is within a factor of two of the U-234 ND value generated by TA; therefore, no qualifier is applied to the UFML U-234 result.

- For groundwater split sample 12a-090052, the Ra-228 results are 1.14 pCi/L and 0.25 pCi/L at TA and UFML, respectively. The UFML value is close to its MDA of 0.18 pCi/L, and it is recommended that the UFML value be qualified estimated J. The Th-228 results are 0.14 pCi/L and -0.01 U pCi/L at TA and UFML, respectively. Since the positive TA value is very close to its MDA of 0.13 pCi/L, no additional qualification of the ND UFML result is required. For Th-230, the results are 0.10 and 1.10 pCi/L at TA and UFML, respectively. While both values are low, they differ by a factor of 11. It is recommended that the UFML Th-230 result be qualified estimated J in sample 12a-090052.
- For groundwater split sample 20a-090064, the GA UFML result of 3.7 pCi/L is slightly more than two times the ND GA value from TA of 1.77 U pCi/L. It is recommended that the UFML GA result be qualified estimated J. The TA and UFML Ra-226 results are 0.20 and 0.11 U, respectively. Since the positive TA result is within a factor of two of the UFML detection limit, no additional qualifiers are applied. For Th-228, the TA regular result was positive (1.56 pCi/L) and the UFML result was ND (-0.02 U pCi/L). However, since the TA lab replicate result is ND, no additional qualification is made. The low level positive U-234 and U-238 results from UFML were within a factor of two of the TA detection limit for these analytes. The TA results were ND. The UFML results are therefore not qualified. For Th-230, it is recommended to qualify the UFML result of 0.30 pCi/L estimated J since it is more than a factor of four lower than the TA result of 1.32 pCi/L.

Looking at all split sample radiological results and the frequency of exceedances of the QA split sample acceptance criteria, the CQCC recommends that all positive Th-230 results generated at UFML be qualified estimated J.

### Chemical

All chemical results for arsenic, lithium and benzene were within QC limits for the split samples.

## 5.7 RADIONUCLIDE QUANTITATION AND IMPLIED DETECTION LIMITS (RADIOLOGICAL)

The laboratory reported the results with analytical uncertainties.

Some results are reported as negative results within the water data packages. Based upon USACE Guidance *Radionuclide Data Quality Evaluation Guidance* (USACE 2009), "Negative results that have uncertainties greater than the absolute value of the result, qualify the results U" and "for negative results that have uncertainties smaller than their absolute value, qualify the data "R" as rejected." All reported negative results are qualified as non-detected (U) or non-detected estimated (UJ) in all data packages.

If a result is greater than its minimum detectable activity (MDA), but less than its uncertainty, the probability that the result is greater than the MDA is greater than the probability that the result is less than the MDA. Such results are qualified as estimated (J) and are listed below for each data package.

Sample ID	Radionuclide	Result pCi/L	2 Sigma	MDA
12B-090000	U-234	0.094	0.111	0.085
12B-090000	U-238	0.126	0.128	0.085

#### Data Package 16G-0316 and -0320.

### Data Package 16G-0325 and -0332.

Sample ID	Radionuclide	Result pCi/L	2 Sigma	MDA
12B-090016	Ra-226	0.195	0.197	0.132
12B-090019	Ra-228	0.277	0.285	0.204
12B-090018	Th-230	0.152	0.164	0.094
12B-090029	Th-230	0.174	0.177	0.152
12B-090094	Th-230	0.158	0.165	0.141
12B-090019LREP	U-234	0.112	0.115	0.076

### Data Package 16G-0335, -0338.

Sample ID	Radionuclide	Result pCi/L	2 Sigma	MDA
12B-090034	Ra-226	0.135	0.159	0.122
12B-090034 LREP	U-238	0.089	0.105	0.080
19A-090041	U-235	0.091	0.107	0.082
20A-090044	Th-230	0.154	0.155	0.084
20A-090045	U-235	0.088	0.106	0.079
12B-090096	Th-230	0.156	0.163	0.140

Data Package 16G-0344, -0360, etc.

Sample ID	Radionuclide	Result pCi/L	2 Sigma	MDA
20A-0290077	U-238	0.116	0.119	0.079
23A-026055	Th-230	0.119	0.150	0.093
20A-090064 LREP	Ra-226	0.121	0.142	0.109

## 5.8 CHEMICAL SEPARATION SPECIFICITY (RADIONUCLIDES)

The energy of the radionuclide of interest must be within 40 kiloelectron volt (keV) of the theoretical energy for that radionuclide for samples analyzed by alpha spectroscopy. This criterion is not applied to results that are less than the MDA. All energies for radionuclides of interest analyzed by alpha spectroscopy were within 40 keV of their theoretical energies.

## 5.9 MISCELLANEOUS METALS QC

The following Maywood samples were analyzed as serial dilution samples:

- 12B-090002 (data package JC25414 for arsenic)
- 12B-090008, (data package JC25502 for arsenic and lithium)
- 12B-090019 (data package JC25584 for arsenic and lithium)
- 12B-090022 (data package JC25696 for arsenic)
- 12B-090028 (data package JC25869 for arsenic and lithium);
- 20A-090044 (data package JC26014 for arsenic and lithium);
- 12B-090046 (data package JC26108 for arsenic);
- 12A-090052 (data package JC26264 for arsenic and lithium);
- 23B-090059 (data package JC26422 for lithium);
- 20A-090064 (data package JC26684 for arsenic and lithium);
- 12B-090108 (data package JC26821 for arsenic);
- 12B-090005 (data package JC26941 for arsenic);
- 23A-026058 (data package JC27145 for arsenic and lithium);
- 12B-090103, arsenic; and 20A-090070, lithium (data package JC28136);

All acceptance criteria were met for the serial dilution results. For data packages that did not have serial dilution results, no results were qualified due to the absence of a serial dilution.

All method acceptance criteria, recoveries within 60-125%, were met for ICP-MS internal standard recoveries.

All ICP-MS and ICP-AES interference check sample criteria were met (80-120%) for the ICSA and ICSAB solutions.

## 5.10 MISCELLANEOUS VOC QC

For VOC, the laboratory reported three surrogates, 4-bromofluorobenzene, toluene-d8 and dibromofluoromethane. All surrogate recoveries were within the laboratory's acceptance criteria for aqueous samples.

All VOC internal standard results were within the laboratory's acceptance criteria, and all acceptance criteria for instrument tuning were met for all samples.

### 5.11 HOLDING TIMES

All sample analyses holding time requirements were satisfied.

## 6.0 DISCUSSION

All data, except as noted in Section 3.0, was validated by an independent third party data validator. All data was generated using methods acceptable to the NJDEP as evidenced by current laboratory certification for these methods. The results of the validation indicate that 100% of the data was acceptable; i.e., not rejected. Attachments A and B contain the radiological onsite laboratory data packages and chemical (plus radon) offsite laboratory data packages, respectively. Attachment C contains the data validation reports.

## 7.0 **REFERENCES**

ASTM International (ASTM) 2009, Standard for High-Resolution Gamma-Ray Spectrometry for Soil Samples, ASTM C1402-04.

American National Standards Institute (ANSI) 1999, Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emissions Rates of Radionuclides. ANSI N42.14-99.

U.S. Army Corps of Engineers (USACE) 2009, *Radionuclide Data Quality Evaluation Guidance*, USACE Kansas City and St. Louis Districts, May 2009.

USACE 2014, *General Environmental Protection Plan, Revision 2*, prepared by Cabrera Services for USACE Kansas City District, April 2014.

USACE 2015, Uniform Federal Projects – Quality Assurance Project Plan, Revision 3; Prepared by Cabrera Services for USACE, November 2015

USACE 2016, Annual Environmental Monitoring Report, 2015. Prepared by Cabrera Services for USACE, April 2016.

U.S. Department of Energy (DOE) 1997, US DOE Environmental Measurements Laboratory, Method Ga-01-R, Gamma Radioassay. HASL-300, 28th Ed., February 1997.

U.S. Environmental Protection Agency (EPA) 1980, *Prescribed Procedures for Measurement of Radioactivity in Drinking Water*. EPA/600/4-80/032, August.

U.S. Environmental Protection Agency (EPA), Hazardous Waste Support Section, SOP No. HW-34, Revision 3, Trace Volatile Organic Data Validation, February 2013.

U.S. Environmental Protection Agency (EPA), Hazardous Waste Support Section, SOP No. HW-2a, Revision 15, ICP-AES Data Validation, December 2012.

This page intentionally left blank.

## ATTACHMENT A RADIOLOGICAL DATA PACKAGES

(On CD only)

## ATTACHMENT B CHEMICAL DATA PACKAGES (On CD only)

## ATTACHMENT C DATA VALIDATION REPORTS

(On CD only)

## APPENDIX G Electronic Data Deliverable (Note: The contents of this appendix are on CD)